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Editorial

Theory in population biology, or biologically inspired mathematics?
TPB welcomes submissions from authors new to the journal,
whom we hope to aid in preparing high-quality manuscripts that
will succeed in our editorial process. Previous editorials described
the topics of emphasis over the course of the journal’s history
(Rosenberg, 2013) and commented on three features expected
in TPB papers: motivation from a biological perspective, signifi-
cant mathematical contribution, and interpretation aimed toward
advancing biology (Rosenberg, 2014). Long-time readers will rec-
ognize a distinction between (1) research contributions to math-
ematics inspired by progress in theoretical population biology,
which are not the focus of the journal, and (2) contributions to the-
oretical population biology itself, the core interest of TPB. To pro-
vide further guidance to authors, this editorial elaborates on the
difference between biologically inspired contributions to mathe-
matics and theoretical advances in population biology.

Because theory in biology links mathematical and biological
topics, theoretical population biology has often led to new ad-
vances in mathematics. A differential equation or stochastic pro-
cess developed for a specific biological problem might open new
research areas in themathematical theory of differential equations
or stochastic processes, as has happened many times in the his-
tory of theoretical biology (Cohen, 2004). More generally, a com-
plex biological problemmight generate a newmathematical entity
whose utility in the mathematical sciences is subsequently recog-
nized. The Ewens Sampling Formula first reported in TPB (Ewens,
1972), with its broad impact in probability and statistics (Tavaré
and Ewens, 1997), is a celebrated example of this phenomenon.

In mature cases, the impact of a significant result in theoreti-
cal population biology can have a clear bifurcation into its contri-
butions to biology and its contributions to mathematics. Thus, for
instance, the Yule birth process, originally developed for under-
standing the distribution of the number of species across genera
(Yule, 1925), is the starting point for a thriving intellectual tradi-
tion in biology that is still motivated in large part by an interest in
exploring macroevolutionary phenomena (e.g. Aldous, 2001; Nee,
2006; Stadler, 2013), and that makes regular appearances in TPB
(e.g. Wilkinson and Tavaré, 2009; Zhu et al., 2011; Heled, 2012;
Lambert and Stadler, 2013). At the same time, however, the Yule
birth process has also become a basic object underlying a substan-
tial body of work in stochastic processes, where it often appears
as a textbook example stripped entirely of the macroevolutionary
context of the problem in which it originated (e.g. Karlin and Tay-
lor, 1975; Grimmett and Stirzaker, 2001).

TPBmanuscripts center on contributions to biology—empirical,
theoretical, or both. Thus, whereas introducing new terms to equa-
tions from theoretical population biology and proving theorems
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about the resulting dynamical systems might generate advances
in mathematics, such research might be termed ‘‘mathematics in-
spired by theoretical population biology’’. For all its potential sig-
nificance mathematically, it does not on its own further biology.
Mathematical studies of modifications or little-explored features
of such population biology staples as the Lotka–Volterra equation
or the SIR model, for example, have bifurcated away from the bi-
ological tradition of such models; they are not themselves ‘‘theo-
retical population biology’’ without a specific biological setting for
the mathematical research.

Any of a number of recent articles from TPB can illustrate the
nature of theory in population biology as distinct from biologi-
cally inspired mathematics. For example, concerned with the way
in which human behaviors affect population dynamics of avian in-
fluenza in poultry populations, Boni et al. (2013) constructed sus-
ceptible–infectedmodels of avian influenza transmission, inwhich
epidemiological parameter values arise from choices that farmers
make in order to maximize their profits from poultry sales. Boni
et al. justified the components of their model equations with their
understanding of the relevant populations, namely poultry popu-
lations on small farms in Asia. Their mathematical analysis iden-
tified parameter regions with qualitatively different behavior, in
the form of different recommended government policies to mini-
mize the societal cost of avian influenza. The study is mathemat-
ical, but each step, from the motivating background information
through the analysis and its interpretation, is focused on the bio-
logical problem. The model and the mathematics are of interest to
the extent that they assist in understanding the biology.

With its introduction of an empirical problem, justification
of models relevant for solving the problem, analysis of the
models, and interpretation for the biological scenario of interest,
the study of Boni et al. (2013) exemplifies a classic structure
for a population biology modeling paper. TPB articles whose
contribution is primarily to a body of theory, and that make a
stronger claim of mathematical interest in the results – separating
themas stated theorems, for example – also place themathematics
in the service of biology. Csűrös (2014) proves new results
about nonidentifiability from biallelic genetic markers of certain
identity coefficients describing pairwise relatedness; the results
are interpreted for their potential consequences in estimating the
coefficients from data. Spouge (2014) derives new properties of
the coalescent theory of subsamples, discussing their implications
in understanding Neanderthal gene genealogies and the origin
of disease mutations. Cohen (2014) proves results about limiting
behavior of the relationship between the mean and variance of

http://dx.doi.org/10.1016/j.tpb.2015.01.002
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2015.01.002&domain=pdf
http://dx.doi.org/10.1016/j.tpb.2015.01.002


2 Editorial / Theoretical Population Biology 102 (2015) 1–2
population size over independent realizations of a Markov chain;
the work is presented not as an abstract treatment of Markov
chains, but as a way to explain empirical observations of Taylor’s
law describing the relationship between the mean and variance of
population densities over spatial regions.

When a result in theoretical population biology does give rise to
progress inmathematics, it is often an indication of the significance
and depth of the theoretical work, and the mathematical impact
is a development sure to be appreciated by the theoretical
population biologist. Without the motivating biological setting,
however, the mathematics is not theory. It is only in association
with their placement in the context of biological problems and
interpretations that mathematical results generate contributions
to theoretical population biology.
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