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 A B S T R A C T

Allele-sharing dissimilarity (ASD) statistics are measures of genetic differentiation for pairs of individuals or 
populations. Given the allele-frequency distributions of two populations — possibly the same population — 
the expected value of an ASD statistic is computed by evaluating the expectation of the pairwise dissimilarity 
between two individuals drawn at random, each from its associated allele-frequency distribution. For each 
of two ASD statistics, which we term 1 and 2, we investigate the extent to which the expected ASD is 
constrained by allele frequencies in the two populations; in other words, how is the magnitude of the measure 
bounded as a function of the frequency of the most frequent allelic type? We first consider dissimilarity of a 
population with itself, obtaining bounds on expected ASD in terms of the frequency of the most frequent allelic 
type in the population. We then examine pairs of populations that might or might not possess the same most 
frequent allelic type. Across the unit interval for the frequency of the most frequent allelic type, the expected 
allele-sharing dissimilarity has a range that is more restricted than the [0, 1] interval. The mathematical 
constraints on expected ASD assist in explaining a pattern observed empirically in human populations, namely 
that when averaging across loci, allele-sharing dissimilarities between pairs of individuals often tend to vary 
only within a relatively narrow range.

1. Introduction

Statistics based on concepts of allele-sharing dissimilarity (ASD) (Mountain and Cavalli-Sforza, 1997; Mountain and Ramakrishnan, 2005; Gao 
and Martin, 2009) are important tools in population-genetic data analysis. Beginning with the alleles of two diploid individuals at a genetic locus, 
a function of the four alleles is computed, producing a value ranging from 0 for the minimum dissimilarity to 1 for the maximum. Among genetic 
dissimilarity measures, ASD-based statistics are relatively easy to describe and compute. They are meaningful for pairs of individuals, or — if many 
individuals are considered — pairs of populations, or an individual and a population. Hence, features of allele-sharing dissimilarities are often 
used for understanding genetic variation within and among populations (Mountain and Cavalli-Sforza, 1997; Mountain and Ramakrishnan, 2005; 
Witherspoon et al., 2007; Rosenberg, 2011).

Studies of population-genetic statistics that consider dissimilarities across individuals suggest that ranges of observed numerical values of 
dissimilarity statistics — notably those based on the classic statistic 𝐹𝑆𝑇  — depend in predictable ways on allele-frequency distributions (Jakobsson 
et al., 2013; Edge and Rosenberg, 2014; Alcala and Rosenberg, 2017, 2019, 2022). Consider two populations, each with an allele-frequency 
distribution at a locus, and consider a bounded statistic that measures the dissimilarity of the two populations as a function of the allele 
frequencies. Although the statistic is bounded, typically in [0, 1], tighter constraints might exist on the dissimilarity in terms of the separate frequency 
distributions in the two populations. A value such as 0.55 or 0.7 might then be appropriate to interpret not in relation to the entire unit interval, 
but in relation to a shorter interval suited to its allele frequencies. Such interpretations have been used to explain unexpected numerical patterns in 
𝐹𝑆𝑇—such as a low 𝐹𝑆𝑇  value among high-diversity African populations (Jakobsson et al., 2013), and a high 𝐹𝑆𝑇  among chimpanzee populations 
relative to its value between chimpanzees and humans (Alcala and Rosenberg, 2022).

Empirical findings suggest that allele-sharing dissimilarities are also constrained by allele frequencies. For example, the values of allele-sharing 
dissimilarities have been seen to be quite similar across many computations. Consider, for example, the computations of allele-sharing dissimilarities 
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as averages across many loci for pairs of individuals in Figure 5A of Rosenberg (2011). In those computations, which consider genome-wide loci 
in diverse human populations, most pairs of individuals possess allele-sharing dissimilarities between 0.55 and 0.7. Does the narrow range arise 
from mathematical constraints on ASD measures in relation to the allele frequencies?

We have recently investigated the mathematical properties of two formulations of population-level ASD measures, exploring mathematical 
properties of the expected genetic dissimilarity between pairs of individuals sampled within and between populations (Liu et al., 2023). Here, 
building upon our previous mathematical results, we derive bounds on the two expectations, both within and between populations, in two scenarios: 
first, when the number of allelic types at a given locus is fixed at 𝐼 and the allele-frequency distributions within a population can be arbitrary 
among these 𝐼 alleles; second, when both 𝐼 and the frequency 𝑀 of the most frequent allelic type within a population are held constant. In both 
scenarios, we focus on the upper and lower bounds on the genetic dissimilarities in terms of the frequency of the most frequent allelic type. We 
find that indeed, ASD values are mathematically constrained to subintervals of [0, 1], and that the constraints can assist in explaining features of 
ASD in human populations.

2. Preliminaries

The structure of the article is as follows. First, in Section 2.1, we introduce definitions for ASD measures. In Sections 2.2 and 2.3, we review 
mathematical results we previously obtained for these measures, and introduce mathematical machinery that we will use to obtain bounds on their 
values. In Section 3, considering ASD measures computed within a population, we derive bounds on the two measures in two scenarios: with only 
the number of allelic types fixed, and with the number of allelic types and the largest allele frequency fixed. Section 4 proceeds similarly, but for 
ASD measures computed between populations. In Section 5, we illustrate the mathematical results in an extensive data analysis, demonstrating 
that the mathematical bounds on ASD measures can assist in explaining features observed in empirical computations of the dissimilarities in 
population-genetic data. The paper concludes with a discussion in Section 6.

2.1. Definitions

Following Liu et al. (2023), we consider two variants of the ASD concept, which we denote by 1 and 2. For 1, ‘‘allele-sharing’’ for two 
diploid individuals is interpreted as the number of shared elements in their sets of alleles. 1 then uses 1 minus the normalized count of the shared 
alleles as the dissimilarity. Consider a locus with four distinct alleles, A, B, C, and D, the minimum number required so that all possible cases 
for diploid genotypes exist. Two individuals both with genotype AB have 2 alleles shared, and 1 = 0. An individual with genotype AB and an 
individual with genotype AC have 1 shared allele, namely A, and 1 =

1
2 .

2 instead considers alleles individually, evaluating the fraction of pairs of alleles, one from the first individual and one from the second, that 
are distinct. For two individuals with genotype AB, 2 = 1

2 : among the four possible pairs of alleles — (A,A), (A,B), (B,A), and (B,B), where the 
first entry in the pair represents an allele from the first individual and the second entry is an allele from the second — two of four contain distinct 
alleles. An individual with genotype AB and an individual with genotype AC have 2 =

3
4 .

Consider a locus with 𝐼 ⩾ 2 allelic types, and suppose the allele frequencies in a population are 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ), where 𝑝𝑖 represents the 
frequency of allele 𝑖. The frequencies satisfy 0 ⩽ 𝑝𝑖 ⩽ 1 for all 𝑖, and ∑𝐼

𝑖=1 𝑝𝑖 = 1. Without loss of generality, let 𝑝1 = 𝑀 represent the largest 
entry in the allele-frequency vector (𝑝1, 𝑝2,… , 𝑝𝐼 ). When we consider allele-frequency vectors in two populations, we let population 2 have allele 
frequencies 𝐪 = (𝑞1, 𝑞2,… , 𝑞𝐼 ), satisfying 0 ⩽ 𝑞𝑖 ⩽ 1 for all 𝑖, and ∑𝐼

𝑖=1 𝑞𝑖 = 1. We define

𝜎𝑡 =
𝐼
∑

𝑖=1
𝑝𝑡𝑖, 𝜏𝑡 =

𝐼
∑

𝑖=1
𝑞𝑡𝑖 ,

for 𝑡 = 1, 2, 3, 4, where 𝜎1 = 𝜏1 = 1. We also define

𝜌𝑡𝑢 =
𝐼
∑

𝑖=1
𝑝𝑡𝑖𝑞

𝑢
𝑖 ,

where (𝑡, 𝑢) is equal to (1, 1), (1, 2), (2, 1), or (2, 2).
We denote the dissimilarity  between two individuals within the same population with allele-frequency vector 𝐩 by 𝑤(𝐩); here,  is understood 

to refer to one of the two dissimilarities, 1 or 2. We denote the corresponding dissimilarity between two individuals from different populations 
with allele-frequency vectors 𝐩 and 𝐪 by 𝑏(𝐩,𝐪). We often drop the arguments for convenience.

2.2. Review of ASD mathematical results

In Liu et al. (2023), we studied a probabilistic model in which individuals are randomly sampled from allele-frequency distributions and 1
and 2 are computed. The expected value of 𝑤

1 (𝐩) satisfies 

E[𝑤
1 (𝐩)] = 1 − 2𝜎2 + 2𝜎3 − 𝜎4. (1)

For 𝐼 = 2, substituting 𝑝2 = 1 − 𝑝1 so that 𝜎𝑡 = 𝑝𝑡1 + (1 − 𝑝1)𝑡, Eq. (1) becomes E[𝑤
1 (𝐩)] = 2𝑝1 − 4𝑝21 + 4𝑝31 − 2𝑝41. We also have 

E[𝑤
2 (𝐩)] = 1 − 𝜎2, (2)

and for the 𝐼 = 2 case, Eq. (2) simplifies to E[𝑤
2 (𝐩)] = 2𝑝1(1 − 𝑝1).

For the between-population dissimilarity 𝑏(𝐩), we obtain
E[𝑏

1(𝐩,𝐪)] = 1 − 2𝜌11 + 𝜌21 + 𝜌12 − 𝜌22, (3)

E[𝑏
2(𝐩,𝐪)] = 1 − 𝜌11. (4)

Eqs. (1), (2), (3), and (4) correspond to Eqs. 3, 9, 16, and 22 of Liu et al. (2023).
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2.3. Review of majorization theory

We recall some results from majorization theory that will assist in finding bounds on ASD statistics. Majorization describes partial orderings on 
vectors with a shared sum.

Definition 2.1 (Majorization, 1.A.1 of Marshall et al. (2010)). Vector 𝐱 ∈ R𝑛 is said to majorize vector 𝐲 ∈ R𝑛 if, when the components of 𝐱 and 𝐲
are each rearranged in non-increasing order, (i) ∑𝑘

𝑖=1 𝑥𝑖 ⩾
∑𝑘

𝑖=1 𝑦𝑖 for all 𝑘 = 1, 2,… , 𝑛 − 1; and (ii) ∑𝑛
𝑖=1 𝑥𝑖 =

∑𝑛
𝑖=1 𝑦𝑖. Equivalently, 𝐲 is said to be

majorized by 𝐱.

If 𝐱 majorizes 𝐲, then we write 𝐱 ≻ 𝐲. Functions that preserve majorization order are said to be Schur-convex.

Definition 2.2 (Schur-convexity, 3.A.1 of Marshall et al. (2010)). A function 𝑓 ∶ R𝑛 → R is said to be Schur-convex if 𝐱 ≻ 𝐲 implies 𝑓 (𝐱) ⩾ 𝑓 (𝐲). The 
function is strictly Schur-convex if 𝐱 ≻ 𝐲 and 𝐱 ≠ 𝐲 implies 𝑓 (𝐱) > 𝑓 (𝐲). A function 𝑓 is Schur-concave if −𝑓 is Schur-convex and strictly Schur-concave
if −𝑓 is strictly Schur-concave.

Theorem 2.3 (Schur convexity condition, 3.A.4 of Marshall et al. (2010)). Let  ⊂ R be an open interval and let 𝑓 ∶ 𝑛 → R be a continuously 
differentiable function. Function 𝑓 is Schur-convex if and only if 𝑓 is symmetric in its 𝑛 arguments and for all (𝑖, 𝑗) with 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛,

(𝑥𝑖 − 𝑥𝑗 )
(

𝜕𝑓
𝜕𝑥𝑖

−
𝜕𝑓
𝜕𝑥𝑗

)

⩾ 0.

Further, if equality requires 𝑥𝑖 = 𝑥𝑗 , then 𝑓 is strictly Schur-convex.
Similarly, 𝑓 is Schur-concave if and only if 𝑓 is symmetric in its 𝑛 arguments and for all (𝑖, 𝑗) with 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛,

(𝑥𝑖 − 𝑥𝑗 )
(

𝜕𝑓
𝜕𝑥𝑖

−
𝜕𝑓
𝜕𝑥𝑗

)

⩽ 0.

If equality requires 𝑥𝑖 = 𝑥𝑗 , then 𝑓 is strictly Schur-concave.

Denote the unit (𝐼 − 1)-simplex by 𝛥𝐼−1:

𝛥𝐼−1 =
{

(𝑝1, 𝑝2,… , 𝑝𝐼 ) ∈ R𝐼 |
|

|

|

𝐼
∑

𝑖=1
𝑝𝑖 = 1, 𝑝𝑖 ⩾ 0 for all 𝑖

}

.

Proposition 2.4 (Majorization inequality for a unit simplex, Section 2.2 of Aw and Rosenberg (2018)). For all vectors 𝐩 in the unit (𝐼 − 1)-simplex 𝛥𝐼−1,
( 1
𝐼
, 1
𝐼
,… , 1

𝐼

)

≺ 𝐩 ≺ (1, 0,… , 0).

Proposition 2.5 (Majorization inequality for vectors in the simplex, with a specified value of the largest entry; see the proof of Theorem 3.9 of Aw and 
Rosenberg (2018)). Let 𝐩 be a vector of length 𝐼 chosen within the simplex, with largest entry equal to 𝑀 ; that is, 𝐩 ∈ 𝛥𝐼−1, where

𝛥𝐼−1 =
{

(𝑝1, 𝑝2,… , 𝑝𝐼 ) ∈ 𝛥𝐼−1|
|

|

𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 , 𝑝1 = 𝑀
}

.

Then
(

𝑀, 1 −𝑀
𝐼 − 1

, 1 −𝑀
𝐼 − 1

,… , 1 −𝑀
𝐼 − 1

)

≺ 𝐩 ≺
(

𝑀,𝑀,… ,𝑀, 1 − (⌈𝑀−1
⌉ − 1)𝑀, 0, 0,… , 0

)

.

Here, the left-hand vector has 𝐼 − 1 entries equal to 1−𝑀
𝐼−1 . The right-hand vector has ⌈𝑀−1

⌉ − 1 entries equal to 𝑀 followed by an entry 
of 1 − (⌈𝑀−1

⌉ − 1)𝑀 and zeroes for the remaining entries. For convenience, we write 𝐩min = (𝑀,… ,𝑀, 1 − (⌈𝑀−1
⌉ − 1)𝑀, 0,… , 0) and 

𝐩max = (𝑀, 1−𝑀𝐼−1 ,… , 1−𝑀𝐼−1 ), noting that because we will be working with Schur-concave functions, the smallest element in the majorization order 
becomes the ‘‘maximum.’’ Note that the subscripts ‘‘min’’ and ‘‘max’’ respectively denote the vectors that minimize and maximize the value of the 
Schur-concave function.

Theorem 2.6 (Rearrangement inequality, Theorem 368 of Hardy et al. (1952)). Consider two sets of 𝐼 real numbers 𝑎1 ⩾ 𝑎2 ⩾ ⋯ ⩾ 𝑎𝐼  and 
𝑏1 ⩾ 𝑏2 ⩾ ⋯ ⩾ 𝑏𝐼 . For each permutation 𝑏𝜎(1), 𝑏𝜎(2),… , 𝑏𝜎(𝐼) of 𝑏1, 𝑏2,… , 𝑏𝐼 ,

𝑎1𝑏𝐼 + 𝑎2𝑏𝐼−1 +⋯ + 𝑎𝐼𝑏1 ⩽ 𝑎1𝑏𝜎(1) + 𝑎2𝑏𝜎(2) +⋯ + 𝑎𝐼𝑏𝜎(𝐼) ⩽ 𝑎1𝑏1 + 𝑎2𝑏2 +⋯ + 𝑎𝐼𝑏𝐼 .

3. Mathematical constraints on within-population dissimilarity

Using Eqs.  (1) and (2), we consider two sets of mathematical constraints on the within-population dissimilarity measures E[𝑤
1 ] and E[𝑤

2 ]. 
First, fixing the number of allelic types 𝐼 but permitting the allele-frequency distribution to be arbitrary, we consider general bounds as functions 
of 𝐼 . Second, because the largest allele frequency 𝑀 might impose further restrictions on the allele-frequency distribution, we consider the bounds 
when fixing both 𝐼 and 𝑀 .
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Fig. 1. Range of E[𝑤
1 ] and E[𝑤

2 ] as functions of the number of allelic types 𝐼 when the allele-frequency vector is permitted to be arbitrary, as stated in Theorems  3.2 and 3.6.

3.1. Bounds on E[𝑤
1 ] when the number of allelic types 𝐼 is fixed

Let E[𝑤
1 ] be a function of 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ) following Eq. (1), where 𝐩 ∈ 𝛥𝐼−1, the standard (𝐼 − 1)-simplex. Denote E[𝑤

1 ] by 𝑓 (𝐩).

Lemma 3.1. 𝑓 (𝐩) = E[𝑤
1 ], as a function of 𝐩 ∈ 𝛥𝐼−1, is strictly Schur-concave.

The proof of the lemma appears in Appendix  A. Using the strict Schur-concavity of the function 𝑓 (𝐩) = E[𝑤
1 ] from Lemma  3.1, we arrive at 

the following theorem. 

Theorem 3.2.  Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼  for 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ). Then

0 ⩽ E[𝑤
1 ] ⩽ 1 − 2

𝐼
+ 2

𝐼2
− 1

𝐼3
.

Equality at the lower bound is reached if and only if 𝑝1 = 1 and 𝑝𝑖 = 0 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality at the upper bound is reached if and only if 𝑝𝑖 = 1
𝐼  for 

1 ⩽ 𝑖 ⩽ 𝐼 .

Proof.  By Proposition  2.4, 𝐩max = ( 1𝐼 ,
1
𝐼 ,… , 1𝐼 ) is majorized by all 𝐩 ∈ 𝛥𝐼−1, and 𝐩min = (1, 0,… , 0) majorizes all 𝐩 ∈ 𝛥𝐼−1. Because 𝑓 (𝐩) = E[𝑤

1 ]
is strictly Schur-concave by Lemma  3.1, by definition of strict Schur-concavity (Definition  2.2), 𝑓 (𝐩max) ⩾ 𝑓 (𝐩) for all 𝐩 ∈ 𝛥𝐼−1 and 𝑓 (𝐩min) ⩽ 𝑓 (𝐩)
for all 𝐩 ∈ 𝛥𝐼−1. Therefore,

maxE[𝑤
1 ] = 𝑓 (𝐩max) = 1 − 2

𝐼
+ 2

𝐼2
− 1

𝐼3
,

minE[𝑤
1 ] = 𝑓 (𝐩min) = 0,

with equality if and only if 𝐩 lies at the specified points. □

In the simplest case of 𝐼 = 2, we find that E[𝑤
1 ] is maximized for (𝑝1, 𝑝2) = ( 12 ,

1
2 ), with E[𝑤

1 ] =
3
8 . It is minimized for (𝑝1, 𝑝2) = (1, 0), at which 

E[𝑤
1 ] = 0.
The relationship between the upper bound on E[𝑤

1 ] and 𝐼 is shown in Fig.  1. The figure shows a strictly increasing sequence, as is clear by 
noting that the derivative of the upper bound of E[𝑤

1 ] as a function of 𝐼 is (2𝐼2 − 4𝐼 + 3)∕𝐼4, a strictly positive function for 𝐼 ⩾ 2. As 𝐼 → ∞, this 
upper bound approaches 1.

3.2. Bounds on E[𝑤
1 ] when the largest allele frequency is fixed

If the largest allele frequency 𝑀 is fixed, then a tighter constraint is imposed on the range of values that E[𝑤
1 ] can take. To derive this 

constraint, we use Proposition  2.5.

Theorem 3.3.  Suppose 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 , and suppose 𝑝1 = 𝑀 is fixed, 1𝐼 ⩽ 𝑀 ⩽ 1. Let 𝐿 = 1−𝑀
𝐼−1  and 𝑅 = ⌈𝑀−1

⌉−1. 𝑓 (𝐩) = E[𝑤
1 ] = 1−2𝜎2+2𝜎3−𝜎4

is bounded by
𝑓 (𝐩min) ⩽ E[𝑤

1 ] ⩽ 𝑓 (𝐩max).

Equality with the lower bound is achieved if and only if 𝐩 = 𝐩min = (𝑀,… ,𝑀, 1 − (⌈𝑀−1
⌉ − 1)𝑀, 0,… , 0), producing 𝑓 (𝐩min) = 1 − 𝑅(2𝑀2 − 2𝑀3 +

𝑀4) − 2(1 − 𝑅𝑀)2 + 2(1 − 𝑅𝑀)3 − (1 − 𝑅𝑀)4. Equality with the upper bound is achieved if and only if 𝐩 = 𝐩max = (𝑀, 1−𝑀𝐼−1 ,… , 1−𝑀𝐼−1 ), producing 
𝑓 (𝐩 ) = 1 − 2𝑀2 + 2𝑀3 −𝑀4 − (𝐼 − 1)(2𝐿2 − 2𝐿3 + 𝐿4).
max
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Fig. 2. Bounds of expected dissimilarities for 𝐼 = 2 to 9 allelic types when the largest allele frequency is fixed to be 𝑀 , as stated in Theorems  3.3 and 3.7. (A) E[𝑤
1 ]. (B) E[𝑤

2 ]. 
The solid line corresponds to the upper bound, and the dashed line corresponds to the lower bound, with lower bounds for different 𝐼 values overlapping.

Fig. 3. Area of the permissible region for expected dissimilarities for 𝐼 = 2 to 60 when the largest allele frequency is fixed to be 𝑀 and 𝑀 ranges from 1
𝐼
 to 1, as stated in 

Propositions  3.4 and 3.8.

The proof is straightforward: by Proposition  2.5, 𝐩min ≻ 𝐩 ≻ 𝐩max for all 𝐩 ∈ 𝛥𝐼−1. Because 𝑓 is strictly Schur-concave (Lemma  3.1), by the 
definition of Schur-concavity (Definition  2.2), 𝑓 (𝐩min) ⩽ 𝑓 (𝐩) ⩽ 𝑓 (𝐩max) for all 𝐩 ∈ 𝛥𝐼−1, with the appropriate equality conditions.

In the 𝐼 = 2 case, there is a single choice for 𝐩, and the two bounds coincide. For each 𝐼 from 2 to 9, Fig.  2 plots the region specified by the 
theorem, illustrating that as 𝐼 increases, the size of the permissible region grows.

The vector 𝐩 that produces equality of the lower bound of E[𝑤
1 ] given 𝑀 is exactly the same as the one that minimizes the heterozygosity 

given 𝐼 and 𝑀 ; similarly, the vector that produces equality of the upper bound of E[𝑤
1 ] given 𝑀 is the vector tht maximizes heterozygosity given 

𝐼 and 𝑀 (Reddy and Rosenberg, 2012).

Proposition 3.4.  With fixed 𝐼 , the region bounded by the upper and lower bounds on E[𝑤
1 ] as a function of 𝑀 has area 

𝑆E[𝑤
1 ](𝐼) =

19
30

− 31
30𝐼

+ 4
5𝐼2

− 2
5𝐼3

−
𝐼
∑

𝑖=2

[

11
30(𝑖 − 1)2

− 3
10(𝑖 − 1)3

+ 1
5(𝑖 − 1)4

]

. (5)

The proof appears in Appendix  B. Letting 𝐼 → ∞ in Eq. (5), noting that the Riemann zeta function satisfies 𝜁 (2) =
∑∞

𝑖=1 1∕𝑖
2 = 𝜋2∕6, 

𝜁 (3) =
∑∞

𝑖=1 1∕𝑖
3 ≈ 1.202057, and 𝜁 (4) = ∑∞

𝑖=1 1∕𝑖
4 = 𝜋4∕90, the area approaches

𝑆 𝑤 (∞) = 19 − 11 𝜁 (2) + 3 𝜁 (3) − 1 𝜁 (4)
E[1 ] 30 30 10 5
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Fig. 4. Bounds for E[𝑏
1] and E[𝑏

2] for 𝐼 = 2 to 4 when two populations share the most frequent allelic type. The frequencies of the most frequent allelic type are fixed to be 
𝑀1 and 𝑀2 in the two populations. (A) E[𝑏

1], lower bound for 𝐼 = 2. (B) E[𝑏
1], lower bound for 𝐼 = 3. (C) E[𝑏

1], lower bound for 𝐼 = 4. (D) E[𝑏
1], upper bound for 𝐼 = 2. 

(E) E[𝑏
1], upper bound for 𝐼 = 3. (F) E[𝑏

1], upper bound for 𝐼 = 4. (G) E[𝑏
2], lower bound for 𝐼 = 2. (H) E[𝑏

2], lower bound for 𝐼 = 3. (I) E[𝑏
2], lower bound for 𝐼 = 4. (J) 

E[𝑏
2], upper bound for 𝐼 = 2. (K) E[𝑏

2], upper bound for 𝐼 = 3. (L) E[𝑏
2], upper bound for 𝐼 = 4. Bounds for E[𝑏

1] follow Theorem  4.2. Bounds for E[𝑏
1] follow Corollary  4.6. 

The lower bound for E[𝑏
1] is loose if 𝑀1 <

1
2
 or 𝑀2 <

1
2
. The lower bound for E[𝑏

1] if 𝑀1 ⩾
1
2
 and 𝑀2 ⩾

1
2
, the upper bound for E[𝑏

1], and the bounds for E[𝑏
2] are strict.
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Fig. 5. Bounds for E[𝑏
1] and E[𝑏

2] for 𝐼 = 2 to 4 when two populations do not necessarily share the most frequent allelic type. The frequencies of the most frequent allelic type 
are fixed to be 𝑀1 and 𝑀2 in the two populations. (A) E[𝑏

1], lower bound for 𝐼 = 2. (B) E[𝑏
1], lower bound for 𝐼 = 3. (C) E[𝑏

1], lower bound for 𝐼 = 4. (D) E[𝑏
1], upper 

bound for 𝐼 = 2. (E) E[𝑏
1], upper bound for 𝐼 = 3. (F) E[𝑏

1], upper bound for 𝐼 = 4. (G) E[𝑏
2], lower bound for 𝐼 = 2. (H) E[𝑏

2], lower bound for 𝐼 = 3. (I) E[𝑏
2], lower 

bound for 𝐼 = 4. (J) E[𝑏
2], upper bound for 𝐼 = 2. (K) E[𝑏

2], upper bound for 𝐼 = 3. (L) E[𝑏
2], upper bound for 𝐼 = 4. Bounds for E[𝑏

1] follow Theorem  4.3. Bounds for E[𝑏
2]

follow Theorem  4.5. Bounds for E[𝑏
1] are loose and bounds for E[𝑏

2] are strict.
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Fig. 6. Violin plots of E[𝑤] in human population-genetic data; 30 populations with sample size larger than 15 are considered at 630 loci, so that each panel contains 
30 × 630 = 18,900 data points. Population–locus combinations are grouped by values of 𝐼 ; loci with 𝐼 > 14 are not shown. Only half of each violin is depicted. (A) Theoretical 
E[𝑤

1 ] (Eq. (1)). (B) Theoretical E[𝑤
2 ] (Eq. (2)). (C) Empirical E[𝑤

1 ]. (D) Empirical E[𝑤
2 ]. ‘‘Theoretical’’ values are calculated based on the allele frequencies in a population, 

and ‘‘empirical’’ values are obtained by averaging across all pairs of individuals in the population. The permissible regions for E[𝑤
1 ] for arbitrary allele frequencies (Theorem 

3.2) appear in the background in panels (A) and (C); the permissible regions for E[𝑤
2 ] (Theorem  3.6) appear in panels (B) and (D).

= 19
30

− 11𝜋2

180
− 𝜋4

450
+ 3

10
𝜁 (3) ≈ 0.174343. (6)

The area of the region is plotted as a function of 𝐼 in Fig.  3.

3.3. Bounds on E[𝑤
2 ] when the number of allelic types 𝐼 is fixed

Bounds on E[𝑤
2 ] can be obtained similarly to those on E[𝑤

1 ]. We write E[𝑤
2 ] as a function 𝑔(𝐩) following Eq. (2), where 𝐩 ∈ 𝛥𝐼−1. The 

functional form E[𝑤
2 ] = 1 − 𝜎2 admits known results for the homozygosity 𝜎2.

Lemma 3.5. 𝑔(𝐩) = E[𝑤
2 ], as a function of 𝐩 ∈ 𝛥𝐼−1, is strictly Schur-concave.

The proof of the lemma follows directly from the strict Schur-convexity of homozygosity 𝜎2 (Aw and Rosenberg, 2018, p. 720). As a function 
of 𝐩, 𝑔(𝐩) = 1 − 𝜎2, so that 𝑔(𝐩) is strictly Schur-concave by Definition  2.2.

Theorem 3.6.  Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼  for 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ). Then

0 ⩽ E[𝑤
2 ] ⩽ 1 − 1

𝐼
.

Equality at the lower bound is reached if and only if 𝑝1 = 1 and 𝑝𝑖 = 0 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality at the upper bound is reached if and only if 𝑝𝑖 = 1
𝐼  for 

1 ⩽ 𝑖 ⩽ 𝐼 .

Proof.  Using the strict Schur-concavity of function 𝑔, the proof follows that of Theorem  3.2. We obtain

maxE[𝑤
2 ] = 𝑔(𝐩max) = 1 − 1

𝐼
,

minE[𝑤
2 ] = 𝑔(𝐩min) = 0,

with equality if and only if 𝐩 lies at the specified points. □

In the 𝐼 = 2 case, we have a maximum value of E[𝑤
2 ] =

1
2  if and only if (𝑝1, 𝑝2) = ( 12 ,

1
2 ) and a minimum value of E[𝑤

2 ] = 0 if and only if 
(𝑝1, 𝑝2) = (1, 0).

The relationship between the upper bound on E[𝑤
2 ] and 𝐼 appears in Fig.  1. It is a strictly increasing sequence, and as 𝐼 → ∞, the upper 

bound approaches 1. Note that for 𝐼 ⩾ 2, the upper bound on E[𝑤
2 ], 1 − 1

𝐼 , strictly exceeds the upper bound on E[𝑤
1 ], 1 − 2

𝐼 + 2
𝐼2

− 1
𝐼3
, as 

(1 − 1 ) − (1 − 2 + 2 − 1 ) = (𝐼 − 1)2∕𝐼3 > 0.
𝐼 𝐼 𝐼2 𝐼3
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Fig. 7. The relationship between the within-population allele-sharing dissimilarity E[𝑤] and the largest allele frequency 𝑀 in empirical data. The plot considers 30 populations 
with sample size larger than 15 and 10 loci with a number of distinct alleles equal to 6, a total of 30 × 10 = 300 population–locus combinations. (A) Theoretical E[𝑤

1 ] (Eq. (1)). 
(B) Theoretical E[𝑤

2 ] (Eq. (2)). (C) Empirical E[𝑤
1 ]. (D) Empirical E[𝑤

2 ]. ‘‘Theoretical’’ values are calculated based on the allele frequencies in a population, and ‘‘empirical’’ 
values are obtained by averaging across all pairs of individuals in the population. The permissible region for E[𝑤

1 ] in relation to 𝑀 (Theorem  3.3) appears in panels (A) and 
(C); the permissible region for E[𝑤

2 ] in relation to 𝑀 (Theorem  3.7) appears in panels (B) and (D).

3.4. Bounds on E[𝑤
2 ] when the largest allele frequency is fixed

The bounds on E[𝑤
2 ] = 1 − 𝜎2 when 𝑝1 = 𝑀 restate known bounds on 𝜎2.

Theorem 3.7.  Suppose 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 , and suppose 𝑝1 = 𝑀 is fixed, 1𝐼 ⩽ 𝑀 ⩽ 1. Let 𝐿 = 1−𝑀
𝐼−1  and 𝑅 = ⌈𝑀−1

⌉ − 1. 𝑔(𝐩) = E[𝑤
2 ] = 1 − 𝜎2 is 

bounded by
𝑔(𝐩min) ⩽ E[𝑤

2 ] ⩽ 𝑔(𝐩max).

Equality with the lower bound is achieved if and only if 𝐩 = 𝐩min = (𝑀,… ,𝑀, 1 − (⌈𝑀−1
⌉ − 1)𝑀, 0,… , 0), producing 𝑔(𝐩min) = 1 − 𝑅𝑀2 − (1 − 𝑅𝑀)2. 

Equality with the upper bound is achieved if and only if 𝐩 = 𝐩max = (𝑀, 1−𝑀𝐼−1 ,… , 1−𝑀𝐼−1 ), producing 𝑔(𝐩max) = 1 −𝑀2 − (𝐼 − 1)𝐿2.

The theorem is a restatement of Theorem 2 in Reddy and Rosenberg (2012), which provided the bounds on 𝜎2 for fixed 𝐼 and 𝑀 . In the 𝐼 = 2
case, the upper and lower bounds coincide. The upper and lower bounds are achieved at precisely the same allele-frequency vectors that achieve 
the upper and lower bounds on E[𝑤

1 ].
The relationships between the lower and upper bounds of E[𝑤

1 ] and E[𝑤
2 ] and the frequency 𝑀 appear in Fig.  2. Both bounds of E[𝑤

2 ]
exceed than those of E[𝑤

1 ], as is clear by noting that 1 − 2𝜎2 + 2𝜎3 − 𝜎4 = E[𝑤
1 ] = E[

𝑤
2 ] −

∑𝐼
𝑖=1 𝑝

2
𝑖 (1 − 𝑝𝑖)2 ⩽ E[𝑤

2 ] = 1 − 𝜎2.

Proposition 3.8.  With fixed 𝐼 , the region bounded by the upper and lower bounds of E[𝑤
2 ] as a function of 𝑀 has area 

𝑆E[𝑤
2 ](𝐼) =

2
3
− 2

3𝐼
−

𝐼
∑

𝑖=2

1
3(𝑖 − 1)2

. (7)

As 𝐼 → ∞, the area approaches 

𝑆 𝑤 (∞) = 2 − 1 𝜁 (2) = 2 − 𝜋2
≈ 0.118355. (8)
E[2 ] 3 3 3 18
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Fig. 8. The relationship between the between-population allele-sharing dissimilarity E[𝑏] and the largest allele frequencies 𝑀1 and 𝑀2 of two populations that have the same 
most frequent allelic type. The plot considers (30

2

)

= 435 pairs of populations, both with sample size larger than 15, and 4 loci with number of distinct alleles equal to 5, showing 
the 1,092 of 1,740 combinations for which the two populations have the same most frequent allelic type. Contour plots of the lower and upper bounds are shown in the xy-plane; 
contour plots cover the whole plane, but for visual simplicity, only the triangle with 𝑀1 ⩾ 𝑀2 is plotted on the z axis. (A) Theoretical E[𝑏

1] (Eq. (3)) and contour plot of the 
lower bound. (B) Theoretical E[𝑏

2] (Eq. (4)) and contour plot of the lower bound. (C) Empirical E[𝑏
1] and contour plot of the upper bound. (D) Empirical E[𝑏

2] and contour 
plot of the upper bound. ‘‘Theoretical’’ values are calculated based on the allele frequencies in two populations, and ‘‘empirical’’ values are obtained by averaging across all pairs 
of individuals, one each from two populations. Each pair of populations is ordered such that 𝑀1 ⩾ 𝑀2. The permissible region for E[𝑏

1] in relation to 𝑀1 and 𝑀2 (Theorem  4.2) 
appears in panels (A) and (C); the permissible region for E[𝑏

2] in relation to 𝑀1 and 𝑀2 (Corollary  4.6) appears in panels (B) and (D).

Proposition  3.8 and the calculation of 𝑆E[𝑤
2 ](∞) restate Proposition 16 of Reddy and Rosenberg (2012) for the bounds on 𝜎2. The area of the 

region is plotted as a function of 𝐼 in Fig.  3.

4. Mathematical constraints on between-population dissimilarity

Next, we look at the bounds for the between-population dissimilarities, which involve the allele-frequency vectors of two populations, 𝐩 and 𝐪.

4.1. Bounds on E[𝑏
1] when the number of allelic types is fixed

If the number of distinct alleles is fixed and the allele-frequency distributions can be arbitrary, then the bounds on both between-population 
dissimilarity measures are trivial.

Proposition 4.1.  Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼  for 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ), and no constraints are placed on 𝐪. Then

0 ⩽ E[𝑏
1] ⩽ 1.

Equality at the lower bound is reached if and only if 𝑝1 = 𝑞1 = 1 and 𝑝𝑖 = 𝑞𝑖 = 0 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality at the upper bound is reached if and only if 𝐩 and 
𝐪 satisfy 𝑝 𝑞 = 0 for 1 ⩽ 𝑖 ⩽ 𝐼 .
𝑖 𝑖
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Fig. 9. The relationship between the between-population allele-sharing dissimilarity E[𝑏] and the largest allele frequencies 𝑀1 and 𝑀2 of two populations that do not necessarily 
have the same most frequent allelic type. The plot considers (30

2

)

= 435 pairs of populations, both with sample size larger than 15, and 4 loci with number of distinct alleles equal 
to 5, a total of 1740 combinations. Contour plots of the lower and upper bounds are shown in the xy-plane; contour plots cover the whole plane, but for visual simplicity, only 
the triangle with 𝑀1 ⩾ 𝑀2 is plotted on the z axis. (A) Theoretical E[𝑏

1] (Eq. (3)) and contour plot of the lower bound. (B) Theoretical E[𝑏
2] (Eq. (4)) and contour plot of the 

lower bound. (C) Empirical E[𝑏
1] and contour plot of the upper bound. (D) Empirical E[𝑏

2] and contour plot of the upper bound. ‘‘Theoretical’’ values are calculated based on 
the allele frequencies in two populations, and ‘‘empirical’’ values are obtained by averaging across all pairs of individuals, one each from two populations. Each pair of populations 
is ordered such that 𝑀1 ⩾ 𝑀2. The permissible region for E[𝑏

1] in relation to 𝑀1 and 𝑀2 (Theorem  4.3) appears in panels (A) and (C); the permissible region for E[𝑏
2] in 

relation to 𝑀1 and 𝑀2 (Theorem  4.5) appears in panels (B) and (D).

Proof.  For a pair of individuals, one from population 1 and one from population 2, 𝑏
1 ∈ {0, 12 , 1}. Hence, as a function of allele-frequency vectors, 

we know 0 ⩽ E[𝑏
1] ⩽ 1.

We consider the equality condition E[𝑏
1] = 0. For a pair of individuals, 𝑏

1 = 0 if and only if both individuals have exactly the same diploid 
genotype. E[𝑏

1] = 0 requires that all pairs of individuals, one from one population and one from the other, possess the same diploid genotype. If 
either population possesses at least two distinct alleles with nonzero frequency, then the probability is positive that 𝑏

1 > 0 for a pair of random 
individuals, one from one population and one from the other, so that E[𝑏

1] > 0. We conclude that if E[𝑏
1] = 0, then two populations must have 

the same single allele. With 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 , it follows that 𝑝1 = 𝑞1 = 1 and 𝑝𝑖 = 𝑞𝑖 = 0 for 2 ⩽ 𝑖 ⩽ 𝐼 .
For the equality condition E[𝑏

1] = 1, writing E[𝑏
1] = 1−

∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖−

∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖(1−𝑝𝑖)(1−𝑞𝑖), we find that E[𝑏

1] = 1 implies ∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖+

∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖(1−

𝑝𝑖)(1 − 𝑞𝑖) = 0, from which we conclude that the non-negative 𝑝𝑖 and 𝑞𝑖 bounded above by 1 must satisfy 𝑝𝑖𝑞𝑖 = 0 for all 𝑖. □

In the case of 𝐼 = 2, E[𝑏
1] is minimized for 𝐩 = 𝐪 = (1, 0), and maximized for 𝐩 = (1, 0), 𝐪 = (0, 1).

4.2. Bounds on E[𝑏
1] when the largest allele frequencies are fixed

We next consider scenarios in which the largest allele frequency is fixed in both populations. We first investigate the bounds on E[𝑏
1] in the 

case that the same allelic type has the largest frequency in both populations. 

Theorem 4.2.  Suppose 𝑝1 = max{𝑝1, 𝑝2,… , 𝑝𝐼} and 𝑞1 = max{𝑞1, 𝑞2,… , 𝑞𝐼}. Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 . (i) If 𝑝1 = 𝑀1
and 𝑞1 = 𝑀2 are fixed, then

𝑀1 +𝑀2 − 4𝑀1𝑀2 + 2𝑀2
1𝑀2 + 2𝑀1𝑀

2
2 − 2𝑀2

1𝑀
2
2 ⩽ E[𝑏

1] ⩽ 1 − 2𝑀1𝑀2 +𝑀2
1𝑀2 +𝑀1𝑀

2
2 −𝑀2

1𝑀
2
2 .

(ii) Equality with the upper bound is achieved if and only if for all 𝑖, 2 ⩽ 𝑖 ⩽ 𝐼 , 𝑝𝑖 = 0 or 𝑞𝑖 = 0. (iii) Equality with the lower bound is achieved if and only 
if 𝑀 ⩾ 1 , 𝑀 ⩾ 1 , and (𝑝 , 𝑞 ) = (1 −𝑀 , 1 −𝑀 ).
1 2 2 2 2 2 1 2
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Fig. 10. Within-population allele-sharing dissimilarity in relation to theoretical heterozygosity E[𝑤
2 ]. The plots consider 7 geographic regions and 53 populations, for a total of 

7 × 783 = 5, 481 points in panels (A) and (B), and 53 × 783 = 41,499 points in panels (C) and (D). (A) Theoretical E[𝑤
1 ] and E[𝑤

2 ] for regions (Eqs.  (1) and (2)). (B) Theoretical 
E[𝑤

1 ] and E[𝑤
2 ] for populations (Eqs.  (1) and (2)). (C) Empirical E[𝑤

1 ] and E[𝑤
2 ] for regions. (D) Empirical E[𝑤

1 ] and E[𝑤
2 ] for populations. ‘‘Theoretical’’ values are 

calculated based on the allele frequencies in a population, and ‘‘empirical’’ values are obtained by averaging across all pairs of individuals in the population.

The proof appears in Appendix  C. Note that if 𝑀1 < 1
2  or 𝑀2 < 1

2 , we have not obtained strict inequalities; the bounds in the theorem hold, 
but the lower bound is not the strictest possible inequality. The bounds in the theorem are depicted in Fig.  4A–F.

For a general scenario in which two populations might have different allelic types for their most frequent allele, we also obtain loose inequalities. 
We proceed by first bounding E[𝑏

1] in relation to E[𝑏
2], then deriving bounds for E[𝑏

1] based on the bounds we obtain for E[𝑏
2] in Section 4.4. 

Theorem 4.3.  Suppose max{𝑝1, 𝑝2,… , 𝑝𝐼} = 𝑀1 and max{𝑞1, 𝑞2,… , 𝑞𝐼} = 𝑀2. Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 . Then
E[𝑏

2] − 𝐼𝑀1(1 −𝑀1)𝑀2(1 −𝑀2) ⩽ E[𝑏
1] ⩽ E[

𝑏
2].

The proof appears in Appendix  D. The bounds in the theorem are depicted in Fig.  5A–F. Together with the lower and upper bounds for E[𝑏
2]

in Section 4.4, we are able to obtain a lower bound and upper bound for E[𝑏
1].

4.3. Bounds on E[𝑏
2] when the number of allelic types is fixed

As we observed with E[𝑏
1], the bounds on E[𝑏

2] are trivial when the number of distinct alleles is fixed and the allele-frequency distribution 
can be arbitrary. 

Proposition 4.4.  Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼  for 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝐼 ), and no constraints are placed on 𝐪. Then
0 ⩽ E[𝑏

2] ⩽ 1.

Equality at the lower bound is reached if and only if 𝑝1 = 𝑞1 = 1 and 𝑝𝑖 = 𝑞𝑖 = 0 for 2 ⩽ 𝑖 ⩽ 𝐼 . Equality at the upper bound is reached if and only if 𝐩 and 
𝐪 satisfy 𝑝𝑖𝑞𝑖 = 0 for 1 ⩽ 𝑖 ⩽ 𝐼 .

Proof.  We have E[𝑏
2] = 1 − 𝜌11, and 0 ⩽ 𝜌11 =

∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖 ⩽

∑𝐼
𝑖=1 𝑝𝑖 = 1, so that 0 ⩽ E[𝑏

2] ⩽ 1.
The equality condition 𝐸[𝑏

2] = 0 holds if and only if 𝜌11 = 1; 𝜌11 = 1 implies ∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖 =

∑𝐼
𝑖=1 𝑝𝑖, from which ∑𝐼

𝑖=1 𝑝𝑖(1 − 𝑞𝑖) = 0 and 𝑞𝑖 = 1 for 
each 𝑖 for which 𝑝𝑖 > 0. Symmetrically, ∑𝐼

𝑖=1(1 − 𝑝𝑖)𝑞𝑖 = 0 and 𝑝𝑖 = 1 for each 𝑖 for which 𝑞𝑖 > 0. We conclude that for all 𝑖, (𝑝𝑖, 𝑞𝑖) = (1, 1) or (0, 0). 
Because 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 , we have (𝑝1, 𝑞1) = (1, 1) and (𝑝𝑖, 𝑞𝑖) = (0, 0) for 2 ⩽ 𝑖 ⩽ 𝐼 .

The equality condition 𝐸[𝑏
2] = 1 holds if and only if 𝜌11 = 0, so that 𝑝𝑖𝑞𝑖 = 0 for all 𝑖. □

For 𝐼 = 2, E[𝑏] has the same minimum and maximum as E[𝑏]: 𝐩 = 𝐪 = (1, 0) for the minimum and 𝐩 = (1, 0), 𝐪 = (0, 1) for the maximum.
2 1
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Fig. 11. Distributions of empirical values of within-region 1 averaged across all 783 loci for pairs of individuals in human population-genetic data. For each region, mathematical 
bounds for E[𝑤

1 ] are calculated from allele frequencies within a region according to Theorem  3.3, averaging across loci. (A) Seven regions displayed together. (B) Africa. (C) 
Middle East. (D) Europe. (E) Central/South Asia. (F) East Asia. (G) Oceania. (H) Americas.

4.4. Bounds on E[𝑏
2] when the largest allele frequencies are fixed

Unlike for 𝑏
1, we obtain strict bounds E[𝑏

2] in the general scenario in which two populations may have different allelic types for the most 
frequent allele, with frequencies 𝑀1 and 𝑀2 respectively. We recall the rearrangement inequality (Theorem  2.6) and use a related Lemma E.3 in 
Appendix  E. 

Theorem 4.5.  Suppose max{𝑝1, 𝑝2,… , 𝑝𝐼} = 𝑀1 and max{𝑞1, 𝑞2,… , 𝑞𝐼} = 𝑀2. Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 .
(i) E[𝑏

2] as a function of 𝐩 and 𝐪, denoted by 𝓁(𝐩,𝐪), is bounded by

𝓁(𝐩∗,𝐪∗) ⩽ E[𝑏
2] ⩽ 𝓁(𝐩∗,𝐪∗),

for particular vectors 𝐩∗, 𝐪∗, 𝐩∗, and 𝐪∗.
(ii) Equality at the lower bound is reached if 

𝑝∗𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑀1, for 𝑖 = 1,… , ⌈𝑀−1
1 ⌉ − 1,

1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1, for 𝑖 = ⌈𝑀−1

1 ⌉,
0, for 𝑖 = ⌈𝑀−1

1 ⌉ + 1,… , 𝐼,

(9)

and 

𝑞∗𝑖 =

⎧

⎪

⎨

⎪

𝑀2, for 𝑖 = 1,… , ⌈𝑀−1
2 ⌉ − 1,

1 − (⌈𝑀−1
2 ⌉ − 1)𝑀2, for 𝑖 = ⌈𝑀−1

2 ⌉,
−1

(10)
⎩

0, for 𝑖 = ⌈𝑀2 ⌉ + 1,… , 𝐼.
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Fig. 12. Distributions of empirical values of within-population 1 averaged across all 783 loci for pairs of individuals in human population-genetic data. For each region, 
mathematical bounds for E[𝑤

1 ] are calculated for each population from allele frequencies within the population according to Theorem  3.3, averaging across loci. Bounds are then 
averaged across populations within regions. (A) Seven regions displayed together. (B) Africa. (C) Middle East. (D) Europe. (E) Central/South Asia. (F) East Asia. (G) Oceania. (H) 
Americas.

The minimum value is 

𝓁(𝐩∗,𝐪∗) =
⎧

⎪

⎨

⎪

⎩

1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1𝑀2 − 𝑎𝑀2, if ⌈𝑀−1

1 ⌉ < ⌈𝑀−1
2 ⌉,

1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1𝑀2 − 𝑎𝑏, if ⌈𝑀−1

1 ⌉ = ⌈𝑀−1
2 ⌉,

1 − (⌈𝑀−1
2 ⌉ − 1)𝑀1𝑀2 −𝑀1𝑏, if ⌈𝑀−1

1 ⌉ > ⌈𝑀−1
2 ⌉,

(11)

where 𝑎 = 1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1 and 𝑏 = 1 − (⌈𝑀−1

2 ⌉ − 1)𝑀2.
(iii) Equality at the upper bound is reached if 𝐩∗ = 𝐩∗ (Eq. (9)), and 

𝑞∗𝑖 =

⎧

⎪

⎨

⎪

⎩

0, for 𝑖 = 1,… , 𝐼 − ⌈𝑀−1
2 ⌉,

1 − (⌈𝑀−1
2 ⌉ − 1)𝑀2, for 𝑖 = 𝐼 − ⌈𝑀−1

2 ⌉ + 1,
𝑀2, for 𝑖 = 𝐼 − ⌈𝑀−1

2 ⌉ + 2,… , 𝐼.

(12)

The maximum value is

𝓁(𝐩∗,𝐪∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if ⌈𝑀−1
1 ⌉ + ⌈𝑀−1

2 ⌉ ⩽ 𝐼,
1 − 𝑎𝑏, if ⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ = 𝐼 + 1,

1 − 𝑎𝑀2 −𝑀1𝑏, if ⌈𝑀−1
1 ⌉ + ⌈𝑀−1

2 ⌉ = 𝐼 + 2,
1 − (⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ − 𝐼 − 2)𝑀1𝑀2 − 𝑎𝑀2 −𝑀1𝑏, if ⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ > 𝐼 + 2.

The proof of the theorem appears in Appendix  E. The bounds in the theorem are depicted in Fig.  5G–L. The bounds also appear in the loose 
bounds for E[𝑏

1] in Theorem  4.3 in the same setting, with E[𝑏
1] bounded above by the upper bound on E[𝑏

2] and below by the lower bound 
on E[𝑏

2] minus some additional terms.
As a corollary, we obtain the bounds for the specific scenario in which the same allelic type is most frequent in the two populations. 
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Corollary 4.6.  Suppose 𝑝1 = max{𝑝1, 𝑝2,… , 𝑝𝐼} = 𝑀1 and 𝑞1 = max{𝑞1, 𝑞2,… , 𝑞𝐼} = 𝑀2. Suppose without loss of generality that 𝑝1 ⩾ 𝑝2 ⩾ ⋯ ⩾ 𝑝𝐼 .
(i) E[𝑏

2] as a function of 𝐩 and 𝐪, denoted by 𝓁(𝐩,𝐪), is bounded by
𝓁(𝐩∗,𝐪∗) ⩽ E[𝑏

2] ⩽ 𝓁(𝐩∗,𝐪∗),

for particular vectors 𝐩∗, 𝐪∗, 𝐩∗, and 𝐪∗.
(ii) Equality at the lower bound is reached if 𝐩∗ follows Eq. (9) and 𝐪∗ follows Eq. (10). The minimum value follows Eq. (11).
(iii) Equality at the upper bound is reached if 𝐩∗ = 𝐩∗ (Eq. (9)) and 

𝑞∗𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑀2, for 𝑖 = 1,
0, for 𝑖 = 2,… , 𝐼 − ⌈𝑀−1

2 ⌉ + 1,
1 − (⌈𝑀−1

2 ⌉ − 1)𝑀2, for 𝑖 = 𝐼 − ⌈𝑀−1
2 ⌉ + 2,

𝑀2, for 𝑖 = 𝐼 − ⌈𝑀−1
2 ⌉ + 3,… , 𝐼.

(13)

The maximum value is

𝓁(𝐩∗,𝐪∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −𝑀1𝑀2, if ⌈𝑀−1
1 ⌉ + ⌈𝑀−1

2 ⌉ ⩽ 𝐼 + 1,
1 −𝑀1𝑀2 − 𝑎𝑏, if ⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ = 𝐼 + 2,

1 −𝑀1𝑀2 − 𝑎𝑀2 −𝑀1𝑏, if ⌈𝑀−1
1 ⌉ + ⌈𝑀−1

2 ⌉ = 𝐼 + 3,
1 − (⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ − 𝐼 − 2)𝑀1𝑀2 − 𝑎𝑀2 −𝑀1𝑏, if ⌈𝑀−1

1 ⌉ + ⌈𝑀−1
2 ⌉ > 𝐼 + 3.

The corollary is proven in Appendix  F. The bounds in the theorem are depicted in Fig.  4G–L.

5. Data analysis

To investigate how the mathematical bounds with respect to the largest allele frequency affect the values of allele-sharing dissimilarity measures 
in an empirical setting, we compute the dissimilarities in a dataset of multiallelic loci in human populations.

5.1. Data

We analyze microsatellite genotypes in the H1048 subset of the HGDP-CEPH panel, considering 1048 individuals in 53 populations, typed at 
783 microsatellite loci (Rosenberg et al., 2005; Rosenberg, 2006). For some analyses, we restrict attention to 30 populations with sample size 
strictly larger than 15, considering a total of 813 individuals. For each locus, individuals with missing data are removed prior to the calculation 
of genetic dissimilarities for the locus. The dataset is the same as in the analysis of (Liu et al., 2023).

5.2. Within-population dissimilarities

For each population and each locus, we compute both the theoretical expectation and the empirical mean of 𝑤
1  and 𝑤

2 . The number of 
population–locus combinations is 30 × 783 = 23,490. The theoretical expectation of 𝑤

1  is computed by first calculating the allele frequencies of a 
population and then applying Eq. (1). The empirical mean of 𝑤

1  is computed by enumerating all pairs of individuals in the population, calculating 
their 𝑤

1  dissimilarity, and averaging over all pairs. For simplicity of notation, we refer to theoretical E[𝑤
1 ] and empirical E[𝑤

1 ]. The calculation 
for 𝑤

2  follows the same process, with Eq. (2). The calculation of theoretical and empirical values follows Liu et al. (2023).
We classify each locus by the number of allelic types; considering 𝐼 from 4 to 14, the number of population–locus combinations is 630 × 30 =

18,900, with a minimum count of 1 × 30 = 30 for 𝐼 = 4 and a maximum count of 119 × 30 = 3, 570 for 𝐼 = 10. 𝐼 = 14 has a count of 47 × 30 = 1, 410. 
The 153 × 30 = 4, 590 combinations with a large number of distinct alleles (𝐼 > 14) are not shown. The theoretical values of E[𝑤

1 ] calculated by 
Eq. (1) from the allele frequencies in the data are visualized in violin plots alongside the theoretical bounds from Fig.  1 in Fig.  6A. Violin plots for 
the theoretical E[𝑤

2 ] (Eq. (2)), empirical E[𝑤
1 ], and empirical E[𝑤

2 ] are presented in the remaining panels in a similar manner.
The theoretical E[𝑤

1 ] values of populations in the dataset strictly adhere to the mathematical bounds we derived for each 𝐼 (Fig.  6A). Similarly, 
the theoretical E[𝑤

2 ] values also adhere to the mathematical bounds (Fig.  6B). Data points are concentrated toward the upper bound, a value that 
can lie substantially below 1. For the empirical E[𝑤

1 ] and E[𝑤
2 ], computed from empirical pairwise comparisons of diploid individuals rather 

than from allele frequencies, the plots are similar (Fig.  6C and D). For the empirical values, it is not required that a population–locus computation 
produce a dissimilarity that lies below the upper bound; nevertheless, nearly all data points do lie below the upper bound (18, 896∕18,900 for 
E[𝑤

1 ], 18, 900∕18,900 for E[𝑤
2 ]).

With the largest allele frequency 𝑀 held fixed, we illustrate the theoretical and empirical dissimilarities in relation to 𝑀 for the case of 𝐼 = 6
(300 population-locus combinations) in Fig.  7. The theoretical dissimilarities strictly reside within the permissible region, tending to fill the space 
toward the upper bound (Fig.  7A and B). The empirical dissimilarities generally lie within the permissible region, sometimes extending beyond it 
(Fig.  7C and D). Data points for other values of 𝐼 follow similar patterns.

5.3. Between-population dissimilarities

We next calculate the theoretical and empirical E[𝑏
1] and E[𝑏

2] for pairs of populations. Among the 
(30
2

)

× 783 = 340, 605 combinations of 
population pairs and loci, two populations share the most frequent allelic type in 169,970 (49.9%). We consider these pairs, visualizing the bounds 
from Theorem  4.2 and Corollary  4.6, which provide the bounds in the scenario in which the two populations in a pair share the same most frequent 
allelic type at a locus.

The theoretical E[𝑏
1] is calculated by determining the allele frequencies of each population and then applying Eq. (3). For the empirical 

E[𝑏
1], we tabulate pairs of individuals, one from each population. We then compute their 𝑏

1 dissimilarities and take an average across all pairs. 
The process for E[𝑏] is similar, using Eq. (4). The outcomes for all (30) × 4 = 1, 740 combinations for the 4 loci with 𝐼 = 5 are considered in 
2 2
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Fig.  8 in a three-dimensional space, showing the 1,092 for which the most frequent allelic type is the same in the two populations and ordering 
population pairs so that 𝑀1 ⩾ 𝑀2. Comparable patterns are observed for other values of 𝐼 .

As seen in the data analysis for within-population dissimilarities, the theoretical E[𝑏
1] and E[𝑏

2] lie strictly within the space bounded by the 
upper and lower bounds (Fig.  8A and B). Note that because we only have loose bounds for E[𝑏

1], more space exists between the data points 
representing the theoretical E[𝑏

1] values and the mathematical bounds. E[𝑏
2] is bounded more tightly. For the empirical E[𝑏

1] and E[𝑏
2], some 

points fall outside the space demarcated by the bounds (Fig.  8C and D).
For the more general case, in which two populations need not have the same allelic type for the most frequent allele, we illustrate the bounds 

obtained in Theorems  4.3 and 4.5 for all 340,605 combinations of a population pair and locus. The theoretical and empirical E[𝑏
1] are computed 

as before. Results for all (302
)

× 4 = 1, 740 combinations with 𝐼 = 5 appear in Fig.  9.
Most of the theoretical dissimilarities congregate within the central area of the permissible region (Fig.  9A and B). The permissible region is 

generally larger than in the case in which the most frequent allelic type is the same for a pair of populations, as seen in Fig.  8. In the case of 𝐼 = 5, 
the empirical mean dissimilarities all fall within the permissible range (Fig.  9C and D).

5.4. Allele-sharing dissimilarity and heterozygosity

A notable property of 𝑤
2  is that the expression for its expectation is exactly identical to the expression 1 − 𝜎2 for the heterozygosity of a 

population, as computed from its allele frequencies. We compare the theoretical and empirical allele-sharing dissimilarities to heterozygosity in 
two ways. First, we compute the theoretical heterozygosity for each of the 7 geographic regions; this quantity is precisely E[𝑤

2 ] for those regions. 
Next, we compute the theoretical heterozygosity for each of the 53 sampled populations, the value of E[𝑤

2 ] for the populations.
Fig.  10A plots the theoretical E[𝑤

1 ] and E[𝑤
2 ] in relation to the theoretical heterozygosity E[𝑤

2 ] at the regional level, showing 7×783 = 5, 481
points. The values of E[𝑤

2 ] follow the 𝑦 = 𝑥 line, as 𝑥 and 𝑦 values are equal. The values of E[𝑤
1 ] lie below the 𝑦 = 𝑥 line, in accord with Theorem 

4.3, which — by specifying that two populations have identical frequencies — can be seen to demonstrate that the theoretical E[𝑤
2 ] provides an 

upper bound for the theoretical E[𝑤
1 ]. Similar results are obtained in Fig.  10B for the 53 × 783 = 41,499 data points at the population level.

Next, we examine the empirical E[𝑤
1 ] and E[𝑤

2 ] in relation to the theoretical heterozygosity E[𝑤
2 ], computing allele-sharing dissimilarity 

by considering pairs of individuals in a region or population. Fig.  10C plots the 7×783 = 5, 481 data points at the regional level, and Fig.  10D plots 
the 53×783 = 41,499 data points at the population level. In both panels, the empirical E[𝑤

1 ] values are more variable than the theoretical E[𝑤
1 ]

values in Fig.  10A and B. The empirical E[𝑤
2 ] values do not precisely equal the theoretical E[𝑤

2 ] values, though the empirical and theoretical 
values are quite similar.

5.5. Mathematical bounds in empirical allele-sharing dissimilarities

Visualizations of distributions of pairwise genetic dissimilarities between individuals have been important for understanding empirical genetic 
differences, notably in human populations (Mountain and Ramakrishnan, 2005; Rosenberg, 2011). In Figure 5 of Rosenberg (2011), distributions 
of pairwise genetic dissimilarities between individuals, as computed by 1, are presented in various computations.

We reproduce Figure 5B and C of Rosenberg (2011), illustrating how the distributions of empirical genetic dissimilarities are informed by 
mathematical bounds. The calculation uses all 1,048 individuals and 53 populations in the data. In Fig.  11A, we show the empirical distribution of 
allele-sharing dissimilarity between pairs of individuals within regions, averaging across all 783 loci and replotting Figure 5B of Rosenberg (2011). 
In Fig.  11B-H, we show the empirical distributions within single regions, plotting them alongside mathematical bounds on E[𝑤

1 ] for the region. 
The bounds are calculated from the region-wise allele frequencies for a locus according to Theorem  3.3, then averaged across all loci to obtain the 
mean lower and upper bounds.

In Fig.  12A, we similarly show the empirical distribution of allele-sharing dissimilarity between pairs of individuals within populations, averaging 
across all 783 loci and replotting Figure 5C of Rosenberg (2011). In Fig.  12B–H, we show the empirical distributions of within-population 
dissimilarities grouped by region, plotting them alongside mathematical bounds on E[𝑤

1 ] for single regions. The bounds are calculated from 
population-wise allele frequencies for a locus via Theorem  3.3, then averaged across populations within a region and then across all loci to obtain 
the mean bounds for a region.

Both in Fig.  11 and in Fig.  12, the theorem specifies a relatively narrow range for values of E[𝑤
1 ], dependent on the particular values of 

the frequency 𝑀 of the most frequent allelic type in the empirical data. Most of the probability mass lies between the lower and upper bounds. 
Some empirical dissimilarity values lie outside the range specified by the bounds; it is not required that an empirical dissimilarity lie between 
the bounds, as the bounds are obtained from an average of theoretical values across loci, whereas the empirical values are obtained for pairs of 
individuals. Nevertheless, the plots suggest that the mathematical bounds specify informal constraints on the distribution of empirical values of 
the allele-sharing dissimilarity in population-genetic data.

6. Discussion

Allele-sharing dissimilarities, computed theoretically as expectations based on allele-frequency distributions or empirically based on pairs 
of individuals, have often been used for studying genetic variation in populations. We have shown that as a function of properties of allele-
frequency distributions, the range for expected allele-sharing dissimilarities is substantially narrower than the unit interval. Specifically, considering 
dissimilarities 1 and 2, we have obtained mathematical expressions for constraints on expected ASD within a population when the number of 
allelic types is fixed (Theorems  3.2 and 3.6), as well as when the frequency of the most frequent allelic type is also fixed (Theorems  3.3 and
3.7). Additional mathematical results concern the area of the region bounded between the smallest and largest within-population ASD values as a 
function of number of distinct alleles. This region increases in size with an increasing number of allelic types, converging to a value well below 1 
(Propositions  3.4 and 3.8). We have also obtained corresponding expressions in between-population scenarios with the number of allelic types fixed 
(Propositions  4.1 and 4.4) and additionally with fixed frequencies for the most frequent allelic type (Theorems  4.2, 4.3, and 4.5, and Corollary 
4.6).

In illustrations of the mathematical results using data from human populations, we have found that empirical mean ASD values reflect the 
theoretical expectations computed from allele-frequency distributions (Figs.  6–10). The mathematical bounds on ASD values in relation to the 
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frequency of the most frequent allelic type suggest that ASD values are expected to vary in relatively narrow ranges within the unit interval; indeed, 
empirical distributions of 1 are quite constrained (Figs.  11 and 12). The mathematical results assist in explaining the relatively narrow ranges for 
ASD values computed in worldwide human populations, as the frequency of the most frequent allelic type constrains the between-population ASD 
values.

The bounds are meaningful beyond these computations. In particular, in between-population analyses, a larger range between the bounds 
permits more variability in the dissimilarity across pairs of populations. Such variability can be relevant in applications that rely on distinguishing 
the ASD values for different pairs of groups, as greater variability indicates a greater potential to distinguish values for different pairs. Theoretical 
properties of methods such as neighbor-joining tree construction and multidimensional scaling that rely on dissimilarity matrices, and the effects 
on these methods of the range between the bounds, can be explored more specifically.

This study follows a general approach of identifying mathematical bounds on population-genetic statistics in relation to other such statis-
tics (Rosenberg, 2025). In this approach, mathematical bounds are derived in order to understand the permissible range for a statistic in terms 
of another statistic, or the joint permissible region. The bounds are then used to inform the interpretation of empirical values of the statistic. 
In our application, the mathematical bounds contribute to explanations for several observations in human allele-sharing dissimilarities, including 
increasing dissimilarities with an increasing number of allelic types (Fig.  6), inverse relationships of dissimilarities with the largest allele frequency 
at a locus (Fig.  7), direct relationships of within-population dissimilarities with heterozygosities (Fig.  10), and narrow ranges for dissimilarity values 
(Figs.  11 and 12).

We have considered two ASD measures, 1, which was used in the data example mimicking the analysis of Rosenberg (2011) (Figs.  11 and
12), and 2, which provides a generalization of heterozygosity (Fig.  10). For within-population computations, bounds are provided for both 
dissimilarities. For between-population computations, however, for 1, mathematical analysis is more limited. Owing to simpler mathematical 
expressions, tight bounds can be obtained for E[𝑏

2] in the between-population case. For 1, mathematical bounds in Theorem  4.2 are loose in the 
case that 𝑀1 <

1
2  or 𝑀2 <

1
2 .

Limitations of the study include the fact that the constraints on the expected allele-sharing dissimilarity consider only the most frequent allelic 
type. The frequencies of subsequent allelic types might impose constraints that might be of interest for future investigation, as occurs in various 
other contexts (Garud and Rosenberg, 2015; Morrison and Rosenberg, 2023; Rosenberg, 2025). We also note that in our empirical analysis, we 
average across all pairs of individuals, either within or between populations, to obtain the empirical E[]. The reuse of each individual in multiple 
pairs violates the assumption that pairs are independent draws from the allele-frequency distributions, so that the empirical results do not quite 
mimic the computation performed theoretically. The theoretical results assume that pairs of alleles within an individual are independently drawn 
from the allele-frequency distribution — but empirically, the two alleles can be dependent due to inbreeding. The violation of the assumptions can 
contribute to deviations of the empirical observations from the theoretical values.

Additionally, our mathematical expressions are for dissimilarity values computed based on a single genetic locus. In empirical studies such 
as Rosenberg (2011), however, measures are typically calculated on multiple loci and averaged together. An explicitly multilocus analysis that 
considers the constraints at multiple loci could provide further insight into the behavior of an empirical mean across many loci.
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Appendix A. Proof of Lemma  3.1

𝑓 (𝐩) = 1 − 2𝜎2 + 2𝜎3 − 𝜎4 is symmetric in the 𝑝𝑖 by construction, and all first partial derivatives 𝜕𝑓
𝜕𝑝𝑖

 exist. By Theorem  2.3, to show that 𝑓 is 
Schur-concave, it suffices to show that (𝑝1 − 𝑝2)(

𝜕𝑓
𝜕𝑝1

− 𝜕𝑓
𝜕𝑝2

) ⩽ 0 for all 𝐩 ∈ 𝛥𝐼−1.
We have 𝜕𝜎2𝜕𝑝1

= 2𝑝1, 𝜕𝜎3𝜕𝑝1
= 3𝑝21, and 

𝜕𝜎4
𝜕𝑝1

= 4𝑝31, so that

(𝑝1 − 𝑝2)
(

𝜕𝑓 (𝐩)
𝜕𝑝1

−
𝜕𝑓 (𝐩)
𝜕𝑝2

)

= (𝑝1 − 𝑝2)
[

− 4(𝑝1 − 𝑝2) + 6(𝑝21 − 𝑝22) − 4(𝑝31 − 𝑝32)
]

= −(𝑝1 − 𝑝2)2
[

4 − 6(𝑝1 + 𝑝2) + 2(𝑝1 + 𝑝2)2 + 2(𝑝21 + 𝑝22)
]

.

For 0 ⩽ 𝑥 ⩽ 1, 4 − 6𝑥 + 2𝑥2 ⩾ 0 with equality if and only if 𝑥 = 1. Hence 4 − 6(𝑝1 + 𝑝2) + 2(𝑝1 + 𝑝2)2 ⩾ 0 always holds for 0 ⩽ 𝑝1 + 𝑝2 ⩽ 1. We then 
have (𝑝1 − 𝑝2)(

𝜕𝑓
𝜕𝑝1

− 𝜕𝑓
𝜕𝑝2

) ⩽ 0. By Theorem  2.3, 𝑓 is Schur-concave.
To verify strict Schur-concavity, note that 4− 6(𝑝1 + 𝑝2) + 2(𝑝1 + 𝑝2)2 = 0 requires 𝑝1 + 𝑝2 = 1, so that 4− 6(𝑝1 + 𝑝2) + 2(𝑝1 + 𝑝2)2 +2(𝑝21 + 𝑝22) > 0 for 

all permissible (𝑝1, 𝑝2): either 𝑝1+𝑝2 ≠ 1 and 4−6(𝑝1+𝑝2)+2(𝑝1+𝑝2)2 > 0, or 𝑝1+𝑝2 = 1 and 2(𝑝1+𝑝2)2 > 0. We conclude that (𝑝1−𝑝2)(
𝜕𝑓
𝜕𝑝1

− 𝜕𝑓
𝜕𝑝2

) = 0
implies 𝑝1 = 𝑝2.

Appendix B. Proof of Proposition  3.4

The desired area is calculated by considering 𝑀 in segments. For 𝑀 ∈ [ 1𝑖 ,
1
𝑖−1 ), ⌈𝑀−1

⌉ = 𝑖. The area then equals

𝑆E[𝑤
1 ](𝐼) = ∫

1

𝑀= 1
𝐼

𝑓 (𝐩max) 𝑑𝑀 −
𝐼
∑

𝑖=2
∫

1
𝑖−1

𝑀= 1
𝑖

𝑓 (𝐩min) 𝑑𝑀. (14)
132 
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The first term is

∫

1

𝑀= 1
𝐼

𝑓 (𝐩max) 𝑑𝑀 = ∫

1

𝑀= 1
𝐼

[

1 − 2𝑀2 + 2𝑀3 −𝑀4 −
2(1 −𝑀)2

𝐼 − 1
+

2(1 −𝑀)3

(𝐼 − 1)2
−

(1 −𝑀)4

(𝐼 − 1)3

]

𝑑𝑀

= 19
30

− 5
3𝐼

+ 11
6𝐼2

− 6
5𝐼3

+ 2
5𝐼4

. (15)

The second term is
𝐼
∑

𝑖=2
∫

1
𝑖−1

𝑀= 1
𝑖

𝑓 (𝐩min) 𝑑𝑀 =
𝐼
∑

𝑖=2
∫

1
𝑖−1

𝑀= 1
𝑖

[

1 − (𝑖 − 1)(2𝑀2 − 2𝑀3 +𝑀4)

−2[1 − (𝑖 − 1)𝑀]2 + 2[1 − (𝑖 − 1)𝑀]3 − [1 − (𝑖 − 1)𝑀]4
]

=
𝐼
∑

𝑖=2

12 − 72𝑖 + 199𝑖2 − 335𝑖3 + 310𝑖4 − 150𝑖5 + 30𝑖6

30𝑖4(𝑖 − 1)4

= − 19
30𝐼

+ 31
30𝐼2

− 4
5𝐼3

+ 2
5𝐼4

+
𝐼
∑

𝑖=2

[

11
30(𝑖 − 1)2

− 3
10(𝑖 − 1)3

+ 1
5(𝑖 − 1)4

]

. (16)

Subtracting Eq. (16) from Eq. (15) in Eq. (14), we obtain the quantity in Eq. (5).

Appendix C. Proof of Theorem  4.2

First, for the upper bound, because ∑𝐼
𝑖=2 𝑝𝑖 = 1 −𝑀1 and 

∑𝐼
𝑖=2 𝑞𝑖 = 1 −𝑀2, Eq. (3) can be written

E[𝑏
1] =

(

1 − 2𝑀1𝑀2 +𝑀2
1𝑀2 +𝑀1𝑀

2
2 −𝑀2

1𝑀
2
2
)

+
(

−2
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖 +

𝐼
∑

𝑖=2
𝑝2𝑖 𝑞𝑖 +

𝐼
∑

𝑖=2
𝑝𝑖𝑞

2
𝑖 −

𝐼
∑

𝑖=2
𝑝2𝑖 𝑞

2
𝑖

)

(17)

=
(

1 − 2𝑀1𝑀2 +𝑀2
1𝑀2 +𝑀1𝑀

2
2 −𝑀2

1𝑀
2
2
)

−
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖

(

2 − 𝑝𝑖 − 𝑞𝑖 + 𝑝𝑖𝑞𝑖
)

⩽ 1 − 2𝑀1𝑀2 +𝑀2
1𝑀2 +𝑀1𝑀

2
2 −𝑀2

1𝑀
2
2 .

The last inequality holds because 0 ⩽ 𝑝𝑖 < 1 and 0 ⩽ 𝑞𝑖 < 1 for all 𝑖 = 2, 3,… , 𝐼 , so that 2−𝑝𝑖−𝑞𝑖+𝑝𝑖𝑞𝑖 > 0, 𝑝𝑖𝑞𝑖 ⩾ 0, and ∑𝐼
𝑖=2 𝑝𝑖𝑞𝑖(2−𝑝𝑖−𝑞𝑖+𝑝𝑖𝑞𝑖) ⩾ 0. 

Equality with the upper bound requires that for all 𝑖, 2 ⩽ 𝑖 ⩽ 𝐼 , 𝑝𝑖𝑞𝑖 = 0. That is, for all 𝑖 = 2, 3,… , 𝐼 , 𝑝𝑖 = 0 or 𝑞𝑖 = 0, so that allele 1 is the only 
allele shared between populations.

Next, for the lower bound,
− 2(1−𝑀1)(1−𝑀2) + (1−𝑀1)2(1−𝑀2) + (1−𝑀1)(1−𝑀2)2 − (1−𝑀1)2(1−𝑀2)2

−
(

−2
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖 +

𝐼
∑

𝑖=2
𝑝2𝑖 𝑞𝑖 +

𝐼
∑

𝑖=2
𝑝𝑖𝑞

2
𝑖 −

𝐼
∑

𝑖=2
𝑝2𝑖 𝑞

2
𝑖

)

=
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖(1 − 𝑝𝑖) +

𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖(1 − 𝑞𝑖) − (1 −𝑀1)(1 −𝑀2)(𝑀1 +𝑀2) +

𝐼
∑

𝑖=2
𝑝2𝑖 𝑞

2
𝑖 −

( 𝐼
∑

𝑖=2
𝑝𝑖

)2( 𝐼
∑

𝑖=2
𝑞𝑖

)2

⩽
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖(1 − 𝑝𝑖) +

𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖(1 − 𝑞𝑖) − (1 −𝑀1)(1 −𝑀2)(𝑀1 +𝑀2) +

( 𝐼
∑

𝑖=2
𝑝𝑖

)2( 𝐼
∑

𝑖=2
𝑞𝑖

)2
−
( 𝐼
∑

𝑖=2
𝑝𝑖

)2( 𝐼
∑

𝑖=2
𝑞𝑖

)2

=
𝐼
∑

𝑖=2
𝑝𝑖
[

𝑞𝑖(1 − 𝑞𝑖) −𝑀2(1 −𝑀2)
]

+
𝐼
∑

𝑖=2
𝑞𝑖
[

𝑝𝑖(1 − 𝑝𝑖) −𝑀1(1 −𝑀1)
]

(18)

⩽ 0.

The first inequality uses the fact that the 𝑝𝑖 and 𝑞𝑖 are all non-negative, so that (
∑𝐼

𝑖=2 𝑝𝑖)
2(
∑𝐼

𝑖=2 𝑞𝑖)
2 ⩾

∑𝐼
𝑖=2 𝑝

2
𝑖 𝑞

2
𝑖 . The last inequality uses the fact 

that 𝑝𝑖 ⩽ 𝑀1, 𝑝𝑖 ⩽ 1 −𝑀1, 𝑞𝑖 ⩽ 𝑀2, and 𝑞𝑖 ⩽ 1 −𝑀2. The function 𝑓 (𝑥) = 𝑥(1 − 𝑥) is nondecreasing for 𝑥 ∈ [0, 12 ), and one of 𝑀1 and 1 −𝑀1 must 
lie in [0, 12 ], so 𝑝𝑖 ⩽ 𝑀1 and 𝑝𝑖 ⩽ 1 −𝑀1 implies 𝑓 (𝑝𝑖) ⩽ 𝑓 (𝑀1); analogously, 𝑓 (𝑞𝑖) ⩽ 𝑓 (𝑀2).

Applying Eq. (17), we therefore have
E[𝑏

1] ⩾
(

1 − 2𝑀1𝑀2 +𝑀2
1𝑀2 +𝑀1𝑀

2
2 −𝑀2

1𝑀
2
2
)

− 2(1−𝑀1)(1−𝑀2) + (1−𝑀1)2(1−𝑀2) + (1−𝑀1)(1−𝑀2)2 − (1−𝑀1)2(1−𝑀2)2

= 𝑀1 +𝑀2 − 4𝑀1𝑀2 + 2𝑀2
1𝑀2 + 2𝑀1𝑀

2
2 − 2𝑀2

1𝑀
2
2 .

Equality with the lower bound requires (∑𝐼
𝑖=2 𝑝𝑖

)2(∑𝐼
𝑖=2 𝑞𝑖

)2 =
∑𝐼

𝑖=2 𝑝
2
𝑖 𝑞

2
𝑖 . Because 𝑝2 ⩾ 𝑝3 ⩾ … ⩾ 𝑝𝐼 , this condition requires 𝑝2 = 1 − 𝑝1 = 1 −𝑀1

and hence 𝑞2 = 1 − 𝑞1 = 1 −𝑀2, making use of assumptions 𝑀1 ⩾ 1
2  and 𝑀2 ⩾ 1

2 . Equality with the lower bound also requires that the expression 
in Eq. (18) equal 0; allele-frequency distributions (𝑝1, 𝑝2, 𝑝3,… , 𝑝𝐼 ) = (𝑀1, 1 − 𝑀1, 0,… , 0) and (𝑞1, 𝑞2, 𝑞3,… , 𝑞𝐼 ) = (𝑀2, 1 − 𝑀2, 0,… , 0) produce a 
value of 0 in Eq. (18).

Appendix D. Proof of Theorem  4.3

We write E[𝑏
1] in the form

E[𝑏
1] = 1 − 2

𝐼
∑

𝑝𝑖𝑞𝑖 +
𝐼
∑

𝑝2𝑖 𝑞𝑖 +
𝐼
∑

𝑝𝑖𝑞
2
𝑖 −

𝐼
∑

𝑝2𝑖 𝑞
2
𝑖 = 1 −

𝐼
∑

𝑝𝑖𝑞𝑖 −
𝐼
∑

𝑝𝑖(1 − 𝑝𝑖)𝑞𝑖(1 − 𝑞𝑖).

𝑖=1 𝑖=1 𝑖=1 𝑖=1 𝑖=1 𝑖=1
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For the upper bound, because E[𝑏
1] ⩽ 1 −

∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖 = E[

𝑏
2], the upper bound of E[𝑏

2] can also serve as a (loose) upper bound for E[𝑏
1].

To obtain a loose lower bound, we must bound from above the quantity ∑𝐼
𝑖=1 𝑝𝑖(1 − 𝑝𝑖)𝑞𝑖(1 − 𝑞𝑖) given max{𝑝1, 𝑝2,… , 𝑝𝐼} = 𝑀1 and 

max{𝑞1, 𝑞2,… , 𝑞𝐼} = 𝑀2. First, note that for 𝑝1, 𝑝2,… , 𝑝𝐼  with 𝑝1 ⩾ 𝑝2 ⩾ … 𝑝𝐼 ⩾ 0 and ∑𝐼
𝑖=1 𝑝𝑖 = 1, we have 𝑝𝑖(1 − 𝑝𝑖) ⩾ 𝑝𝑗 (1 − 𝑝𝑗 ) for 𝑖 < 𝑗. 

This result follows because 𝑓 (𝑥) = 𝑥(1 − 𝑥) is maximized at 𝑥 = 1
2 , declining symmetrically around the maximum, and 𝑝𝑗 lies farther from 12  than 

does 𝑝𝑖; the claim is verified in two cases, 𝑝𝑖 ⩾ 1
2 , for which 𝑝𝑖 −

1
2 ⩽ 1

2 − 𝑝𝑗 , and 𝑝𝑖 < 1
2 , for which 

1
2 − 𝑝𝑖 ⩽

1
2 − 𝑝𝑗 .

It follows that for each 𝑖, 𝑝𝑖(1 − 𝑝𝑖) ⩽ 𝑀1(1 −𝑀1) and 𝑞𝑖(1 − 𝑞𝑖) ⩽ 𝑀2(1 −𝑀2), so that 
∑𝐼

𝑖=1 𝑝𝑖(1 − 𝑝𝑖)𝑞𝑖(1 − 𝑞𝑖) ⩽ 𝐼𝑀1(1 −𝑀1)𝑀2(1 −𝑀2).

Appendix E. Proof of Theorem  4.5

Theorem  4.5 states the bounds on E[𝑏
2] and gives sufficient conditions on the 𝑝𝑖 and 𝑞𝑖 at which the bounds are reached — given an upper 

bound 𝑀1 on the 𝑝𝑖 and an upper bound 𝑀2 on the 𝑞𝑖 (also assuming 
∑𝐼

𝑖=1 𝑝𝑖 =
∑𝐼

𝑖=1 𝑞𝑖 = 1). The upper bounds need not occur at the same allele.
The proof proceeds by a series of lemmas. Informally, Lemma  E.1 shows that for fixed 𝑎𝑖, we can reduce the sum of products ∑𝐼

𝑖=1 𝑎𝑖𝑏𝑖 by a 
particular choice of the value of a specific frequency 𝑏𝓁 (if it is not already optimized).

Lemma E.1.  Suppose a collection of 𝐼 ⩾ 2 fixed non-negative values 𝑎1, 𝑎2,… , 𝑎𝐼  is given, with 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝐼 . Suppose 𝑏1, 𝑏2,… , 𝑏𝐼  are non-negative 
values satisfying three conditions:
(1) monotonicity, 𝑏1 ⩽ 𝑏2 ⩽ … ⩽ 𝑏𝐼 ;
(2) fixed total sum, ∑𝐼

𝑖=1 𝑏𝑖 = 𝐵; and
(3) boundedness from above, 𝑏𝑖 ⩽ 𝑏∗ for all 𝑖 = 1, 2,… , 𝐼 , where 𝐵𝐼 ⩽ 𝑏∗ < 𝐵.

Consider 𝓁 with 2 ⩽ 𝓁 ⩽ 𝐼 and (𝐼 − 𝓁)𝑏∗ < 𝐵. Suppose 𝑏𝑖 = 𝑏∗ for each 𝑖 with 𝓁 < 𝑖 ⩽ 𝐼 , and suppose 𝑏𝓁 < min
(

𝑏∗, 𝐵 − (𝐼 − 𝓁)𝑏∗
)

. Then there exists a set 
of values 𝑏′1, 𝑏′2,… , 𝑏′𝐼  with 𝑏′𝑖 = 𝑏∗ for each 𝑖 with 𝓁 < 𝑖 ⩽ 𝐼 , satisfying conditions (1), (2), and (3), such that 𝑏′𝓁 = min

(

𝑏∗, 𝐵 − (𝐼 − 𝓁)𝑏∗
)

, and 
𝐼
∑

𝑖=1
𝑎𝑖𝑏

′
𝑖 ⩽

𝐼
∑

𝑖=1
𝑎𝑖𝑏𝑖. (19)

Proof.  For convenience, write 𝑠 = min
(

𝑏∗, 𝐵 − (𝐼 − 𝓁)𝑏∗
)

, so that 𝑏′𝓁 = 𝑠 > 0. Let 𝑏𝓁 < 𝑠 = 𝑏′𝓁 . We have 𝑏𝑖 = 𝑏′𝑖 = 𝑏∗ for each 𝑖 with 𝓁 < 𝑖 ⩽ 𝐼 . Let 
𝑥 = 𝑏′𝓁 − 𝑏𝓁 , a positive quantity representing the difference between the value we will place in the 𝓁th entry in our new sequence and the value in 
the current sequence. Because ∑𝐼

𝑖=1 𝑏𝑖 =
∑𝐼

𝑖=1 𝑏
′
𝑖 = 𝐵,

𝑥 = 𝑏′𝓁 − 𝑏𝓁 =
𝓁−1
∑

𝑖=1
(𝑏𝑖 − 𝑏′𝑖) > 0.

Let 𝑘 be the unique index that satisfies ∑𝑘−1
𝑖=1 𝑏𝑖 ⩽ 𝑥 and ∑𝑘

𝑖=1 𝑏𝑖 > 𝑥. We set the values of 𝑏′𝑖 so that 𝑏′𝑖 = 0 for each 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 
𝑏′𝑘 = 𝑏𝑘 − (𝑥 −

∑𝑘−1
𝑖=1 𝑏𝑖), 𝑏′𝑖 = 𝑏𝑖 for 𝑘 + 1 ⩽ 𝑖 ⩽ 𝓁 − 1, and 𝑏′𝑖 = 𝑏∗ for 𝓁 ⩽ 𝑖 ⩽ 𝐼 .

Note that 𝑘 ⩽ 𝓁 always holds. For contradiction, suppose 𝑘 > 𝓁. Then ∑𝑘−1
𝑖=1 𝑏𝑖 =

∑𝓁−1
𝑖=1 𝑏𝑖 +

∑𝑘−1
𝑖=𝓁 𝑏𝑖 =

[

(
∑𝓁−1

𝑖=1 𝑏′𝑖) + 𝑥
]

+
∑𝑘−1

𝑖=𝓁 𝑏𝑖. We have 
∑𝐼

𝑖=𝓁+1 𝑏𝑖 =
∑𝐼

𝑖=𝓁+1 𝑏
∗ = (𝐼 − 𝓁)𝑏∗ < 𝐵; because ∑𝐼

𝑖=1 𝑏𝑖 = 𝐵, it follows that ∑𝓁
𝑖=1 𝑏𝑖 = 𝐵 −

∑𝐼
𝑖=𝓁+1 𝑏𝑖 > 0. Next, because 𝑏𝓁 ⩾ 𝑏𝑖 for each 𝑖 with 

1 ⩽ 𝑖 ⩽ 𝓁 − 1, we have 𝑏𝓁 > 0. As a result, ∑𝑘−1
𝑖=1 𝑏𝑖 =

[

(
∑𝓁−1

𝑖=1 𝑏′𝑖) + 𝑥
]

+
∑𝑘−1

𝑖=𝓁 𝑏𝑖 ⩾ 𝑥 + 𝑏𝓁 > 𝑥, contradicting the condition ∑𝑘−1
𝑖=1 𝑏𝑖 ⩽ 𝑥 in the definition 

of 𝑘.
We have constructed a sequence of values 𝑏′𝑖 that continues to satisfy the monotonicity, fixed-total-sum, and boundedness-from-above conditions. 

(1) For monotonicity, 𝑏′𝑖 = 0 for 1 ⩽ 𝑖 ⩽ 𝑘−1, 𝑏′𝑘 ⩽ 𝑏𝑘 ⩽ 𝑏𝑖 = 𝑏′𝑖 for 𝑘+1 ⩽ 𝑖 ⩽ 𝓁 −1, 𝑏′𝓁−1 = 𝑏𝓁−1 ⩽ 𝑏𝓁 < 𝑏′𝓁 , and 𝑏′𝓁 = 𝑏∗ = 𝑏′𝑖 for 𝓁 +1 ⩽ 𝑖 ⩽ 𝐼 . (2) For 
fixed total sum, ∑𝐼

𝑖=1 𝑏
′
𝑖 = (

∑𝑘−1
𝑖=1 𝑏′𝑖) + 𝑏′𝑘 + (

∑𝓁−1
𝑖=𝑘+1 𝑏

′
𝑖) + 𝑏′𝓁 + (

∑𝐼
𝑖=𝓁+1 𝑏

′
𝑖) = 0 + [𝑏𝑘 − (𝑥 −

∑𝑘−1
𝑖=1 𝑏𝑖)] + (

∑𝓁−1
𝑖=𝑘+1 𝑏𝑖) + (𝑏𝓁 + 𝑥) + (

∑𝐼
𝑖=𝓁+1 𝑏𝑖) =

∑𝐼
𝑖=1 𝑏𝑖 = 𝐵. 

(3) For boundedness from above, 𝑏′𝑖 = 0 < 𝑏∗ for 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 𝑏′𝑘 ⩽ 𝑏𝑘 < 𝑏∗, 𝑏′𝑖 = 𝑏𝑖 ⩽ 𝑏𝓁 < 𝑏∗ for 𝑘 + 1 ⩽ 𝑖 ⩽ 𝓁 − 1, and 𝑏′𝑖 = 𝑏∗ for 𝓁 ⩽ 𝑖 ⩽ 𝐼 .
It remains to show that Eq. (19) holds. We have

𝐼
∑

𝑖=1
𝑎𝑖𝑏

′
𝑖 −

𝐼
∑

𝑖=1
𝑎𝑖𝑏𝑖 =

(𝓁−1
∑

𝑖=1
𝑎𝑖𝑏

′
𝑖

)

+ 𝑎𝓁𝑏
′
𝓁 −

(𝓁−1
∑

𝑖=1
𝑎𝑖𝑏𝑖

)

− 𝑎𝓁𝑏𝓁

=
[ 𝓁−1
∑

𝑖=1
𝑎𝑖(𝑏′𝑖 − 𝑏𝑖)

]

+ 𝑎𝓁(𝑏′𝓁 − 𝑏𝓁)

=
[ 𝑘−1
∑

𝑖=1
𝑎𝑖(0 − 𝑏𝑖)

]

+ 𝑎𝑘

[

[

𝑏𝑘 −
(

𝑥 −
𝑘−1
∑

𝑖=1
𝑏𝑖
)]

− 𝑏𝑘

]

+ 𝑎𝓁𝑥

= 𝑎𝓁𝑥 −
(𝑘−1
∑

𝑖=1
𝑎𝑖𝑏𝑖

)

− 𝑎𝑘

(

𝑥 −
𝑘−1
∑

𝑖=1
𝑏𝑖

)

= 𝑎𝓁

[ 𝑘−1
∑

𝑖=1
𝑏𝑖 +

(

𝑥 −
𝑘−1
∑

𝑖=1
𝑏𝑖
)

]

−
(𝑘−1
∑

𝑖=1
𝑎𝑖𝑏𝑖

)

− 𝑎𝑘

(

𝑥 −
𝑘−1
∑

𝑖=1
𝑏𝑖

)

=
[ 𝑘−1
∑

𝑖=1
(𝑎𝓁 − 𝑎𝑖)𝑏𝑖

]

+ (𝑎𝓁 − 𝑎𝑘)
(

𝑥 −
𝑘−1
∑

𝑖=1
𝑏𝑖

)

⩽ 0.

In the last step, the inequality holds because 𝑘 ⩽ 𝓁 and the 𝑎𝑖 are monotonically decreasing, so that 𝑎𝓁 ⩽ 𝑎𝑖 for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝓁. □

Lemma  E.2 is similar to Lemma  E.1, but in the reverse direction. It shows that for fixed 𝑎𝑖, we can increase 
∑𝐼

𝑖=1 𝑎𝑖𝑏𝑖 by a particular choice of 
the value of a specific frequency 𝑏  (if it is not already optimized). 
𝓁
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Lemma E.2.  Suppose a collection of 𝐼 ⩾ 2 fixed non-negative values 𝑎1, 𝑎2,… , 𝑎𝐼  is given, with 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝐼 . Suppose 𝑏1, 𝑏2,… , 𝑏𝐼  are non-negative 
values satisfying three conditions:
(1) monotonicity, 𝑏1 ⩾ 𝑏2 ⩾ … ⩾ 𝑏𝐼 ;
(2) fixed total sum, ∑𝐼

𝑖=1 𝑏𝑖 = 𝐵; and
(3) boundedness from above, 𝑏𝑖 ⩽ 𝑏∗ for all 𝑖 = 1, 2,… , 𝐼 , where 𝐵𝐼 ⩽ 𝑏∗ < 𝐵.

Consider 𝓁 with 1 ⩽ 𝓁 ⩽ 𝐼 − 1 and (𝓁 − 1)𝑏∗ < 𝐵. Suppose 𝑏𝑖 = 𝑏∗ for each 𝑖 with 1 ⩽ 𝑖 < 𝓁, and suppose 𝑏𝓁 < min
(

𝑏∗, 𝐵 − (𝓁 − 1)𝑏∗
)

. Then there exists a 
set of values 𝑏′1, 𝑏′2,… , 𝑏′𝐼  with 𝑏′𝑖 = 𝑏∗ for each 𝑖 with 1 ⩽ 𝑖 < 𝓁, satisfying conditions (1), (2), and (3), such that 𝑏′𝓁 = min

(

𝑏∗, 𝐵 − (𝓁 − 1)𝑏∗
)

, and 
𝐼
∑

𝑖=1
𝑎𝑖𝑏

′
𝑖 ⩾

𝐼
∑

𝑖=1
𝑎𝑖𝑏𝑖. (20)

Proof.  The proof is similar to that of Lemma  E.1. Write 𝑠 = min
(

𝑏∗, 𝐵 − (𝓁 − 1)𝑏∗
)

, so that 𝑏′𝓁 = 𝑠 > 0. Let 𝑏𝓁 < 𝑠 = 𝑏′𝓁 . We now have 𝑏𝑖 = 𝑏′𝑖 = 𝑏∗

for each 𝑖 with 1 ⩽ 𝑖 < 𝓁. Let 𝑥 = 𝑏′𝓁 − 𝑏𝓁 , a positive quantity representing the difference between the value we place in the 𝓁th entry in our new 
sequence and the value in the current sequence. Because ∑𝐼

𝑖=1 𝑏𝑖 =
∑𝐼

𝑖=1 𝑏
′
𝑖 = 𝐵,

𝑥 = 𝑏′𝓁 − 𝑏𝓁 =
𝐼
∑

𝑖=𝓁+1
(𝑏𝑖 − 𝑏′𝑖) > 0.

Let 𝑘 be the unique index that satisfies ∑𝐼
𝑖=𝑘+1 𝑏𝑖 ⩽ 𝑥 and ∑𝐼

𝑖=𝑘 𝑏𝑖 > 𝑥. We set the values of 𝑏′𝑖 so that 𝑏′𝑖 = 𝑏∗ for 1 ⩽ 𝑖 ⩽ 𝓁, 𝑏′𝑖 = 𝑏𝑖 for 
𝓁 + 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 𝑏′𝑘 = 𝑏𝑘 − (𝑥 −

∑𝐼
𝑖=𝑘+1 𝑏𝑖), and 𝑏′𝑖 = 0 for each 𝑖 with 𝑘 + 1 ⩽ 𝑖 ⩽ 𝐼 .

We show 𝑘 ⩾ 𝓁. For contradiction, suppose 𝑘 < 𝓁. Then ∑𝐼
𝑖=𝑘+1 𝑏𝑖 =

∑𝓁
𝑖=𝑘+1 𝑏𝑖 +

∑𝐼
𝑖=𝓁+1 𝑏𝑖 =

∑𝓁
𝑖=𝑘+1 𝑏𝑖 +

[

(
∑𝐼

𝑖=𝓁+1 𝑏
′
𝑖) + 𝑥

]

. We have 
∑𝓁−1

𝑖=1 𝑏𝑖 =
∑𝓁−1

𝑖=1 𝑏∗ = (𝓁 − 1)𝑏∗ < 𝐵; because ∑𝐼
𝑖=1 𝑏𝑖 = 𝐵, it follows that ∑𝐼

𝑖=𝓁 𝑏𝑖 = 𝐵 −
∑𝓁−1

𝑖=1 𝑏𝑖 > 0. Next, because 𝑏𝓁 ⩾ 𝑏𝑖 for each 𝑖 with 
𝓁 + 1 ⩽ 𝑖 ⩽ 𝐼 , we have 𝑏𝓁 > 0. As a result, ∑𝐼

𝑖=𝑘+1 𝑏𝑖 =
∑𝓁

𝑖=𝑘+1 𝑏𝑖 +
[

(
∑𝐼

𝑖=𝓁+1 𝑏
′
𝑖) + 𝑥

]

⩾ 𝑏𝓁 + 𝑥 > 𝑥, contradicting the condition ∑𝐼
𝑖=𝑘+1 𝑏𝑖 ⩽ 𝑥 in the 

definition of 𝑘.
The constructed sequence of values 𝑏′𝑖 continues to satisfy the monotonicity, fixed-total-sum, and boundedness-from-above conditions. (1) For 

monotonicity, 𝑏′𝓁 = 𝑏∗ = 𝑏′𝑖 for 1 ⩽ 𝑖 ⩽ 𝓁 − 1, 𝑏′𝓁 > 𝑏𝓁 ⩾ 𝑏𝓁+1 = 𝑏′𝓁+1, 𝑏′𝑖 = 𝑏𝑖 ⩾ 𝑏𝑘 ⩾ 𝑏′𝑘 for 𝓁 + 1 ⩽ 𝑖 ⩽ 𝑘 − 1, and 𝑏′𝑖 = 0 for 𝑘 + 1 ⩽ 𝑖 ⩽ 𝐼 . (2) For 
fixed total sum, ∑𝐼

𝑖=1 𝑏
′
𝑖 = (

∑𝓁−1
𝑖=1 𝑏′𝑖) + 𝑏′𝓁 + (

∑𝑘−1
𝑖=𝓁+1 𝑏

′
𝑖) + 𝑏′𝑘 + (

∑𝐼
𝑖=𝑘+1 𝑏

′
𝑖) = (

∑𝓁−1
𝑖=1 𝑏𝑖) + (𝑏𝓁 + 𝑥) + (

∑𝑘−1
𝑖=𝓁+1 𝑏𝑖) + [𝑏𝑘 − (𝑥 −

∑𝐼
𝑖=𝑘+1 𝑏𝑖)] + 0 = 𝐵. (3) For 

boundedness from above, 𝑏′𝑖 = 𝑏∗ for 1 ⩽ 𝑖 ⩽ 𝓁, 𝑏′𝑖 = 𝑏𝑖 ⩽ 𝑏𝓁 < 𝑏∗ for 𝓁 + 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 𝑏′𝑘 ⩽ 𝑏𝑘 < 𝑏∗, and 𝑏′𝑖 = 0 < 𝑏∗ for 𝑘 + 1 ⩽ 𝑖 ⩽ 𝐼 .
It remains to show that Eq. (20) holds. We have

𝐼
∑

𝑖=1
𝑎𝑖𝑏

′
𝑖 −

𝐼
∑

𝑖=1
𝑎𝑖𝑏𝑖 = 𝑎𝓁𝑏

′
𝓁 +

( 𝐼
∑

𝑖=𝓁+1
𝑎𝑖𝑏

′
𝑖

)

− 𝑎𝓁𝑏𝓁 −
( 𝐼

∑

𝑖=𝓁+1
𝑎𝑖𝑏𝑖

)

= 𝑎𝓁(𝑏′𝓁 − 𝑏𝓁) +
[ 𝐼

∑

𝑖=𝓁+1
𝑎𝑖(𝑏′𝑖 − 𝑏𝑖)

]

= 𝑎𝓁𝑥 + 𝑎𝑘

[

[

𝑏𝑘 − (𝑥 −
𝐼
∑

𝑖=𝑘+1
𝑏𝑖)

]

− 𝑏𝑘

]

+
[ 𝐼

∑

𝑖=𝑘+1
𝑎𝑖(0 − 𝑏𝑖)

]

= 𝑎𝓁𝑥 − 𝑎𝑘𝑥 +
(

𝑎𝑘
𝐼
∑

𝑖=𝑘+1
𝑏𝑖

)

−
( 𝐼

∑

𝑖=𝑘+1
𝑎𝑖𝑏𝑖

)

= 𝑎𝓁

[ 𝐼
∑

𝑖=𝑘+1
𝑏𝑖 +

(

𝑥 −
𝐼
∑

𝑖=𝑘+1
𝑏𝑖
)

]

−
( 𝐼

∑

𝑖=𝑘+1
𝑎𝑖𝑏𝑖

)

− 𝑎𝑘

(

𝑥 −
𝐼
∑

𝑖=𝑘+1
𝑏𝑖

)

=
[ 𝐼

∑

𝑖=𝑘+1
(𝑎𝓁 − 𝑎𝑖)𝑏𝑖

]

+ (𝑎𝓁 − 𝑎𝑘)
(

𝑥 −
𝐼
∑

𝑖=𝑘+1
𝑏𝑖

)

⩾ 0.

In the last step, the inequality holds because 𝑘 ⩾ 𝓁 and the 𝑎𝑖 are monotonically decreasing, so that 𝑎𝓁 ⩾ 𝑎𝑖 for all 𝑖, 𝓁 ⩽ 𝑖 ⩽ 𝐼 . □

Lemma  E.3 now uses Lemmas  E.1 and E.2 to find the minimum and maximum of the sum of products ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖, allowing both 𝑎𝑖 and 𝑏𝑖 to vary.

Lemma E.3.  Consider all possible sets of non-negative real numbers {𝑎1, 𝑎2,… , 𝑎𝐼} and {𝑏1, 𝑏2,… , 𝑏𝐼} with fixed sums 
∑𝐼

𝑖=1 𝑎𝑖 = 𝐴 and ∑𝐼
𝑖=1 𝑏𝑖 = 𝐵, 

where 𝐼 ⩾ 2, 𝐴 > 0, and 𝐵 > 0. Suppose that the 𝑎𝑖 are non-decreasing, with 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝐼 , and that the 𝑏𝑖 are monotonic, with 𝑏1 ⩾ 𝑏2 ⩾ … ⩾ 𝑏𝐼  or 
𝑏1 ⩽ 𝑏2 ⩽ … ⩽ 𝑏𝐼 . Suppose also that 𝑎𝑖 ⩽ 𝑎∗ and 𝑏𝑖 ⩽ 𝑏∗ for all 𝑖, with 0 < 𝑎∗ < 𝐴 and 0 < 𝑏∗ < 𝐵. Let 𝛼 = ⌈𝐴∕𝑎∗⌉ and 𝛽 = ⌈𝐵∕𝑏∗⌉. The values of 𝐼 , 𝐴, 
𝐵, 𝑎∗, and 𝑏∗ are fixed and given. Consider the following conditions:

1. 𝑎𝑖 = 𝑎∗ for 1 ⩽ 𝑖 ⩽ 𝛼 − 1, 𝑎𝛼 = 𝐴 − (𝛼 − 1)𝑎∗, and 𝑎𝑖 = 0 for 𝛼 + 1 ⩽ 𝑖 ⩽ 𝐼 .
2. 𝑏𝑖 = 0 for 1 ⩽ 𝑖 ⩽ 𝐼 − 𝛽, 𝑏𝐼−𝛽+1 = 𝐵 − (𝛽 − 1)𝑏∗, and 𝑏𝑖 = 𝑏∗ for 𝐼 − 𝛽 + 2 ⩽ 𝑖 ⩽ 𝐼 .
3. 𝑏𝑖 = 𝑏∗ for 1 ⩽ 𝑖 ⩽ 𝛽 − 1, 𝑏𝛽 = 𝐵 − (𝛽 − 1)𝑏∗, and 𝑏𝑖 = 0 for 𝛽 + 1 ⩽ 𝑖 ⩽ 𝐼 .

Then (i) ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 achieves its maximal value if Conditions 1 and 3 hold. (ii) 

∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 achieves its minimal value if Conditions 1 and 2 hold.

Proof.  (i) For the upper bound, by the rearrangement inequality (Theorem  2.6), if the 𝑎𝑖 are fixed with 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝐼  and the 𝑏𝑖 are free to 
vary subject to 𝑏1 ⩾ 𝑏2 ⩾ … ⩾ 𝑏𝐼  (and 0 ⩽ 𝑏𝑖 ⩽ 𝑏∗, ∑𝐼

𝑖=1 𝑏𝑖 = 𝐵), then for each permutation 𝜎 of (1, 2,… , 𝐼),
𝐼
∑

𝑎𝑖𝑏𝑖 ⩾
𝐼
∑

𝑎𝑖𝑏𝜎(𝑖).

𝑖=1 𝑖=1
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In other words, to maximize ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖, it suffices to proceed by assuming that 𝑏1 ⩾ 𝑏2 ⩾ … ⩾ 𝑏𝐼 .

We apply Lemma  E.2 with 𝓁 = 1. We conclude that the maximal value of ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 is achieved with 𝑏1 = min(𝑏∗, 𝐵) = 𝑏∗. Fixing 𝑏1 = 𝑏∗, we next 

apply Lemma  E.2 with 𝓁 = 2. We find that the maximal value of ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 achieved at 𝑏2 = min(𝑏∗, 𝐵 − 𝑏∗).

We proceed by fixing 𝑏𝓁 = 𝑏∗ for each 𝓁 = 3, 4,… , ⌈𝐵∕𝑏∗⌉ − 1, repeatedly applying Lemma  E.2 provided 𝓁𝑏∗ < 𝐵 — that is, while 𝓁 < 𝐵∕𝑏∗, or 
𝓁 ⩽ ⌈𝐵∕𝑏∗⌉−1, and continuing to assign 𝑏𝓁 = 𝑏∗. The next value of 𝓁 is 𝓁 = ⌈𝐵∕𝑏∗⌉. If ⌈𝐵∕𝑏∗⌉ ⩽ 𝐼−1, then Lemma  E.2 yields 𝑏𝓁 = 𝐵−

(

⌈𝐵∕𝑏∗⌉−1
)

𝑏∗

and 𝑏𝑖 = 0 for all 𝑖 > 𝓁. If ⌈𝐵∕𝑏∗⌉ = 𝐼 , then we have reached a trivial case in which 𝑏𝐼 = 𝐵 − (𝐼 − 1)𝑏∗ and 𝑏𝑖 = 𝑏∗ for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝐼 − 1.
We arrive at Condition 3: with the 𝑎𝑖 in non-increasing order held constant, the 𝑏𝑖 that satisfy Condition 3 produce the maximum of ∑𝐼

𝑖=1 𝑎𝑖𝑏𝑖. 
By symmetry, we fix the 𝑏𝑖 as in Condition 3 and apply Lemma  E.2 with the roles of the 𝑎𝑖 and 𝑏𝑖 interchanged. We find analogously that the 𝑎𝑖
follow Condition 1.

(ii) For the lower bound, by the rearrangement inequality (Theorem  2.6), if the 𝑎𝑖 are fixed with 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝐼  and the 𝑏𝑖 are free to vary 
subject to 𝑏1 ⩽ 𝑏2 ⩽ … ⩽ 𝑏𝐼  (and 0 ⩽ 𝑏𝑖 ⩽ 𝑏∗, ∑𝐼

𝑖=1 𝑏𝑖 = 𝐵), then for each permutation 𝜎 of (1, 2,… , 𝐼),
𝐼
∑

𝑖=1
𝑎𝑖𝑏𝑖 ⩽

𝐼
∑

𝑖=1
𝑎𝑖𝑏𝜎(𝑖).

In other words, to minimize ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖, it suffices to proceed by assuming that 𝑏1 ⩽ 𝑏2 ⩽ … ⩽ 𝑏𝐼 .

We apply Lemma  E.1 with 𝓁 = 𝐼 . We conclude that the minimal value of ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 is achieved with 𝑏𝐼 = min(𝑏∗, 𝐵) = 𝑏∗. Fixing 𝑏𝐼 = 𝑏∗, we 

next apply Lemma  E.1 with 𝓁 = 𝐼 − 1. We find that the minimal value of ∑𝐼
𝑖=1 𝑎𝑖𝑏𝑖 is achieved at 𝑏𝐼−1 = min(𝑏∗, 𝐵 − 𝑏∗).

We proceed by fixing 𝑏𝓁 = 𝑏∗ for each 𝓁 = 𝐼 −2, 𝐼 −3,… , 𝐼 − ⌈𝐵∕𝑏∗⌉+2, repeatedly applying Lemma  E.1 provided ∑𝐼
𝑖=𝓁 𝑏𝑖 < 𝐵 — that is, while 

(𝐼 −𝓁+1)𝑏∗ < 𝐵, or 𝓁 ⩾ 𝐼 −⌈𝐵∕𝑏∗⌉+2, and continuing to assign 𝑏𝓁 = 𝑏∗. The next value of 𝓁 is 𝓁 = 𝐼 −⌈𝐵∕𝑏∗⌉+1. If 𝐼 −⌈𝐵∕𝑏∗⌉+1 ⩾ 2, then Lemma 
E.1 yields 𝑏𝓁 = 𝐵 − (⌈𝐵∕𝑏∗⌉ − 1)𝑏∗, and 𝑏𝑖 = 0 for all 𝑖 < 𝓁. If 𝐼 − ⌈𝐵∕𝑏∗⌉ + 1 = 1, then we have reached a trivial case in which 𝑏1 = 𝐵 − (𝐼 − 1)𝑏∗

and 𝑏𝑖 = 𝑏∗ for all 𝑖, 2 ⩽ 𝑖 ⩽ 𝐼 .
We arrive at Condition 2: with the 𝑎𝑖 in non-increasing order held constant, the 𝑏𝑖 that satisfy Condition 2 produce the minimum of ∑𝐼

𝑖=1 𝑎𝑖𝑏𝑖. 
By symmetry, if we fix the 𝑏𝑖 as in Condition 2, and write the 𝑏𝑖 in reverse order, with 𝑐𝑖 = 𝑏𝐼+1−𝑖, then we can apply Lemma  E.1 with the 𝑐𝑖 in 
the role of the 𝑎𝑖 and the reversed 𝑎𝑖, or 𝑑𝑖 = 𝑎𝐼+1−𝑖, in the role of the 𝑏𝑖. We obtain that the 𝑑𝑖 follow Condition 2, and consequently, that the 
𝑎𝑖 = 𝑑𝐼+1−𝑖 follow Condition 1. □

Proof of Theorem  4.5.

Proof.  The function 𝓁(𝐩,𝐪) = 1 − 𝜌11 = 1 −
∑𝐼

𝑖=1 𝑝𝑖𝑞𝑖, with 
∑𝐼

𝑖=1 𝑝𝑖 = 1 and ∑𝐼
𝑖=1 𝑞𝑖 = 1, is minimized when ∑𝐼

𝑖=1 𝑝𝑖𝑞𝑖 is maximized, and maximized 
when ∑𝐼

𝑖=1 𝑝𝑖𝑞𝑖 is minimized.
(i) Via Lemma  E.3i, ∑𝐼

𝑖=1 𝑝𝑖𝑞𝑖 reaches its upper bound if 𝐩∗ = (𝑀1,𝑀1,… ,𝑀1, 1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1, 0,… , 0) and 𝐪∗ = (𝑀2,… ,𝑀2, 1 − (⌈𝑀−1

2 ⌉ −
1)𝑀2, 0,… , 0), producing the lower bound for 𝓁(𝐩,𝐪).

(ii) Via Lemma  E.3ii, ∑𝐼
𝑖=1 𝑝𝑖𝑞𝑖 reaches its lower bound if 𝐩∗ = (𝑀1,𝑀1,… ,𝑀1, 1 − (⌈𝑀−1

1 ⌉ − 1)𝑀1, 0,… , 0) and 𝐪∗ = (0,… , 0, 1 − (⌈𝑀−1
2 ⌉ −

1)𝑀2,𝑀2,… ,𝑀2), producing the upper bound for 𝓁(𝐩,𝐪).
The values of 𝓁(𝐩∗,𝐪∗) and 𝓁(𝐩∗,𝐪∗) can be obtained by computing 𝓁(𝐩,𝐪) with the vectors specified. □

Appendix F. Proof of Corollary  4.6

This proof follows that of Theorem  4.5. With the additional requirement that 𝑀1 and 𝑀2 are the frequencies for the same allele in both 
populations, we can write 𝓁(𝐩,𝐪) as,

𝓁(𝐩,𝐪) = 1 − 𝜌11 = 1 −𝑀1𝑀2 −
𝐼
∑

𝑖=2
𝑝𝑖𝑞𝑖.

We must find (𝑝2, 𝑝3,… , 𝑝𝐼 ) and (𝑞2, 𝑞3,… , 𝑞𝐼 ) that give the upper and lower bounds for 
∑𝐼

𝑖=2 𝑝𝑖𝑞𝑖.
With ∑𝐼

𝑖=2 𝑝𝑖 = 1 −𝑀1 and 
∑𝐼

𝑖=2 𝑞𝑖 = 1 −𝑀2, by Lemma  E.3, the minimum of ∑𝐼
𝑖=2 𝑝𝑖𝑞𝑖 is reached at

𝐩∗ = (𝑀1,𝑀1,… ,𝑀1, 1 − (⌈𝑀−1
1 ⌉ − 1)𝑀1, 0,… , 0),

with ⌈𝑀−1
1 ⌉ − 1 entries of 𝑀1 followed by an entry of 1 − (⌈𝑀−1

1 ⌉ − 1)𝑀1 and 0 for the rest, and
𝐪∗ = (𝑀2, 0,… , 0, 1 − (⌈𝑀−1

2 ⌉ − 1)𝑀2,𝑀2,… ,𝑀2),

with one entry of 𝑀2 and 𝐼 − ⌈𝑀−1
2 ⌉ entries of 0, followed by an entry of 1 − (⌈𝑀−1

2 ⌉− 1)𝑀2 and ⌈𝑀−1
2 ⌉− 2 entries of 𝑀2. These values minimize 

∑𝐼
𝑖=2 𝑝𝑖𝑞𝑖, thereby maximizing 𝓁(𝐩,𝐪) = E[𝑏

2].
Similarly, by Lemma  E.3, the maximum of ∑𝐼

𝑖=2 𝑝𝑖𝑞𝑖 is reached at
𝐩∗ = (𝑀1,𝑀1,… ,𝑀1, 1 − (⌈𝑀−1

1 ⌉ − 1)𝑀1, 0,… , 0),

𝐪∗ = (𝑀2,𝑀2,… ,𝑀2, 1 − (⌈𝑀−1
2 ⌉ − 1)𝑀2, 0,… , 0).

These values maximize ∑𝐼
𝑖=2 𝑝𝑖𝑞𝑖, thus minimizing 𝓁(𝐩,𝐪) = E[𝑏

2].
The values of 𝓁(𝐩∗,𝐪∗) and 𝓁(𝐩∗,𝐪∗) can be obtained accordingly.

Data availability

The data used in the work are publicly available.
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