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ARTICLE INFO ABSTRACT

Keywords: Allele-sharing dissimilarity (ASD) statistics are measures of genetic differentiation for pairs of individuals or
Allele frequencies populations. Given the allele-frequency distributions of two populations — possibly the same population —
Genetic dissimilarity the expected value of an ASD statistic is computed by evaluating the expectation of the pairwise dissimilarity

Population genetics between two individuals drawn at random, each from its associated allele-frequency distribution. For each

of two ASD statistics, which we term D, and D,, we investigate the extent to which the expected ASD is
constrained by allele frequencies in the two populations; in other words, how is the magnitude of the measure
bounded as a function of the frequency of the most frequent allelic type? We first consider dissimilarity of a
population with itself, obtaining bounds on expected ASD in terms of the frequency of the most frequent allelic
type in the population. We then examine pairs of populations that might or might not possess the same most
frequent allelic type. Across the unit interval for the frequency of the most frequent allelic type, the expected
allele-sharing dissimilarity has a range that is more restricted than the [0, 1] interval. The mathematical
constraints on expected ASD assist in explaining a pattern observed empirically in human populations, namely
that when averaging across loci, allele-sharing dissimilarities between pairs of individuals often tend to vary
only within a relatively narrow range.

1. Introduction

Statistics based on concepts of allele-sharing dissimilarity (ASD) (Mountain and Cavalli-Sforza, 1997; Mountain and Ramakrishnan, 2005; Gao
and Martin, 2009) are important tools in population-genetic data analysis. Beginning with the alleles of two diploid individuals at a genetic locus,
a function of the four alleles is computed, producing a value ranging from 0 for the minimum dissimilarity to 1 for the maximum. Among genetic
dissimilarity measures, ASD-based statistics are relatively easy to describe and compute. They are meaningful for pairs of individuals, or — if many
individuals are considered — pairs of populations, or an individual and a population. Hence, features of allele-sharing dissimilarities are often
used for understanding genetic variation within and among populations (Mountain and Cavalli-Sforza, 1997; Mountain and Ramakrishnan, 2005;
Witherspoon et al., 2007; Rosenberg, 2011).

Studies of population-genetic statistics that consider dissimilarities across individuals suggest that ranges of observed numerical values of
dissimilarity statistics — notably those based on the classic statistic Fg; — depend in predictable ways on allele-frequency distributions (Jakobsson
et al.,, 2013; Edge and Rosenberg, 2014; Alcala and Rosenberg, 2017, 2019, 2022). Consider two populations, each with an allele-frequency
distribution at a locus, and consider a bounded statistic that measures the dissimilarity of the two populations as a function of the allele
frequencies. Although the statistic is bounded, typically in [0, 1], tighter constraints might exist on the dissimilarity in terms of the separate frequency
distributions in the two populations. A value such as 0.55 or 0.7 might then be appropriate to interpret not in relation to the entire unit interval,
but in relation to a shorter interval suited to its allele frequencies. Such interpretations have been used to explain unexpected numerical patterns in
Fgr—such as a low Fg; value among high-diversity African populations (Jakobsson et al., 2013), and a high F¢; among chimpanzee populations
relative to its value between chimpanzees and humans (Alcala and Rosenberg, 2022).

Empirical findings suggest that allele-sharing dissimilarities are also constrained by allele frequencies. For example, the values of allele-sharing
dissimilarities have been seen to be quite similar across many computations. Consider, for example, the computations of allele-sharing dissimilarities
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as averages across many loci for pairs of individuals in Figure 5A of Rosenberg (2011). In those computations, which consider genome-wide loci
in diverse human populations, most pairs of individuals possess allele-sharing dissimilarities between 0.55 and 0.7. Does the narrow range arise
from mathematical constraints on ASD measures in relation to the allele frequencies?

We have recently investigated the mathematical properties of two formulations of population-level ASD measures, exploring mathematical
properties of the expected genetic dissimilarity between pairs of individuals sampled within and between populations (Liu et al., 2023). Here,
building upon our previous mathematical results, we derive bounds on the two expectations, both within and between populations, in two scenarios:
first, when the number of allelic types at a given locus is fixed at / and the allele-frequency distributions within a population can be arbitrary
among these I alleles; second, when both I and the frequency M of the most frequent allelic type within a population are held constant. In both
scenarios, we focus on the upper and lower bounds on the genetic dissimilarities in terms of the frequency of the most frequent allelic type. We
find that indeed, ASD values are mathematically constrained to subintervals of [0, 1], and that the constraints can assist in explaining features of
ASD in human populations.

2. Preliminaries

The structure of the article is as follows. First, in Section 2.1, we introduce definitions for ASD measures. In Sections 2.2 and 2.3, we review
mathematical results we previously obtained for these measures, and introduce mathematical machinery that we will use to obtain bounds on their
values. In Section 3, considering ASD measures computed within a population, we derive bounds on the two measures in two scenarios: with only
the number of allelic types fixed, and with the number of allelic types and the largest allele frequency fixed. Section 4 proceeds similarly, but for
ASD measures computed between populations. In Section 5, we illustrate the mathematical results in an extensive data analysis, demonstrating
that the mathematical bounds on ASD measures can assist in explaining features observed in empirical computations of the dissimilarities in
population-genetic data. The paper concludes with a discussion in Section 6.

2.1. Definitions

Following Liu et al. (2023), we consider two variants of the ASD concept, which we denote by D, and D,. For D, “allele-sharing” for two
diploid individuals is interpreted as the number of shared elements in their sets of alleles. D, then uses 1 minus the normalized count of the shared
alleles as the dissimilarity. Consider a locus with four distinct alleles, A, B, C, and D, the minimum number required so that all possible cases
for diploid genotypes exist. Two individuals both with genotype AB have 2 alleles shared, and D, = 0. An individual with genotype AB and an
individual with genotype AC have 1 shared allele, namely A, and D, = %

D, instead considers alleles individually, evaluating the fraction of pairs of alleles, one from the first individual and one from the second, that
are distinct. For two individuals with genotype AB, D, = %: among the four possible pairs of alleles — (A,A), (A,B), (B,A), and (B,B), where the
first entry in the pair represents an allele from the first individual and the second entry is an allele from the second — two of four contain distinct
alleles. An individual with genotype AB and an individual with genotype AC have D, = %.

Consider a locus with I > 2 allelic types, and suppose the allele frequencies in a population are p = (py, p,, ..., p;), where p; represents the
frequency of allele i. The frequencies satisfy 0 < p; < 1 for all i, and ZLI p; = 1. Without loss of generality, let p; = M represent the largest
entry in the allele-frequency vector (p,, p, ..., p;). When we consider allele-frequency vectors in two populations, we let population 2 have allele
frequencies q = (¢;, 45, ..., q7), satisfying 0 < ¢; < 1 for all i, and Z{:] g; = 1. We define

1 1

3 t

o =2 r m= 24
i=1 i=1

for t =1,2,3,4, where 6, = 7; = 1. We also define

I
Pu= Y, P
i=1

where (¢,u) is equal to (1, 1), (1,2), (2,1), or (2,2).

We denote the dissimilarity D between two individuals within the same population with allele-frequency vector p by D*(p); here, D is understood
to refer to one of the two dissimilarities, D, or D,. We denote the corresponding dissimilarity between two individuals from different populations
with allele-frequency vectors p and q by D’(p, q). We often drop the arguments for convenience.

2.2. Review of ASD mathematical results

In Liu et al. (2023), we studied a probabilistic model in which individuals are randomly sampled from allele-frequency distributions and D,
and D, are computed. The expected value of D{(p) satisfies

]E[D'l”(p)] =1-20, 4203 — 04. (€8]
For I =2, substituting p, = 1 — p; so that o, = p| + (1 — p; Y, Eq. (1) becomes E[DY(p)] = 2p; — 4p] +4p? —2p}. We also have
E[Dy(p)] =1~ 0y, (2)

and for the I =2 case, Eq. (2) simplifies to E[Dy ()] =2p,(1 - p)).
For the between-population dissimilarity D’(p), we obtain

E[D)(p, @] = 1= 2p1; + poy + p12 = P22 &)
E[D(p, @] =1-py;. “4)
Egs. (1), (2), (3), and (4) correspond to Egs. 3, 9, 16, and 22 of Liu et al. (2023).
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2.3. Review of majorization theory

We recall some results from majorization theory that will assist in finding bounds on ASD statistics. Majorization describes partial orderings on
vectors with a shared sum.

Definition 2.1 (Majorization, 1.A.1 of Marshall et al. (2010)). Vector x € R" is said to majorize vector y € R” if, when the components of x and y
are each rearranged in non-increasing order, (i) fo:] xX; = Zf.‘zl y;forall k =1,2,...,n—1; and (ii) Y|_, x; = Y, ;. Equivalently, y is said to be
majorized by x.

If x majorizes y, then we write x > y. Functions that preserve majorization order are said to be Schur-convex.

Definition 2.2 (Schur-convexity, 3.A.1 of Marshall et al. (2010)). A function f : R" — R is said to be Schur-convex if x >y implies f(x) > f(y). The
function is strictly Schur-convex if x >y and x # y implies f(x) > f(y). A function f is Schur-concave if —f is Schur-convex and strictly Schur-concave
if —f is strictly Schur-concave.

Theorem 2.3 (Schur convexity condition, 3.A.4 of Marshall et al. (2010)). Let T C R be an open interval and let f : 1" — R be a continuously
differentiable function. Function f is Schur-convex if and only if f is symmetric in its n arguments and for all (i, j) with 1 <i,j < n,

Jaf of
(xi_xj)<0_)ci_6_)cj> 20

Further, if equality requires x; = x;, then f is strictly Schur-convex.
Similarly, f is Schur-concave if and only if f is symmetric in its n arguments and for all (i, j) with 1 <i,j <n,
(x; — x;) <ﬂ - ﬂ) <0.

ox;  0x;

If equality requires x; = x;, then f is strictly Schur-concave.

Denote the unit (I — 1)-simplex by 4’~!:

1
Zp,-=1,p,->0foralli}.

i=1

Al = {(Plal’z»-wpl) eR!

Proposition 2.4 (Majorization inequality for a unit simplex, Section 2.2 of Aw and Rosenberg (2018)). For dll vectors p in the unit (I — 1)-simplex A'~1,

111
| 1,0,...,0).
(I T 1)<p<( )

Proposition 2.5 (Majorization inequality for vectors in the simplex, with a specified value of the largest entry; see the proof of Theorem 3.9 of Aw and
Rosenberg (2018)). Let p be a vector of length I chosen within the simplex, with largest entry equal to M; that is, p € A'~!, where

A"l—l - {(plvp27""pl)e Al—l)pl sz > . Zva P = M}

Then
1-M 1-M 1-M 4
R s yeens <p<(M,M,.. . M,1-(IM"]-1)M,0,0,...,0).
( -1 T1-1 1—1) P (M1 =D )
Here, the left-hand vector has I — 1 entries equal to II_T";' The right-hand vector has [M~!] — 1 entries equal to M followed by an entry
of 1 — (JM~!'] — )M and zeroes for the remaining entries. For convenience, we write p,,, = (M,...,M,1 — ([M~'] — )M,0,...,0) and
Poax = (M, % s %), noting that because we will be working with Schur-concave functions, the smallest element in the majorization order

becomes the “maximum.” Note that the subscripts “min” and “max” respectively denote the vectors that minimize and maximize the value of the
Schur-concave function.

Theorem 2.6 (Rearrangement inequality, Theorem 368 of Hardy et al. (1952)). Consider two sets of I real numbers a; > a, > -+ > a; and
by > by >+ > by. For each permutation by, by, - » bo(ry Of by, by, ..., by,

ayby +ayb;_;+ - +a;b < alb(,a) + a2bo'(2) + e+ a,bc([) <apby+ayby + - +a;b;.

3. Mathematical constraints on within-population dissimilarity

Using Egs. (1) and (2), we consider two sets of mathematical constraints on the within-population dissimilarity measures E[D{’] and E[D}’].
First, fixing the number of allelic types I but permitting the allele-frequency distribution to be arbitrary, we consider general bounds as functions
of I. Second, because the largest allele frequency M might impose further restrictions on the allele-frequency distribution, we consider the bounds
when fixing both I and M.
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Fig. 1. Range of E[D{] and E[D}] as functions of the number of allelic types I when the allele-frequency vector is permitted to be arbitrary, as stated in Theorems 3.2 and 3.6.

3.1. Bounds on E[D{’] when the number of allelic types I is fixed

Let ]E[D‘l”] be a function of p = (p, p,, ..., p;) following Eq. (1), where p € A/~!, the standard (I — 1)-simplex. Denote ]E[D'l”] by f(p).

Lemma 3.1. f(p) = E[D’], as a function of p € A1) is strictly Schur-concave.

The proof of the lemma appears in Appendix A. Using the strict Schur-concavity of the function f(p) = E[D{’] from Lemma 3.1, we arrive at
the following theorem.

Theorem 3.2. Suppose without loss of generality that p, > p, > --- > p; for p=(p;,p,,...,p;)- Then

w 2 2 1
0<E[D1]<1_7+ﬁ_ﬁ
Equality at the lower bound is reached if and only if p; = 1 and p; = 0 for 2 < i < I. Equality at the upper bound is reached if and only if p; = ]7 for
1<i<I.
Proof. By Proposition 2.4, p,,, = (%, % . %) is majorized by all p € 4’~!, and p,y;, = (1,0,...,0) majorizes all p € 4’~'. Because f(p) = E[DY]
is strictly Schur-concave by Lemma 3.1, by definition of strict Schur-concavity (Definition 2.2), f(py.y) = f(p) for all p € A’ and f(p.y,) < f(p)
for all p € 4/~1. Therefore,

2
max E[D{]= f(Pma) =1 - TtE
min E[D‘f)] = f(pmin) = 0»
with equality if and only if p lies at the specified points. []

In the simplest case of I = 2, we find that IE‘,[D‘I”J is maximized for (p, p,) = (%, %), with IE][D‘I”] = % It is minimized for (p;, p,) = (1,0), at which
]E[D'l” 1=0.

The relationship between the upper bound on E[D{’] and [ is shown in Fig. 1. The figure shows a strictly increasing sequence, as is clear by
noting that the derivative of the upper bound of IE[D{’] as a function of [ is (21 2 — 41 +3)/I*, a strictly positive function for I > 2. As I — oo, this
upper bound approaches 1.

3.2. Bounds on E[D}’] when the largest allele frequency is fixed

If the largest allele frequency M is fixed, then a tighter constraint is imposed on the range of values that E[D{’] can take. To derive this
constraint, we use Proposition 2.5.
Theorem 3.3. Suppose p, > p, > --- > p;, and suppose p; = M is fixed, } <M< 1 Let L= % and R=[M~']-1. f(p) = ]E[D']”] =1-20,+203—04
is bounded by

S Prin) < E[DY] < f (Prax)-

Equality with the lower bound is achieved if and only if p = ppy, = (M,...,M,1 — ([M~1] = 1)M,0, ...,0), producing f(Pyy,) = | — RCM? —2M?> +
M*) —2(1 — RM)? +2(1 — RM)® — (1 — RM)*. Equality with the upper bound is achieved if and only if p = Py = (M, % s %), producing

FPma) =1 —2M2 +2M3 — M* — (I - 1)2L? - 2013 + L%).
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Fig. 2. Bounds of expected dissimilarities for 7 =2 to 9 allelic types when the largest allele frequency is fixed to be M, as stated in Theorems 3.3 and 3.7. (A) E[D{]. (B) E[Dy].
The solid line corresponds to the upper bound, and the dashed line corresponds to the lower bound, with lower bounds for different I values overlapping.
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Fig. 3. Area of the permissible region for expected dissimilarities for I = 2 to 60 when the largest allele frequency is fixed to be M and M ranges from % to 1, as stated in
Propositions 3.4 and 3.8.

The proof is straightforward: by Proposition 2.5, ppin > P > Pmax for all p € 4/~1. Because f is strictly Schur-concave (Lemma 3.1), by the
definition of Schur-concavity (Definition 2.2), f(Puin) < f(P) < f(Pmay) for all p € 47-!, with the appropriate equality conditions.

In the I = 2 case, there is a single choice for p, and the two bounds coincide. For each I from 2 to 9, Fig. 2 plots the region specified by the
theorem, illustrating that as I increases, the size of the permissible region grows.

The vector p that produces equality of the lower bound of E[D{’] given M is exactly the same as the one that minimizes the heterozygosity

given I and M; similarly, the vector that produces equality of the upper bound of E[D{’] given M is the vector tht maximizes heterozygosity given
I and M (Reddy and Rosenberg, 2012).

Proposition 3.4. With fixed I, the region bounded by the upper and lower bounds on E[D'’] as a function of M has area

1

19 31 4 2 11 3 1
SppeiI) = = — —— + —— — —— — - + . 5
(D = 35 = 357 512 513 ; [30(1'— D2 10G—13  5G —1)* ®

The proof appears in Appendix B. Letting I — oo in Eq. (5), noting that the Riemann zeta function satisfies {(2) = X2, 1 /2 = =*/6,
¢B)=Y2,1/i* ~ 1202057, and {(4) = X2 1/i* = z*/90, the area approaches

Seipn () = 35 — SR+ () - 1L
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Fig. 4. Bounds for ]E[D’l’] and ]E[D’z’] for I =2 to 4 when two populations share the most frequent allelic type. The frequencies of the most frequent allelic type are fixed to be
M, and M, in the two populations. (A) E[D!], lower bound for I = 2. (B) E[D!], lower bound for I = 3. (C) E[D’], lower bound for I = 4. (D) E[D!], upper bound for I = 2.
(E) E[D?], upper bound for I =3. (F) E[D}], upper bound for I =4. (G) E[D}], lower bound for I =2. (H) E[D}], lower bound for I = 3. (I) E[D}], lower bound for I =4. (J)
E[Dg], upper bound for I =2. (K) ]E[Dg], upper bound for I =3. (L) ]E[Dg], upper bound for I = 4. Bounds for ]E[Df] follow Theorem 4.2. Bounds for E[D’;] follow Corollary 4.6.

The lower bound for E[D!] is loose if M, < % or M, < % The lower bound for E[D}] if M, > % and M, > %, the upper bound for E[D?], and the bounds for E[D}] are strict.
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Fig. 6. Violin plots of E[D“] in human population-genetic data; 30 populations with sample size larger than 15 are considered at 630 loci, so that each panel contains
30 x 630 = 18,900 data points. Population-locus combinations are grouped by values of I; loci with / > 14 are not shown. Only half of each violin is depicted. (A) Theoretical
E[DY] (Eq. (1)). (B) Theoretical E[DY] (Eq. (2)). (C) Empirical E[D{]. (D) Empirical E[DY']. “Theoretical” values are calculated based on the allele frequencies in a population,
and “empirical” values are obtained by averaging across all pairs of individuals in the population. The permissible regions for E[D{’] for arbitrary allele frequencies (Theorem
3.2) appear in the background in panels (A) and (C); the permissible regions for E[D}’] (Theorem 3.6) appear in panels (B) and (D).
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The area of the region is plotted as a function of I in Fig. 3.
3.3. Bounds on E[DY’'] when the number of allelic types I is fixed

Bounds on E[DJ'] can be obtained similarly to those on E[D}']. We write E[DY] as a function g(p) following Eq. (2), where p € 4/~!. The
functional form E[D}] = 1 - o, admits known results for the homozygosity o,.

Lemma 3.5. g(p) = ]E[D;’J, as a function of p € A'~!, is strictly Schur-concave.
The proof of the lemma follows directly from the strict Schur-convexity of homozygosity o, (Aw and Rosenberg, 2018, p. 720). As a function
of p, g(p) = 1 — 65, so that g(p) is strictly Schur-concave by Definition 2.2.

Theorem 3.6. Suppose without loss of generality that p, > p, > --- > p; for p=(p;,p,,....p;). Then
1
OSEDYI< 17

Equality at the lower bound is reached if and only if p; = 1 and p; = 0 for 2 < i < I. Equality at the upper bound is reached if and only if p; = % for
1<igI.

Proof. Using the strict Schur-concavity of function g, the proof follows that of Theorem 3.2. We obtain
1
max B[DY] = g(Pmax) = 1 — T
min E[DY] = g(Pmin) = 0,
with equality if and only if p lies at the specified points. []
In the I = 2 case, we have a maximum value of IE[DZ“’J = % if and only if (p;,p,) = (%, %) and a minimum value of IE‘,[DZ’”] = 0 if and only if
P1,p2) = (1,0).

The relationship between the upper bound on E[DY] and I appears in Fig. 1. It is a strictly increasing sequence, and as I — oo, the upper

bound approaches 1. Note that for I > 2, the upper bound on E[DY], 1 — %, strictly exceeds the upper bound on E[D{], 1 - % + ,% - 1L3 » s
A-H-0-24+3-D)=U-12/I>0.
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Fig. 7. The relationship between the within-population allele-sharing dissimilarity IE[D*] and the largest allele frequency M in empirical data. The plot considers 30 populations
with sample size larger than 15 and 10 loci with a number of distinct alleles equal to 6, a total of 30 x 10 = 300 population-locus combinations. (A) Theoretical ]E[D’l"] (Eq. (1)).
(B) Theoretical E[D}] (Eq. (2)). (C) Empirical E[D{]. (D) Empirical E[DY]. “Theoretical” values are calculated based on the allele frequencies in a population, and “empirical”
values are obtained by averaging across all pairs of individuals in the population. The permissible region for E[D{] in relation to M (Theorem 3.3) appears in panels (A) and
(C); the permissible region for E[DY] in relation to M (Theorem 3.7) appears in panels (B) and (D).

3.4. Bounds on E[DY'] when the largest allele frequency is fixed

The bounds on E[D}] = 1 - ¢, when p; = M restate known bounds on o,.
Theorem 3.7. Suppose p; > p, > -+ > p;, and suppose p; = M is fixed, l, SM<LLet L= % and R=[M~'] - 1. gp) = E[DY1=1-o0, s
bounded by

EPin) < EIDY] < g(Pmay)-

Equality with the lower bound is achieved if and only if p = Py, = (M, ..., M,1 —([M~'] = DM,0, ...,0), producing g(p,) = 1 — RM?* — (1 — RM)?.

Equality with the upper bound is achieved if and only if p = py. = (M, % vy %), producing g(pp,) = 1 — M* — (I = 1)L2.

The theorem is a restatement of Theorem 2 in Reddy and Rosenberg (2012), which provided the bounds on o, for fixed I and M. In the I =2
case, the upper and lower bounds coincide. The upper and lower bounds are achieved at precisely the same allele-frequency vectors that achieve
the upper and lower bounds on E[D{’].

The relationships between the lower and upper bounds of E[D{] and E[D}] and the frequency M appear in Fig. 2. Both bounds of E[D}]
exceed than those of E[DY], as is clear by noting that 1 — 20, + 203 — 04 = E[D'] = E[DY] - Zi’:l (1 —p)* < E[DY]=1-o0,.

Proposition 3.8. With fixed I, the region bounded by the upper and lower bounds of E[DY'] as a function of M has area

~

2 2 1
Sppe)=2-=-Y — . 7
ey =3 =37 &33i-1)2 v
As I - oo, the area approaches
2 1 2
o == _--¢Q2)==-—=~=0.11 .
SEpw)(c) 3 34( ) T 0.118355 ®

124



X. Liu et al. Theoretical Population Biology 166 (2025) 116-137

A A, B A,
1.0
0.60 1.0 0.60
3 “EQ" 0.8 E«
2 045 T o 0as U
Hos 5 Q s
S 5 Woe s
= c © c
5 3 - :
go4 H ® 2
£ 030 % go4 030
2 < 3
02 S 5 S
< 0.2
0.0 015 015
10 0.0
0.8
=L o.00 0.00
0.0 0.0
c A, D A
10
0,60 10 0.60
0.8 _ _
2 0.8 an
e g g
Q 045 W = 045 W
o 5 g 5
% = 706 =
g < ol c
= 3 9} 3
204 8 =
Q2 — Qo
5 030 5 go4 i 030
: § g
=) =)
02
015 o5
0.0~
1.0 TS
08
0.6
= o.0o

0.0 0.0

Fig. 8. The relationship between the between-population allele-sharing dissimilarity EE[D’] and the largest allele frequencies M, and M, of two populations that have the same
most frequent allelic type. The plot considers (320) =435 pairs of populations, both with sample size larger than 15, and 4 loci with number of distinct alleles equal to 5, showing
the 1,092 of 1,740 combinations for which the two populations have the same most frequent allelic type. Contour plots of the lower and upper bounds are shown in the xy-plane;
contour plots cover the whole plane, but for visual simplicity, only the triangle with M, > M, is plotted on the z axis. (A) Theoretical E[D?] (Eq. (3)) and contour plot of the
lower bound. (B) Theoretical IE)[D;] (Eq. (4)) and contour plot of the lower bound. (C) Empirical ]E[D’l’] and contour plot of the upper bound. (D) Empirical ]E[Dg] and contour
plot of the upper bound. “Theoretical” values are calculated based on the allele frequencies in two populations, and “empirical” values are obtained by averaging across all pairs
of individuals, one each from two populations. Each pair of populations is ordered such that M, > M,. The permissible region for FE[D?] in relation to M, and M, (Theorem 4.2)
appears in panels (A) and (C); the permissible region for ]E[D‘;] in relation to M, and M, (Corollary 4.6) appears in panels (B) and (D).

Proposition 3.8 and the calculation of SE[DZW](oo) restate Proposition 16 of Reddy and Rosenberg (2012) for the bounds on ¢,. The area of the
region is plotted as a function of I in Fig. 3.

4. Mathematical constraints on between-population dissimilarity
Next, we look at the bounds for the between-population dissimilarities, which involve the allele-frequency vectors of two populations, p and q.
4.1. Bounds on E[D’l’] when the number of allelic types is fixed

If the number of distinct alleles is fixed and the allele-frequency distributions can be arbitrary, then the bounds on both between-population
dissimilarity measures are trivial.

Proposition 4.1. Suppose without loss of generality that p; > p, > -+ 2 p; for p = (p,Ps. ... py), and no constraints are placed on q. Then

0<ED) <L

Equality at the lower bound is reached if and only if py = q, = 1 and p; = g; = 0 for 2 < i < I. Equality at the upper bound is reached if and only if p and
q satisfy p;q; =0 for 1 <i<I.
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Fig. 9. The relationship between the between-population allele-sharing dissimilarity IE[D”] and the largest allele frequencies M, and M, of two populations that do not necessarily
have the same most frequent allelic type. The plot considers (320) =435 pairs of populations, both with sample size larger than 15, and 4 loci with number of distinct alleles equal
to 5, a total of 1740 combinations. Contour plots of the lower and upper bounds are shown in the xy-plane; contour plots cover the whole plane, but for visual simplicity, only
the triangle with M, > M, is plotted on the z axis. (A) Theoretical ]E[Df] (Eq. (3)) and contour plot of the lower bound. (B) Theoretical ]E[Dg] (Eq. (4)) and contour plot of the
lower bound. (C) Empirical E[D?] and contour plot of the upper bound. (D) Empirical E[D}] and contour plot of the upper bound. “Theoretical” values are calculated based on
the allele frequencies in two populations, and “empirical” values are obtained by averaging across all pairs of individuals, one each from two populations. Each pair of populations
is ordered such that M, > M,. The permissible region for ]E[D’l’] in relation to M, and M, (Theorem 4.3) appears in panels (A) and (C); the permissible region for ]E[Dg] in
relation to M, and M, (Theorem 4.5) appears in panels (B) and (D).

Proof. For a pair of individuals, one from population 1 and one from population 2, D’l’ e {0, % 1}. Hence, as a function of allele-frequency vectors,
we know 0 < IE[D’I’] <1

We consider the equality condition E[D’l’] = 0. For a pair of individuals, D’l’ = 0 if and only if both individuals have exactly the same diploid
genotype. IE[D?] = 0 requires that all pairs of individuals, one from one population and one from the other, possess the same diploid genotype. If
either population possesses at least two distinct alleles with nonzero frequency, then the probability is positive that Dll’ > 0 for a pair of random
individuals, one from one population and one from the other, so that E[D?] > 0. We conclude that if ]E[D’lj] =0, then two populations must have
the same single allele. With p; > p, > --- > p;, it follows that py =¢; =1 and p, =¢; =0for 2 <i < 1.

For the equality condition E[D?] = 1, writing E[D?] = 1-Y, pig;= X, pia;(1-p)(1—g,), we find that E[D?] = 1 implies S g+ Y, pia(1-
p;)(1 —g;) =0, from which we conclude that the non-negative p; and ¢; bounded above by 1 must satisfy p;q; =0 for all i. []

In the case of I =2, E[D’l’] is minimized for p = q = (1,0), and maximized for p = (1,0), q = (0, 1).
4.2. Bounds on ]E[D’l’] when the largest allele frequencies are fixed

We next consider scenarios in which the largest allele frequency is fixed in both populations. We first investigate the bounds on IE[D’I’] in the
case that the same allelic type has the largest frequency in both populations.

Theorem 4.2. Suppose p; = max{p,,p,,....p;} and q; = max{q;,q. ..., q; }. Suppose without loss of generality that p, > p, > --- 2 p;. (D) If p; = M,
and q, = M, are fixed, then

M, + My — 4M M, + 2M? M, + 2M, M3 = 2M} M3 < E[D?] <1 —2M, M, + MM, + M\ M; - M} M;.

(i) Equality with the upper bound is achieved if and only if for all i, 2 < i < I, p; = 0 or ¢; = 0. (iii) Equality with the lower bound is achieved if and only
if My >3, My > 1, and (py,q0) = (1= My, 1= M),
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Fig. 10. Within-population allele-sharing dissimilarity in relation to theoretical heterozygosity E[DY’]. The plots consider 7 geographic regions and 53 populations, for a total of
7% 783 = 5,481 points in panels (A) and (B), and 53 x 783 = 41,499 points in panels (C) and (D). (A) Theoretical E[D{] and E[DY] for regions (Eqgs. (1) and (2)). (B) Theoretical
E[D{] and E[DY] for populations (Egs. (1) and (2)). (C) Empirical E[D{] and E[DY] for regions. (D) Empirical E[D{] and E[DY] for populations. “Theoretical” values are
calculated based on the allele frequencies in a population, and “empirical” values are obtained by averaging across all pairs of individuals in the population.

The proof appears in Appendix C. Note that if M; < % or M, < %, we have not obtained strict inequalities; the bounds in the theorem hold,
but the lower bound is not the strictest possible inequality. The bounds in the theorem are depicted in Fig. 4A-F.

For a general scenario in which two populations might have different allelic types for their most frequent allele, we also obtain loose inequalities.
We proceed by first bounding IE[D’I’] in relation to ]E[D’z’], then deriving bounds for IE[D?] based on the bounds we obtain for IE[D’;] in Section 4.4.

Theorem 4.3. Suppose max{p,,p,,....p;} = M| and max{q,,qs, ...,q;} = M,. Suppose without loss of generality that p, > p, > --- > p;. Then
E[D}] - I M, (1 - M))M,(1 - M,) < E[D}] < E[D}].

The proof appears in Appendix D. The bounds in the theorem are depicted in Fig. 5A-F. Together with the lower and upper bounds for E[Dg]
in Section 4.4, we are able to obtain a lower bound and upper bound for ]E[D’l’].

4.3. Bounds on ]E[Dg] when the number of allelic types is fixed

As we observed with IE[D’I’], the bounds on E[Dg] are trivial when the number of distinct alleles is fixed and the allele-frequency distribution
can be arbitrary.

Proposition 4.4. Suppose without loss of generality that p, > p, > -+ > p; for p = (py,ps. ..., p;), and no constraints are placed on q. Then

0<E[D} < 1.
Equality at the lower bound is reached if and only if py = q, = 1 and p; = q; = 0 for 2 < i < I. Equality at the upper bound is reached if and only if p and
q satisfy p;q; =0 for 1 <i<I.

Proof. We have E[DS]=1-p;,,and 0<p;; = ¥, pig; < X,_; p; = 1, so that 0 < E[D?] < 1.

The equality condition E[Dg] = 0 holds if and only if p;; = 1; p;; = 1 implies Z,.I:] Piq; = Z‘.IZI p;, from which Z‘.IZI pi(1—g)=0and g, =1 for
each i for which p; > 0. Symmetrically, Zi’=1(1 —p;j)g; =0 and p; = 1 for each i for which ¢; > 0. We conclude that for all i, (p;, ;) = (1,1) or (0,0).
Because p; > p, > -+ > p;, we have (p;,¢;) = (1,1) and (p;, ¢;) = (0,0) for 2 <i < I.

The equality condition E[D’z’] =1 holds if and only if p,; =0, so that p,q; =0 for alli. [

For I =2, E[D’z’] has the same minimum and maximum as IE[D’I’]: p =q = (1,0) for the minimum and p = (1,0), q = (0, 1) for the maximum.
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Fig. 11. Distributions of empirical values of within-region D, averaged across all 783 loci for pairs of individuals in human population-genetic data. For each region, mathematical
bounds for E[D{] are calculated from allele frequencies within a region according to Theorem 3.3, averaging across loci. (A) Seven regions displayed together. (B) Africa. (C)
Middle East. (D) Europe. (E) Central/South Asia. (F) East Asia. (G) Oceania. (H) Americas.

4.4. Bounds on IE][D’;] when the largest allele frequencies are fixed

Unlike for D’]’, we obtain strict bounds IE[DIZ’] in the general scenario in which two populations may have different allelic types for the most
frequent allele, with frequencies M, and M, respectively. We recall the rearrangement inequality (Theorem 2.6) and use a related Lemma E.3 in
Appendix E.

Theorem 4.5. Suppose max{p,,p,,...,p;} = M, and max{q,.q,, ....q;} = M,. Suppose without loss of generality that p, > p, > --- > p;.
@ E[Dg] as a function of p and q, denoted by ¢(p, q), is bounded by

£(p..q,) < B[D)] < 2(p*. q"),

for particular vectors p,, q,, p*, and q*.
(ii) Equality at the lower bound is reached if

M, fori:l,...,[Ml“]—l,
P =1=(M =DM, for i=[M ], ©)
0, for i=[M " +1,....1,
and
M,, for i=1,...,[M2‘1]—1,
4 =1 -(M;'1-DM,,  for i=[M;'], 10)
0, for i=[M;"1+1,....1.
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Fig. 12. Distributions of empirical values of within-population D, averaged across all 783 loci for pairs of individuals in human population-genetic data. For each region,
mathematical bounds for E[Dy] are calculated for each population from allele frequencies within the population according to Theorem 3.3, averaging across loci. Bounds are then
averaged across populations within regions. (A) Seven regions displayed together. (B) Africa. (C) Middle East. (D) Europe. (E) Central/South Asia. (F) East Asia. (G) Oceania. (H)

Americas.

The minimum value is

1—([Mfl] - DM M, - aM,, if [Mfl] < [MZ’IL
P Q) =1—- (M1 = )M M, —ab,  if [M;']=[M;"],
L= ([M;" = DM M, — Mb, if [M71] > [M]'],

where a=1-([M;'] - )M, and b=1-([M;'] - )M,.
(iii) Equality at the upper bound is reached if p* = p,. (Eq. (9)), and

0, fori=1,..,1-[M;",
g =y1-(M;"1=DM,,  for i=T-[M;"]+1,
M,, for i=T—[M;"1+2,...,1.

The maximum value is
1
1 —ab,
1—aM, - Mb,
L= (M7 + [M;'] =T =2)M M, — aM, — M b,

£p*.q*) =

if M7+ TM; <,

if M7+ M =T+1,
if M7+ M7 =T1+2,
if M7+ M > T +2.

1)

12)

The proof of the theorem appears in Appendix E. The bounds in the theorem are depicted in Fig. 5G-L. The bounds also appear in the loose
bounds for E[D’l’] in Theorem 4.3 in the same setting, with lE[D’l’] bounded above by the upper bound on IE[D’Z’] and below by the lower bound

on ]E[D’z’] minus some additional terms.

As a corollary, we obtain the bounds for the specific scenario in which the same allelic type is most frequent in the two populations.
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Corollary 4.6. Suppose p; = max{p;,p,,...,p;} = M, and ¢, = max{q,.q,, ....q;} = M,. Suppose without loss of generality that p, > p, > -+ > p;.
@) ]E[D’z’] as a function of p and q, denoted by #(p, q), is bounded by
(P, 4,) S E[D'Z’] <. q),

for particular vectors p,, q,, p*, and q*.
(ii) Equality at the lower bound is reached if p, follows Eq. (9) and q, follows Eq. (10). The minimum value follows Eq. (11).
(iii) Equality at the upper bound is reached if p* = p,. (Eq. (9)) and

M,, for i=1,
o, or i=2,...,0—[M:']+1,
q; = 4 f ‘ L 13)
1= ([M;"1 =DMy, for i=T1—[M;'7+2,
M,, for i=T—[M;"1+3,...,1.
The maximum value is
1- M, M,, if M7+ M <T+1,
ot ") = 1 — MM, — ab, if (M7 + M7 =T1+2,
’ 1 — MM, —aM, — Mb, if [M7 + M =1+3,

1=(M" + M =T =2)M M,y —aM, — Mb,  if [M7']+[M;"]>1+3.

The corollary is proven in Appendix F. The bounds in the theorem are depicted in Fig. 4G-L.
5. Data analysis

To investigate how the mathematical bounds with respect to the largest allele frequency affect the values of allele-sharing dissimilarity measures
in an empirical setting, we compute the dissimilarities in a dataset of multiallelic loci in human populations.

5.1. Data

We analyze microsatellite genotypes in the H1048 subset of the HGDP-CEPH panel, considering 1048 individuals in 53 populations, typed at
783 microsatellite loci (Rosenberg et al., 2005; Rosenberg, 2006). For some analyses, we restrict attention to 30 populations with sample size
strictly larger than 15, considering a total of 813 individuals. For each locus, individuals with missing data are removed prior to the calculation
of genetic dissimilarities for the locus. The dataset is the same as in the analysis of (Liu et al., 2023).

5.2. Within-population dissimilarities

For each population and each locus, we compute both the theoretical expectation and the empirical mean of D and D). The number of
population-locus combinations is 30 X 783 = 23,490. The theoretical expectation of D{’ is computed by first calculating the allele frequencies of a
population and then applying Eq. (1). The empirical mean of D}’ is computed by enumerating all pairs of individuals in the population, calculating
their Di” dissimilarity, and averaging over all pairs. For simplicity of notation, we refer to theoretical E[D‘l" ] and empirical IE[D'I"]. The calculation
for Dz'” follows the same process, with Eq. (2). The calculation of theoretical and empirical values follows Liu et al. (2023).

We classify each locus by the number of allelic types; considering I from 4 to 14, the number of population-locus combinations is 630 x 30 =
18,900, with a minimum count of 1 x 30 = 30 for I = 4 and a maximum count of 119 x 30 = 3,570 for I = 10. I = 14 has a count of 47 x 30 = 1,410.
The 153 x 30 = 4,590 combinations with a large number of distinct alleles (/ > 14) are not shown. The theoretical values of E[D‘l"] calculated by
Eq. (1) from the allele frequencies in the data are visualized in violin plots alongside the theoretical bounds from Fig. 1 in Fig. 6A. Violin plots for
the theoretical ]E[D’2” ] (Eq. (2)), empirical ]E[Di”], and empirical E[Dg’] are presented in the remaining panels in a similar manner.

The theoretical E[D{’] values of populations in the dataset strictly adhere to the mathematical bounds we derived for each I (Fig. 6A). Similarly,
the theoretical E[D}’] values also adhere to the mathematical bounds (Fig. 6B). Data points are concentrated toward the upper bound, a value that
can lie substantially below 1. For the empirical E[D{’] and E[DY’], computed from empirical pairwise comparisons of diploid individuals rather
than from allele frequencies, the plots are similar (Fig. 6C and D). For the empirical values, it is not required that a population-locus computation
produce a dissimilarity that lies below the upper bound; nevertheless, nearly all data points do lie below the upper bound (18,896,/18,900 for
E[D"], 18,900/18,900 for E[D¥]).

With the largest allele frequency M held fixed, we illustrate the theoretical and empirical dissimilarities in relation to M for the case of I =6
(300 population-locus combinations) in Fig. 7. The theoretical dissimilarities strictly reside within the permissible region, tending to fill the space
toward the upper bound (Fig. 7A and B). The empirical dissimilarities generally lie within the permissible region, sometimes extending beyond it
(Fig. 7C and D). Data points for other values of I follow similar patterns.

5.3. Between-population dissimilarities

We next calculate the theoretical and empirical ]E[D’l’] and ]E[D’Z’] for pairs of populations. Among the (320) X 783 = 340,605 combinations of
population pairs and loci, two populations share the most frequent allelic type in 169,970 (49.9%). We consider these pairs, visualizing the bounds
from Theorem 4.2 and Corollary 4.6, which provide the bounds in the scenario in which the two populations in a pair share the same most frequent
allelic type at a locus.

The theoretical IE[D’I’] is calculated by determining the allele frequencies of each population and then applying Eq. (3). For the empirical
IE[D’I’], we tabulate pairs of individuals, one from each population. We then compute their D’l’ dissimilarities and take an average across all pairs.

The process for E[D’z’] is similar, using Eq. (4). The outcomes for all (320 ) X 4 = 1,740 combinations for the 4 loci with I = 5 are considered in

130



X. Liu et al. Theoretical Population Biology 166 (2025) 116-137

Fig. 8 in a three-dimensional space, showing the 1,092 for which the most frequent allelic type is the same in the two populations and ordering
population pairs so that M, > M,. Comparable patterns are observed for other values of I.

As seen in the data analysis for within-population dissimilarities, the theoretical IE[D?] and IE[DZ] lie strictly within the space bounded by the
upper and lower bounds (Fig. 8A and B). Note that because we only have loose bounds for IE[D’IJ], more space exists between the data points
representing the theoretical E[D’l’] values and the mathematical bounds. E[D’z’] is bounded more tightly. For the empirical IE[D’I’] and ]E[D’z’], some
points fall outside the space demarcated by the bounds (Fig. 8C and D).

For the more general case, in which two populations need not have the same allelic type for the most frequent allele, we illustrate the bounds
obtained in Theorems 4.3 and 4.5 for all 340,605 combinations of a population pair and locus. The theoretical and empirical IE[D’I’] are computed
as before. Results for all (320) x 4 = 1,740 combinations with I = 5 appear in Fig. 9.

Most of the theoretical dissimilarities congregate within the central area of the permissible region (Fig. 9A and B). The permissible region is
generally larger than in the case in which the most frequent allelic type is the same for a pair of populations, as seen in Fig. 8. In the case of I =5,
the empirical mean dissimilarities all fall within the permissible range (Fig. 9C and D).

5.4. Allele-sharing dissimilarity and heterozygosity

A notable property of DY is that the expression for its expectation is exactly identical to the expression 1 — o, for the heterozygosity of a
population, as computed from its allele frequencies. We compare the theoretical and empirical allele-sharing dissimilarities to heterozygosity in
two ways. First, we compute the theoretical heterozygosity for each of the 7 geographic regions; this quantity is precisely E[D}’] for those regions.
Next, we compute the theoretical heterozygosity for each of the 53 sampled populations, the value of E[D}’] for the populations.

Fig. 10A plots the theoretical IE[D’I"] and IE[DZW] in relation to the theoretical heterozygosity IE[DZW] at the regional level, showing 7x783 = 5,481
points. The values of ]E[Dz‘”] follow the y = x line, as x and y values are equal. The values of ]E[D‘l”] lie below the y = x line, in accord with Theorem
4.3, which — by specifying that two populations have identical frequencies — can be seen to demonstrate that the theoretical IE[D}'] provides an
upper bound for the theoretical IE[D{’]. Similar results are obtained in Fig. 10B for the 53 X 783 = 41,499 data points at the population level.

Next, we examine the empirical E[D{’] and E[DY] in relation to the theoretical heterozygosity E[DS’], computing allele-sharing dissimilarity
by considering pairs of individuals in a region or population. Fig. 10C plots the 7x 783 = 5,481 data points at the regional level, and Fig. 10D plots
the 53 x 783 = 41,499 data points at the population level. In both panels, the empirical IE[D’I"] values are more variable than the theoretical IE[D‘I“]
values in Fig. 10A and B. The empirical E[D)’] values do not precisely equal the theoretical E[D}’] values, though the empirical and theoretical
values are quite similar.

5.5. Mathematical bounds in empirical allele-sharing dissimilarities

Visualizations of distributions of pairwise genetic dissimilarities between individuals have been important for understanding empirical genetic
differences, notably in human populations (Mountain and Ramakrishnan, 2005; Rosenberg, 2011). In Figure 5 of Rosenberg (2011), distributions
of pairwise genetic dissimilarities between individuals, as computed by D,, are presented in various computations.

We reproduce Figure 5B and C of Rosenberg (2011), illustrating how the distributions of empirical genetic dissimilarities are informed by
mathematical bounds. The calculation uses all 1,048 individuals and 53 populations in the data. In Fig. 11A, we show the empirical distribution of
allele-sharing dissimilarity between pairs of individuals within regions, averaging across all 783 loci and replotting Figure 5B of Rosenberg (2011).
In Fig. 11B-H, we show the empirical distributions within single regions, plotting them alongside mathematical bounds on E[D{’] for the region.
The bounds are calculated from the region-wise allele frequencies for a locus according to Theorem 3.3, then averaged across all loci to obtain the
mean lower and upper bounds.

In Fig. 12A, we similarly show the empirical distribution of allele-sharing dissimilarity between pairs of individuals within populations, averaging
across all 783 loci and replotting Figure 5C of Rosenberg (2011). In Fig. 12B-H, we show the empirical distributions of within-population
dissimilarities grouped by region, plotting them alongside mathematical bounds on E[D{] for single regions. The bounds are calculated from
population-wise allele frequencies for a locus via Theorem 3.3, then averaged across populations within a region and then across all loci to obtain
the mean bounds for a region.

Both in Fig. 11 and in Fig. 12, the theorem specifies a relatively narrow range for values of E[D’], dependent on the particular values of
the frequency M of the most frequent allelic type in the empirical data. Most of the probability mass lies between the lower and upper bounds.
Some empirical dissimilarity values lie outside the range specified by the bounds; it is not required that an empirical dissimilarity lie between
the bounds, as the bounds are obtained from an average of theoretical values across loci, whereas the empirical values are obtained for pairs of
individuals. Nevertheless, the plots suggest that the mathematical bounds specify informal constraints on the distribution of empirical values of
the allele-sharing dissimilarity in population-genetic data.

6. Discussion

Allele-sharing dissimilarities, computed theoretically as expectations based on allele-frequency distributions or empirically based on pairs
of individuals, have often been used for studying genetic variation in populations. We have shown that as a function of properties of allele-
frequency distributions, the range for expected allele-sharing dissimilarities is substantially narrower than the unit interval. Specifically, considering
dissimilarities D, and D,, we have obtained mathematical expressions for constraints on expected ASD within a population when the number of
allelic types is fixed (Theorems 3.2 and 3.6), as well as when the frequency of the most frequent allelic type is also fixed (Theorems 3.3 and
3.7). Additional mathematical results concern the area of the region bounded between the smallest and largest within-population ASD values as a
function of number of distinct alleles. This region increases in size with an increasing number of allelic types, converging to a value well below 1
(Propositions 3.4 and 3.8). We have also obtained corresponding expressions in between-population scenarios with the number of allelic types fixed
(Propositions 4.1 and 4.4) and additionally with fixed frequencies for the most frequent allelic type (Theorems 4.2, 4.3, and 4.5, and Corollary
4.6).

In illustrations of the mathematical results using data from human populations, we have found that empirical mean ASD values reflect the
theoretical expectations computed from allele-frequency distributions (Figs. 6-10). The mathematical bounds on ASD values in relation to the
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frequency of the most frequent allelic type suggest that ASD values are expected to vary in relatively narrow ranges within the unit interval; indeed,
empirical distributions of D, are quite constrained (Figs. 11 and 12). The mathematical results assist in explaining the relatively narrow ranges for
ASD values computed in worldwide human populations, as the frequency of the most frequent allelic type constrains the between-population ASD
values.

The bounds are meaningful beyond these computations. In particular, in between-population analyses, a larger range between the bounds
permits more variability in the dissimilarity across pairs of populations. Such variability can be relevant in applications that rely on distinguishing
the ASD values for different pairs of groups, as greater variability indicates a greater potential to distinguish values for different pairs. Theoretical
properties of methods such as neighbor-joining tree construction and multidimensional scaling that rely on dissimilarity matrices, and the effects
on these methods of the range between the bounds, can be explored more specifically.

This study follows a general approach of identifying mathematical bounds on population-genetic statistics in relation to other such statis-
tics (Rosenberg, 2025). In this approach, mathematical bounds are derived in order to understand the permissible range for a statistic in terms
of another statistic, or the joint permissible region. The bounds are then used to inform the interpretation of empirical values of the statistic.
In our application, the mathematical bounds contribute to explanations for several observations in human allele-sharing dissimilarities, including
increasing dissimilarities with an increasing number of allelic types (Fig. 6), inverse relationships of dissimilarities with the largest allele frequency
at a locus (Fig. 7), direct relationships of within-population dissimilarities with heterozygosities (Fig. 10), and narrow ranges for dissimilarity values
(Figs. 11 and 12).

We have considered two ASD measures, D,, which was used in the data example mimicking the analysis of Rosenberg (2011) (Figs. 11 and
12), and D,, which provides a generalization of heterozygosity (Fig. 10). For within-population computations, bounds are provided for both
dissimilarities. For between-population computations, however, for D,, mathematical analysis is more limited. Owing to simpler mathematical
expressions, tight bounds can be obtained for IE[DZ] in the between-population case. For D;, mathematical bounds in Theorem 4.2 are loose in the
case that M| < % or My < 1.

Limitations of the study include the fact that the constraints on the expected allele-sharing dissimilarity consider only the most frequent allelic
type. The frequencies of subsequent allelic types might impose constraints that might be of interest for future investigation, as occurs in various
other contexts (Garud and Rosenberg, 2015; Morrison and Rosenberg, 2023; Rosenberg, 2025). We also note that in our empirical analysis, we
average across all pairs of individuals, either within or between populations, to obtain the empirical IE[D]. The reuse of each individual in multiple
pairs violates the assumption that pairs are independent draws from the allele-frequency distributions, so that the empirical results do not quite
mimic the computation performed theoretically. The theoretical results assume that pairs of alleles within an individual are independently drawn
from the allele-frequency distribution — but empirically, the two alleles can be dependent due to inbreeding. The violation of the assumptions can
contribute to deviations of the empirical observations from the theoretical values.

Additionally, our mathematical expressions are for dissimilarity values computed based on a single genetic locus. In empirical studies such
as Rosenberg (2011), however, measures are typically calculated on multiple loci and averaged together. An explicitly multilocus analysis that
considers the constraints at multiple loci could provide further insight into the behavior of an empirical mean across many loci.
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Appendix A. Proof of Lemma 3.1

f() =1-20, + 203 — 0, is symmetric in the p; by construction, and all first partial derivatives % exist. By Theorem 2.3, to show that f is

Schur-concave, it suffices to show that (p, — pz)(% - %) <0 forall p e a-!,

doy doy

9o _ 903 _ 3,2 =4
We have FP =2p, o =3p], and . =4p|, so that

0 0
01— p2) (& - &> = (51 = )~ 40y — p) + 67 — P2) — 45 — P)]
op, op,
= —(py —p2)* [4 = 6(p; + p2) +2(p; + p2)* +2(p; +p3)] .

For 0 < x < 1, 4 — 6x +2x? > 0 with equality if and only if x = 1. Hence 4 — 6(p; + p,) + 2(p; + p,)> > 0 always holds for 0 < p; + p, < 1. We then
have (p; — pz)(% - %) < 0. By Theorem 2.3, f is Schur-concave.

To verify strict Schur-concavity, note that 4 —6(p; + p) +2(p; + p,)* = 0 requires p; + p, = 1, so that 4 —6(p; + p,) + 2(p; + p)> +2(p? + p2) > 0 for
all permissible (p,, p,): either p, +p, # 1 and 4 —6(p, + p,)+2(p +p,)> > 0, or p, +p, = 1 and 2(p, +p,)> > 0. We conclude that (p, —pﬁ(% - ﬂ) =0

implies p; = p,.

Appendix B. Proof of Proposition 3.4

The desired area is calculated by considering M in segments. For M € [}—_, ﬁ), [M~1'] = i. The area then equals
1 1 1
i-1
Stagpey(1) = / ) dM =Y / i) dM. a4
l M=7 i=2 I M=7
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The first term is
20-M)? 2(1-M)> =My
I1-1 -1y T -1)y»

1 1
/ fPmax) dM = / [1 —2M?+2M3 — M* -
M=% M=%

19 5 11 6 2
== - =+ = 15
30 3r * 612 5I3 * 514 (15

The second term is
1
= . 2 3 4
/ f(pmm)dM 2 / [1-G—-D2M?*-—2M° + M*)
m=1

=201 — (-~ DMP +2[1 - (i - DMP - [1 — (i - DM

~ z’: 12 = 72i + 199i — 33513 + 310i* — 150i5 + 30i°

P 304G — 14
19 31 3 1
S AT . - + 16
301 3012 513 5[4 Z [30(1 -1 10G-1)3  53G-1)* (16
Subtracting Eq. (16) from Eq. (15) in Eq. (14), we obtain the quantity in Eq. (5).
Appendix C. Proof of Theorem 4.2
First, for the upper bound, because Z,Lz p;=1- M, and Z;’I—z g; =1 - M,, Eq. (3) can be written
E[D?] = (1 - 2M, M, + MM, + M, M? - M*M?) + < 22p,q,+2p q,+2p,q —Zp > a”
I
= (1-2M M, + M}My + M{M; = MIM3) =Y pg; (2= p, - q; + pq;)
i=2
<1-2M M, + M{ M, + M, M} — M{ M.
The last inequality holds because 0 < p; < 1and 0 < ¢; <1 for alli=2,3,...,1,so that 2—p, —q; +p;q; > 0, p;q; > 0, and ZLZ p;iq;(2—p;—q;+p;q;) = 0.
Equality with the upper bound requires that for all i, 2 <i < I, p;q; = 0 That is, for all i = 2,3,...,I, p; =0 or g; = 0, so that allele 1 is the only
allele shared between populations.
Next, for the lower bound,
= 2(1=M)(1= M) + (1= M *(1= M) + (1= M)(1 - M,)* — (1- M, )*(1- M,)?
1 1 T T
- <—2 Zp,-q,- + Zp?qf + Zp,-qiz - Zp?q?)
I I 2
= Zp,q,u P+ Zp,q,(l —g)— (1= M)(1 = My)(M; + My) + Zp <Zp,) (2 q,>
i=2 i=2 i=2 i=2 i=2
1 1 1 I 2,1 2
<Y pa(t=p)+ Y pigi(1 = g) = (1= M)(1 = My) (M, + M) + (Z ) (Z ql) <2p‘> (Z q‘>
i=2 i=2 i=2 i=2 i=2 i=2
T I
=Y pifad —a) = My = Mp)] + Y ¢, [pi(1 = p) = M;(1 = M,)] (18)

1
[S]

i=2

N

The first inequality uses the fact that the p; and ¢; are all non-negative, so that (Z[.I:2 11,-)2(2[.1:2 @)’ = Z, o D; q2 The last inequality uses the fact
that p; < Ml, pi <1—Mj, g <M,, and ¢; <1 - M,. The function f(x) = x(1 — x) is nondecreasing for x € [0, 2), and one of M, and 1 — M| must
lie in [0, 5], so p; < M and p; < 1 — M, implies f(p;) < f(M,); analogously, f(g;) < f(M,).
Applying Eq. (17), we therefore have
b 2 2 2002
E[D}] > (1 -2M; M, + M} M, + M{M; — M{ M)
—2(1=M)(1=My) + (1= M)>(1=M,) + (1-M;)(1-M,)> — (1-M,)*(1-M,)*
=M, + M, —4M My +2M*M, +2M, M? —2M*M?.
Equality with the lower bound requires (Zfzz pi)2(2f=2 q‘-)2 = Zi’=2 pq’. Because p, > py > ... > py, this condition requires p, = 1 —p; = 1 — M|
and hence ¢, =1 - ¢q; = 1 — M,, making use of assumptions M, > 3 and M, > 1 Equality with the lower bound also requires that the expression

in Eq. (18) equal 0; allele-frequency distributions (p;, p,,p3,...,p;) = (M},1 — M,0,...,0) and (¢, 4,43, ..., 4q;) = (M, 1 — M,,0, ...,0) produce a
value of 0 in Eq. (18).

Appendix D. Proof of Theorem 4.3

We write IE)[D’I’ ] in the form
I I I I 17 I
ED)=1-2) pai+ ), piai+ ), pid; = D, pid; = 1= ) pidi = ), pi(1 = p)a;(1 = ).
i=1 i=1 i=1 i=1 i=1 i=1
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For the upper bound, because IE[D’I’] <1- Z‘.Izl Diq; = E[Dg], the upper bound of E[Dg] can also serve as a (loose) upper bound for E[D’f].

To obtain a loose lower bound, we must bound from above the quantity Zil:l pi(1 — ppg;(1 — ¢;) given max{p;,p,,....,p;} = M, and
max{q,q,,....q;} = M,. First, note that for p,,p,,...,p; with p; > p, > ...p; > 0 and Zilzlpi = 1, we have p;(1 - p;) > p;(1 — p;) for i < j.
This result follows because f(x) = x(1 — x) is maximized at x = l declining symmetrically around the maximum, and p; lies farther from % than
does p;; the claim is verified in two cases, p; > %, for which p; — % <= —pj, and p; <3 , for which 1 > =P <5 =D

It follows that for each i, p;(1 - p;) < M;(1 = M,) and ¢;(1 - g;) < Mz(l — M,), so that Zi:l pi(1 - p,)ql(l ql-) < IM{(1 - M))My(1 — M,).

Appendix E. Proof of Theorem 4.5

Theorem 4.5 states the bounds on IE[DZ] and gives sufficient conditions on the p; and ¢; at which the bounds are reached — given an upper
bound M, on the p; and an upper bound M, on the ¢; (also assuming Z,] b= Z,’ 1 9; = 1. The upper bounds need not occur at the same allele.

The proof proceeds by a series of lemmas. Informally, Lemma E.1 shows that for fixed a;, we can reduce the sum of products ¥~ by a
particular choice of the value of a specific frequency b, (if it is not already optimized).

1111

Lemma E.1. Suppose a collection of I > 2 fixed non-negative values a,, a,, ..., a; is given, with a; > a, > ... > a;. Suppose b,,b,, ..., b; are non-negative
values satisfying three conditions:

(1) monotonicity, by < by < ... < by;
(2) fixed total sum, Zi[=1 b; = B; and

(3) boundedness from above, b; < b* for all i = 1,2, ..., 1, where ? < b* < B.

Consider ¢ with 2 < ¢ < I and (I — ¢)b* < B. Suppose b, = b* for each i with ¢ < i < I, and suppose b, < min(b*, B — (I — ¢)b*). Then there exists a set
of values bﬂb;, ,b’I Wlth bl’. = b* for each i with ¢ < i < I, satisfying conditions (1), (2), and (3), such that b’f = mm(b*, B-(I- f)b*), and

1 1
Za,b Za,bi. 19)

i=1 i=1

Proof. For convenience, write s = min(b*,B - - f)b*), so that b’f =s5>0.Letb, <s= b’f. We have b; = b} = b* for each i with # <i < I. Let
x = b/, — b, a positive quantity representing the difference between the value we will place in the #th entry in our new sequence and the value in
the current sequence. Because Y’ i bi = Z, b =B,
£-1
x=b,—bs= Y (b= b)>0.

Let k be the uniq’ue index that satisfies Zf.:l' b; < x and ZLI b > x. We set the values of b] so that b} = 0 for each i with | < i < k-1,
b =b—(x— X' b), b = b, for k+1<i<¢—1,and b, = b* for £ <

Note that k < ¢ always holds. For contradiction, suppose k > 7. Then Z ;= in_ll b; + Zf.:; b; [(Zf lb’ )+ x| + Zl _¢ bi- We have
ZLKH b = Zi=f+1 = -6)b* < B; because Z b; = B, it follows that Z‘.=1 b, =B- Zilzf-H b; > 0. Next, because b, > b; for each i with
1 <i<? -1, wehave b, > 0. As a result, Z b = [(ZK ! b))+ x| + Z _{, b; > x + b, > x, contradicting the condition Z::ll
of k.

We have constructed a sequence of values ] that continues to satisfy the monotonicity, fixed-total-sum, and boundedness-from- above conditions.

; < x in the definition

(1) For monotonicity, b’=0for1 i<k-1, b Sbh<bh=bfork+1<i<e-1,0b, —bf 1 < bf<b and b, = b* = b} for £ +1 <i < I. (2) For
fixed total sum, ¥ 5 = (Xi-) b)) + b, + (T, b))+, + (Zi:fﬂ b)) =0+[b — (x = X4 b1 + (X! o b)) + (b[ +x)+ (Zi:f+1 b) = 2,.:] b, = B.
(3) For boundedness from above, b, = 0 <b*for1<ig<k-1, bj{ < by < b*, b;‘ =b<b,< b* fork+1<i<?-1,and b,f =b*for/<i<I.

It remains to show that Eq. (19) holds. We have
£-1

-1
Za,bl’ Za,b, <Z aib;> +agbl, - <Z a,-b,-> —azb,

i=1 i=1 i=1 i=1

-1
[Z a;(b) - b,.)] +a, (b, — by)

i=1

[kz_‘ia,-(o—b,-)] +ak[[bk - (x- Zb,-)] —bk] +apx

i=1

AR

| |
2
N
—_—
~U‘
+
=
|
M i |
5 2
.
h» I \g!
L7
kS
=
N———
|
o
S
S
=
~
M
=
N————

k=1 k=1
[Z(af - ai)b[] +(ay - ak)<x - b[>
i=1 i=1
<0.
In the last step, the inequality holds because k < # and the g; are monotonically decreasing, so that a, < q; forall i, 1 <i<?. [
Lemma E.2 is similar to Lemma E.1, but in the reverse direction. It shows that for fixed 4;, we can increase ZLI a;b; by a particular choice of

the value of a specific frequency b, (if it is not already optimized).
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Lemma E.2. Suppose a collection of I > 2 fixed non-negative values a,, a,, ..., a; is given, with a; > a, > ... > a;. Suppose by, b,, ..., b; are non-negative
values satisfying three conditions:

(1) monotonicity, by > by > ... 2 by;
(2) fixed total sum, ZLI b; = B; and

oundedness from above, b, < b* foralli=1,2,...,1, where = < b* < B.
(3) boundedness from above, b, < b* for all i = 1,2, ..., I, where 7 <b* < B

Consider £ with 1 < ¢ <1 -1 and (¢ — 1)b* < B. Suppose b; = b* for each i with 1 <i < ¢, and suppose b, < min(b*, B — (£ — 1)b*). Then there exists a
set of values b, b’z, ,b’, with b} = b* for each i with 1 < i < ¢, satisfying conditions (1), (2), and (3), such that b’f = min(b*, B—(¢ - 1)b*), and

I I
Zaib; > Za,bi. (20)
i=1

i=1

Proof. The proof is similar to that of Lemma E.1. Write s = min(b*, B = (/ — 1)b*), so that b, = s > 0. Let b, < s = b/,. We now have b, = b/ = b*
for each i with 1 i< 7. Let x = b’ — by, a positive quantity representing the difference between the value we place in the #th entry in our new

sequence and the value in the current sequence. Because Z[I:l b = Z[I:] b, = B,
I
x=b,—b,= Y (b;—b)>0.

i=£+1
Let k be the unique index that satisfies Zil:k w1 b < xand Zf=k b, > x. We set the values of b} so that b} = b* for 1 < i < 7, b = b; for
Z+1 <i<k—1,b =b —(x— Z{Hlb),and[;’—0foreachiwithk+1 i<lI.

We show k > 7Z. For contradiction, suppose k < ¢. Then Z, a1 D = Zf=k+1 b + ZL“I b = Zf=k+l b + [(Zi]=er1 b)) + x|]. We have
Z:f:lb Zf_lb* = (¢ — Db* < B; because Z b = B, it follows that Z,I b = B— Zf‘ll b; > 0. Next, because b, > b; for each i with
¢ +1<i< I, wehave b, > 0. As a result, 2, ka1 D = Zl a1 Di [(Zl e DD+ x] b, + x > x, contradicting the condition Zl —i41 D < x In the

definitlon of k.

The constructed sequence of values b,’. continues to satisfy the monotonicity, fixed-total-sum, and boundedness-from-above conditions (1) For
monotonicity, b;:b*—b’ for1<i<‘-1,0, >b/ b/+1_bf+|,b’ b[/bk > b, for/+1<i<k-1,and b} =0 for k+1<i<I.(2) For
fixed total sum, ¥'_ 8/ = (¥, 1b’)+b’ + (D + (B ) = (2 b)+(bf +x)+ (T, b) + b — (x = T, b1 +0 = B. (3) For
boundednessfrornabove bf_b* f0r1<z<f b; =b;, < b, < b* forf+l<:<k—1, bL by < b*, andb;:0<b* fork+1<i<I.

It remains to show that Eq. (20) holds. We have

1 1

Zl: Zab = ayb), + < D a,.b;> —afbf—< > a,.b,)

i=1 i=1 i=C+1 i=C+1

I

=a,(b, — b))+ [ z a;(bl - b,-)]
i=+1
1 1
=a,x+a [[bk —(x= Y b)) - bk] + [ Y a0- b,.)]
i=k+1 i=k+1
I I

=a,x—apx+ <ak z b,-> - < z a,-b,->

i=k+1 i=k+1

1

I I
; (x— Z b,-)] —< Z aib[>—ak<x— Z b[>
i=k+1 i=k+1 i=k+1 i=k+1
1
(af—a,.)b,»] +(af—ak)(x— Z b,~>

I
(\Q
—_
M-
S
+

In the last step, the inequality holds because k > # and the a; are monotonically decreasing, so that a, > q; forall i, Z <i<I. [

Lemma E.3 now uses Lemmas E.1 and E.2 to find the minimum and maximum of the sum of products 2,.:1 a;b;, allowing both a; and b, to vary.
Lemma E.3. Consider all possible sets of non-negative real numbers {a,,a,, ...,a;} and {b;,b,, ..., b;} with fixed sums ZLI a; = A and E,.Izl b; = B,
where I > 2, A > 0, and B > 0. Suppose that the a; are non-decreasing, with a; > a, > ... > a;, and that the b; are monotonic, with b, > b, > ... > b; or

by < b, < ... < by. Suppose also that a; < a* and b; < b* for all i, with 0 < a* < A and 0 < b* < B. Let a = [A/a*] and p = [B/b*]. The values of I, A,
B, a*, and b* are fixed and given. Consider the following conditions:

1.g=a"for1<i<a-1l,a,=A—-(a—1)a*,and a; =0 fora+1<i<I.
2. b;=0for | <i<I—p, bj_sp =B—(B—1)b" and b, = b* for I /3+2<i<1.
3. b=b"for |<i<p—1,by=B—(f— Db and b;=0for f+1<i<I

Then (i) Zle a;b; achieves its maximal value if Conditions 1 and 3 hold. (i) Z,-I=1 a;b; achieves its minimal value if Conditions 1 and 2 hold.

Proof. (i) For the upper bound, by the rearrangement inequality (Theorem 2.6), if the g; are fixed with a; > a, > ... > a; and the b, are free to
vary subject to by > b, > ... > b; (and 0 < b; < b7, ZLI b; = B), then for each permutation ¢ of (1,2, ..., 1),

I I
Z ab; > Z a;bg -
i=1

i=1
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In other words, to maximize Zi’:] a;b;, it suffices to proceed by assuming that b, > b, > ... > b;.

We apply Lemma E.2 with £ = 1. We conclude that the maximal value of }; ,.'= | @;b; is achieved with b; = min(b*, B) = b*. Fixing b, = b*, we next
apply Lemma E.2 with £ = 2. We find that the maximal value of Zle a;b; achieved at b, = min(b*, B — b*).

We proceed by fixing b, = b* for each ¢ = 3,4, ..., [B/b*] — 1, repeatedly applying Lemma E.2 provided ¢b* < B — that is, while Z < B/b*, or
¢ < [B/b*] -1, and continuing to assign b, = b*. The next value of ¢ is £ = [B/b*]. If [B/b*] < I —1, then Lemma E.2 yields b, = B— ([B/b*]—1)b*
and b; =0 for all i > 7. If [B/b*] = I, then we have reached a trivial case in which b; = B— (I — 1)b* and b; = b* for all i, 1 <i< I -1.

We arrive at Condition 3: with the ¢; in non-increasing order held constant, the b; that satisfy Condition 3 produce the maximum of EL] a;b;.
By symmetry, we fix the b, as in Condition 3 and apply Lemma E.2 with the roles of the a; and b; interchanged. We find analogously that the q;
follow Condition 1.

(ii) For the lower bound, by the rearrangement inequality (Theorem 2.6), if the a; are fixed with a; > a, > ... > a; and the b, are free to vary
subject to b; < b, < ... < b; (and 0 < b; < b, 2;1:1 b; = B), then for each permutation ¢ of (1,2,...,1),

a;b; < 2 a;bgy.-

I I
=1 i=1

i

In other words, to minimize Z,.l:] a;b;, it suffices to proceed by assuming that b; < b, < ... < b;.

We apply Lemma E.1 with # = I. We conclude that the minimal value of Zi[=l a;b; is achieved with b; = min(b*, B) = b*. Fixing b; = b*, we
next apply Lemma E.1 with £ = I — 1. We find that the minimal value of Zi[:] a;b; is achieved at b;_; = min(b*, B — b*).

We proceed by fixing b, = b* foreach # =1 -2,1-3,...,1 — [B/b*] +2, repeatedly applying Lemma E.1 provided Zi’= » b; < B— that is, while
(I-¢+1)b* < B,or ¢ > I —[B/b*]+2, and continuing to assign b, = b*. The next value of £ is# = I —[B/b*|+1. If I - [B/b*]+1 > 2, then Lemma
E.1 yields b, = B—(|B/b*] — 1)b*, and b; =0 for all i < 7. If I — [B/b*] + 1 = 1, then we have reached a trivial case in which b, = B— (I — 1)b*
and b; =b* forall i, 2<i < 1.

We arrive at Condition 2: with the g; in non-increasing order held constant, the b; that satisfy Condition 2 produce the minimum of ZLI a;b;.
By symmetry, if we fix the b; as in Condition 2, and write the b; in reverse order, with ¢; = b;,,_;, then we can apply Lemma E.1 with the ¢; in
the role of the g; and the reversed a;, or d; = a;,;_;, in the role of the b;. We obtain that the d; follow Condition 2, and consequently, that the
a; = dy,,_; follow Condition 1. [

Proof of Theorem 4.5.

Proof. The function #(p,q) =1—-p;; =1— Zi’:l piq;, With ZLI p; =1and ZLI g; = 1, is minimized when Ztl=1 p;q; is maximized, and maximized
when Z’L | Pi¢; is minimized.

(i) Via Lemma E.3i, 3\/_| p,q; reaches its upper bound if p, = (M. M,,....M;. 1 - ([M;'] = 1)M,.0,....0) and q, = (M. ... M, 1 — ([M;'] -
1)M,,0, ..., 0), producing the lower bound for #(p, q).

(i) Via Lemma E.3ii, 3)/_| p,q; reaches its lower bound if p* = (M. M;.....M,.1 = (JM'] = )M;.0,....0) and q* = (0,....0.1 — ([M;'] -
1)M,, M, ..., M,), producing the upper bound for #(p, q).

The values of #Z(p,,q.) and Z(p*, q*) can be obtained by computing #(p, q) with the vectors specified. []

Appendix F. Proof of Corollary 4.6

This proof follows that of Theorem 4.5. With the additional requirement that M, and M, are the frequencies for the same allele in both
populations, we can write Z(p, q) as,

1
‘P, =1-p; =1 _MIMZ_Zpiqi'
=

We must find (p,, ps, ....p;) and (¢,, 43, ..., q;) that give the upper and lower bounds for Z{:z Dig;-
With Z,.Izz p; =1- M, and ZLZ g; = 1 — M,, by Lemma E.3, the minimum of Z,-lzz p;q; is reached at

P =M. M,.... M, 1—([M]'] = )M,.0,...,0),
with [M l"] — 1 entries of M, followed by an entry of 1 — ([M l"] — 1)M, and O for the rest, and
Q" =(M5,0,...,0,1 = ([M;"] = DMy, My, ..., My),

with one entry of M, and I - [M7 11 entries of 0, followed by an entry of 1 — ([M5 1 -1)M, and [M; 11 -2 entries of M,. These values minimize
>, i4;» thereby maximizing #(p.q) = E[D?].
Similarly, by Lemma E.3, the maximum of Z,.'=2 p;iq; is reached at

p.=(M M, ... M, 1-(M"-1)M,,0,....0),
q, = (My, My, ..., My, 1 = ([M;'] = 1)M,,0, ..., 0).

These values maximize Zi’=2 piq;, thus minimizing #(p,q) = IE)[D’Z’].
The values of Z(p*, q*) and #(p,,q,) can be obtained accordingly.

Data availability

The data used in the work are publicly available.
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