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The ψ directionality index was introduced by Peter and Slatkin (Evolution 67: 3274–3289, 2013) to infer the direction of range expansions 
from single-nucleotide polymorphism variation. Computed from the joint site frequency spectrum for two populations, ψ uses shared 
genetic variants to measure the difference in the amount of genetic drift experienced by the populations, associating excess drift 
with greater distance from the origin of the range expansion. Although ψ has been successfully applied in natural populations, its stat
istical properties have not been well understood. In this article, we define Ψ as a random variable originating from a coalescent process in 
a two-population demography. For samples consisting of a pair of diploid genomes, one from each of two populations, we derive ex
pressions for moments E

􏼂
Ψk􏼃 for standard parameterizations of bottlenecks during a founder event. For the expectation E[Ψ], we identify 

parameter combinations that represent distinct demographic scenarios yet yield the same value of E[Ψ]. We also show that the variance 
V[Ψ] increases with the time since the bottleneck and bottleneck severity, but does not depend on the size of the ancestral population; 
the ancestral population size affects ψ computed from many biallelic loci only through its contribution to the total number of loci available 
for the computation. Finally, we analyze the values of E[Ψ] computed from existing demographic models of Drosophila melanogaster and 
compare them with empirically computed ψ. Our work builds the foundation for theoretical treatments of the ψ index and can help in 
evaluating its behavior in empirical applications.
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Introduction
Inference of the demographic history of populations—including 
their population-size changes and relationships with other popu
lations—is a major objective of statistical population genetics (e.g. 
Marchi et al. 2021). The combination of statistical methods based 
on the coalescent theory with extensive genetic data has enabled 
researchers to investigate diverse features of demographic histor
ies (e.g. Pool et al. 2010).

One of the most fundamental ways in which genetic data can 
be summarized for statistical analysis is by the site frequency 
spectrum (SFS), which counts the numbers of sites—typically 
single-nucleotide polymorphisms (SNPs)—that are present in dif
ferent multiplicities in a sample (e.g. Wakeley and Hey 1997; 
Achaz 2009). Comparisons of the empirical SFS in a population 
to predictions of a coalescent model can detect phenomena, 
such as bottlenecks, expansions, or selective sweeps (e.g. 
Ferretti et al. 2010; Ronen et al. 2013). The SFS has received exten
sive theoretical treatment under many demographic scenarios 
and has often been applied for inference in real populations (e.g. 
Nielsen et al. 2005; Thornton and Andolfatto 2006).

In data from multiple populations, a joint SFS can be defined 
that records SNP allele frequencies in each population 
(Gutenkunst et al. 2009). A joint SFS enables inference of pro
cesses, such as admixture, migration, and differences in selection 
between populations (Caicedo et al. 2007; Nielsen et al. 2009; 
Excoffier et al. 2013; Zhan et al. 2014; Arguello et al. 2019; Liu 
and Fu 2020). In the setting of population pairs, Peter and 

Slatkin (2013) proposed a statistic, the ψ directionality index, 
which is computed from the joint SFS for the two populations. 
This index was designed for characterizing the process of range 
expansion, in which a population sequentially settles locations in
creasingly distant from its origin (e.g. Ramachandran et al. 2005; 
Excoffier and Ray 2008; Excoffier et al. 2009).

In a range expansion, the leading edge of the expansion experi
ences stronger genetic drift relative to the point of origin (e.g. 
Hallatschek and Nelson 2008; Slatkin and Excoffier 2012; Peter 
and Slatkin 2015; Peischl and Excoffier 2016). In the genetic history 
of individuals at the edge of the expansion, the range expansion 
process can manifest as a sequence of population size bottle
necks, as increasingly distant geographic locations are settled 
(e.g. DeGiorgio et al. 2009; Deshpande et al. 2009; DeGiorgio et al. 
2011).

For two populations that are part of the expansion, the ψ direc
tionality index seeks to identify the direction of the expansion. 
The approach relies on the fact that if a given derived allele is 
shared between the two populations, then its frequency is ex
pected to be higher in the derived population at the edge of the 
range expansion than in the source population (e.g. Edmonds 
et al. 2004; Klopfstein et al. 2006; Excoffier and Ray 2008; 
Schlichta et al. 2022). Alleles at low frequency in the source popu
lation are likely to be lost during the expansion and therefore 
would not be shared. The derived population has a smaller found
ing population size than the source population, so that alleles—if 
they are not entirely absent—tend to possess greater frequencies. 
The ψ index considers the population differences of allele 
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frequencies specifically in the shared genetic variation between 
the two populations.

Among pairwise quantities that can be computed as summary 
statistics useful for interpreting population-genetic data (e.g. 
FST), the ψ index stands out as a signed quantity. For two popula
tions A and B, the order of the populations matters, with 
ψ(A, B) = −ψ(B, A). Therefore, whereas FST is often seen as a genetic 
measure of distance, ψ is akin to a vector directed from one popu
lation to another (see also Peter and Slatkin 2013, Figs. 5 and 7).

The ψ index was first defined by Peter and Slatkin (2013), who 
developed a method that integrates information about pairwise 
ψ with geographic distances between sampling locations to iden
tify coordinates of the expansion origin. They then applied it to si
mulated scenarios including isolation-by-distance and range 
expansion on a grid of populations, as well as to complex config
urations involving migration barriers.

Peter and Slatkin (2015) then studied theoretical properties of ψ 
in a discrete time-expansion model. The model consisted of a lin
early arranged set of demes with equal population size, with a sin
gle deme d0 settled initially and the rest of the demes empty. At an 
integer timepoint t, a new deme dt is settled by individuals from 
the previous deme dt−1. The quantity of interest was ψ(d0, dt) at 
time t between the origin deme and the leading edge of the expan
sion. Peter and Slatkin (2015) showed that in the model, the ex
pected value of ψ between the source and the leading edge of 
the expansion—which has experienced a sequence of founder 
events—depends on the relative founder sizes of settlement 
events (the fraction of individuals selected from deme dt−1 to settle 
dt) and the number of founder events, equal to t in their scaling of 
time. Peter and Slatkin (2015) used ψ to identify the expansion ori
gin for natural populations of Arabidopsis thaliana, which they pre
sumed to have expanded spatially in a manner compatible with a 
linear arrangement of demes.

Several recent uses of ψ have since sought to examine scenarios 
where, instead of an expansion over a linear spatial dimension, an 
expansion involves pairwise computations for a small number of 
discrete demes, as few as two. For example, Zhan et al. (2014) ex
amined the expansion of monarch butterflies from North America 
to South America, the Pacific, and Europe, computing ψ between a 
source population in North America and a destination population 
elsewhere. Puckett and Munshi-South (2019) examined the ex
pansion of brown rats from Eastern Asia to the Middle East, the 
Middle East to Europe, and Europe to North America, computing 
ψ between pairs of populations in two different geographic re
gions. Ioannidis et al. (2021) similarly used pairwise values of ψ be
tween pairs of human populations of different Pacific islands to 
understand sequences of events in the human settlement of the 
region.

In this article, building from the interest in using ψ for expan
sions involving small numbers of discrete populations rather 
than many demes along a spatial continuum, we examine the ψ 
statistic theoretically in the simplest discrete-deme structured 
population: a pair of populations. We define Ψ as a random vari
able arising from the coalescent process and derive expressions 
for moments of Ψ under the coalescent. We focus on the scenario 
in which a single diploid individual is sampled in each of a pair of 
populations. Next, we consider specific commonly used parame
terizations of range expansions in the setting of population pairs, 
explicitly incorporating exponential growth, bottlenecks, and in
stantaneous bottlenecks (Fig. 1). We then explore theoretical pre
dictions for the expectation E[Ψ] and variance V[Ψ], interpreting 
them in terms of the reliability of inferences and the identifiability 
of demographic scenarios. We use the central limit theorem to 

analyze the sample variance of the ψ index computed from 
many SNPs. Finally, we show how our results can be used in the 
evaluation of empirical inferences of demographic parameters 
for real populations.

Coalescent-based definition of the ψ index
ψ for a pair of genomes
The directionality index ψ is a two-population statistic computed 
from allele frequencies for a set of biallelic SNPs. For the rest of 
this article, we assume that the derived and ancestral alleles are 
known for each SNP, and we call the SNP shared between two po
pulations if the derived allele is present in at least one copy in both 
populations and the SNP is polymorphic in the pooled pair of 
populations.

Suppose now that we know allele frequencies for a set of SNPs 
in two populations A and B. In its most general form, the value of 
the ψ index is then defined as

ψ(A, B) =
1
|S|

􏽘

j∈S

(fA,j − fB,j), (1) 

where S is the set of SNPs shared between the two populations, fA,j 

is the frequency of the derived allele of SNP j in population A, and 
fB,j is its frequency in population B (Peter and Slatkin 2015, 

Equation 1).
We proceed by focusing on the simplest case in which ψ can be 

meaningfully studied in two populations. In particular, if allele 
frequencies are computed using a single diploid individual 
sampled from each population, and if shared SNPs are identified 
based on this pair of individuals, then the expression for ψ reduces 
to

ψ(A, B) =
n21 − n12

n11 + n12 + n21
, (2) 

where nij is the number of SNPs that have i copies of the derived 

allele in the individual from population A and j copies in the indi
vidual from population B, and i and j can each equal 0, 1, or 2.

a b

c d

Fig. 1. Four demographic scenarios. a) Population split: an ancestral 
population C splits into two populations A and B at time t. b) Exponential 
growth: after the split, populations A and B grow at rates rA and rB, 
respectively. c) Bottleneck: after the split, population A goes through a 
bottleneck of population size Nb and duration tb. d) Instantaneous 
bottleneck: after the split, population A goes through a burst of 
coalescences of strength s. Times t and t − tb are measured in generations 
back from the present.
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The random variable Ψ under the coalescent
We now analyze the ψ index as a random variable under the co
alescent. We use the notation Ψ to distinguish the theoretical ran
dom variable for the directionality index from the empirical ψ 
computed from data.

We assume that all SNPs are unlinked, so that coalescent trees 
for different SNPs are independent. We also assume that SNPs 
obey the standard infinitely-many-sites mutation model 
(Durrett 2008, p. 29), such that each SNP results from a single mu
tation on a coalescent tree. Finally, we assume that we have spe
cified a demographic history for populations A and B (Fig. 1), and 
that a single diploid individual is sampled from each population. 
Such a sample configuration—one diploid individual with sample 
size 2 alleles in each population—allows us to use the simplified 
Equation (2).

Conditional on the demography and a sample of size 2 from 
each of a pair of populations, the coalescent model defines a prob
ability distribution over the genealogies of lineages from A and 
B. In this framework, we can determine the expectation 
E[Ψ](A, B) of the directionality index under the coalescent model 
for a single SNP shared between populations A and B. We use 
E
􏼂
Ψk􏼃with k > 1 to denote higher moments of the random variable 

Ψ under the coalescent.
To compute E[Ψ], we consider probabilities under the coales

cent model of entries in the joint site frequency spectrum for po
pulations A and B, conditional on the demography:

SA,B =
0 s01 s02

s10 s11 s12

s02 s21 0

⎛

⎝

⎞

⎠, (3) 

where sij is the probability that a randomly sampled mutation— 

that is, the derived variant of a random SNP on the genealogy 
of four lineages—occurs in i copies in population A and in 
j copies in population B. For example, s12 is the probability 
that for a random SNP, the diploid sample from population A 
has one ancestral and one derived allele, and the sample from 
population B is homozygous with two copies of the derived al
lele. As a shorthand, we will say that such a SNP has “type 
12,” and we indicate other elements of the site frequency spec
trum similarly.

Suppose now that we have sampled a single shared SNP. First, 
the probabilities of a SNP having a specific type are obtained 
from the site frequency spectrum S by conditioning on being 
shared,

P[type 21 | shared SNP] =
s21

s11 + s12 + s21
, (4a) 

P[type 11 | shared SNP] =
s11

s11 + s12 + s21
, (4b) 

P[type 12 | shared SNP] =
s12

s11 + s12 + s21
. (4c) 

Further, taking the total number of sampled SNPs to be 1 in 
Equation (2), we know that the value of Ψ is constant for all 
SNPs of the same type, with

Ψ ∣ shared SNP of type 21 = 1, (5a) 

Ψ ∣ shared SNP of type 11 = 0, (5b) 

Ψ ∣ shared SNP of type 12 = −1. (5c) 

Combining Equation (4) with Equation (5), we can write the def
inition of random variable Ψ for a single shared SNP:

Ψ(A, B) =

1, probability
s21

s11 + s12 + s21
,

0, probability
s11

s11 + s12 + s21
,

−1, probability
s12

s11 + s12 + s21
.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6) 

The expectation of Ψ can then be straightforwardly computed as

E[Ψ] =
s21 − s12

s11 + s12 + s21
. (7) 

The second moment of Ψ is

E
􏼂
Ψ2􏼃 =

s21 + s12

s11 + s12 + s21
. (8) 

The higher moments of Ψ can be computed similarly, with

E[Ψ] = E Ψ3􏼂 􏼃
= E Ψ5􏼂 􏼃

= · · · , (9) 

E
􏼂
Ψ2􏼃 = E Ψ4􏼂 􏼃

= E Ψ6􏼂 􏼃
= · · · . (10) 

In the remainder of this article, we discuss only the expectation 

E[Ψ] and the variance V[Ψ] = E
􏼂
Ψ2􏼃 − E[Ψ]2, as the other moments 

can be obtained from these cases.
The only remaining quantities we need are the sij: the probabil

ities that a randomly chosen SNP has i copies of the derived allele 
in the sample of size 2 from population A and j copies in the sam
ple of size 2 from population B, with (i, j) = (1, 1), (1, 2), or (2, 1). In 
other words, under a coalescent-based demographic model with 
infinitely-many-sites mutation, we seek to compute, as a fraction 
of all SNPs, the number that occur on genealogical branches an
cestral to i copies in population A and j copies in population B.

In a random genealogy, the expected total number of SNPs with 
type ij is ΘE[Lij]/2, where Lij is the total length of branches ancestral 
to i lineages from population A and j lineages from population B, 
and Θ/2 is the Poisson mutation rate along a branch. E[Lij] is com
puted by considering each topology separately:

E[Lij] =
􏽘

topology τ
pτE[Lτ,ij], (11) 

where pτ is the probability that topology τ occurs and Lτ,ij is the 

length of branches ancestral to i lineages from A and j lineages 
from B in genealogies with topology τ. The value of sij is then pro

portional to

sij ∝
􏽘

topology τ
pτΘE[Lτ,ij]/2. (12) 

Because we regard lineages within populations as exchangeable— 
so that we do not distinguish between two lineages from the same 
population—six topologies must be considered in Equation (12) 
(Fig. 2). We denote the six topologies α, β, γ, δ, ε, ζ. The topology prob
abilities pτ and the expected branch lengths E[Lτ,ij] can be computed 

for various demographic models, so that Equation (12) can be calcu
lated and hence also Equations (7) and (8). In the next section, we 
compute these quantities for simple models representing a founder 
effect.
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Expectation and variance of Ψ for specific 
demographic models
The exact expressions for topology probabilities and branch 
lengths in Equation (12) depend on specific parameterizations of 
the demographic history. In this section, we derive expressions 
for sij and moments of Ψ in Equations (7) and (8) for the four demo
graphies shown in Fig. 1.

Population split
We first consider a simple population split demography (Fig. 1a). A 
single ancestral population C of size NC splits into two populations 
t generations ago. The two resulting populations A and B have 
sizes NA and NB individuals, respectively.

To compute E[Ψ] and V[Ψ], we compute topology probabilities 
and relevant branch length expectations for each topology in 
Fig. 2. Computations with topology α are not needed because 
this topology cannot generate shared polymorphisms. For top
ology probabilities pβ and pγ, we must further distinguish the 
tree topologies based on the population in which the “cherry co
alescence” happens. We denote by pβ,B the probability of the top
ology β in which the coalescence (B,B) happens in population B; if 
the coalescence (B,B) happens in the ancestral population C, then 
we denote the probability by pβ,C, with similar notation for top
ology γ. These additional topology labels are depicted in Fig. 3.

First, we compute pβ,B. The two lineages from population B 
must coalesce in population B; the probability of this event is 
1 − e−t/(2NB). The two lineages from population A must not coalesce 
until they enter population C; the probability of that event is 
e−t/(2NA). As a result, two lineages from A and one lineage from B en
ter population C. In population C, lineages from A and B must co
alesce first; the probability of this event is 23; in the remaining 13 of 
cases, the two A lineages coalesce first. As a result, we obtain 
pβ,B = 2

3 e−t/(2NA)[1 − e−t/(2NB)]. This derivation modifies the two- 
population calculation of Tajima (1983) by allowing for different 
population sizes for populations A and B rather than assuming 
their exchangeability. Using the same logic for other tree topolo
gies, we obtain the following probabilities:

pβ,B =
2
3

e−t/(2NA)􏼂1 − e−t/(2NB)􏼃, (13a) 

pγ,A =
2
3

􏼂
1 − e−t/(2NA)􏼃e−t/(2NB), (13b) 

pβ,C = pγ,C =
1
9

e−t/(2NA) e−t/(2NB), (13c) 

pδ = pε = pζ =
2
9

e−t/(2NA) e−t/(2NB). (13d) 

For β and γ, summing the probabilities of the two cases, we get

pβ =
2
3

e−t/(2NA) −
5
9

e−t/(2NA)e−t/(2NB), (14a) 

pγ =
2
3

e−t/(2NB) −
5
9

e−t/(2NA)e−t/(2NB). (14b) 

We now compute expected lengths of relevant branches for 
specific sample configurations. All branches below the gene tree 
root that are shared by at least one pair of lineages from different 
populations are labeled in Fig. 2. For example, branch bβ is ances
tral to two lineages from population B and one lineage from popu
lation A for topology β; similarly, branch bζ ,1 is ancestral to one 
lineage from population A and one lineage from population B if 
the genealogy has topology ζ.

With Equation (12), we obtain equations for entries of the ex
pected joint site frequency spectrum SA,B:

s12 ∝
Θ
2

pβE[bβ] + pεE[bε,2]
( 􏼁

, (15a) 

s21 ∝
Θ
2

pγE[bγ] + pζ E[bζ ,2]
( 􏼁

, (15b) 

s11 ∝
Θ
2

􏼂
pδ E[bδ,1] + E[bδ,2]
( 􏼁

+ pεE[bε,1] + pζ E[bζ ,1]
􏼃
. (15c) 

In the final expressions for moments of Ψ (Equations (7) and (8)), 
the mutation rate cancels because all branches that can generate 
shared sites can only appear in population C, so that Θ = 4NCμ in 
all parts of Equation (15).

We are now left with calculating the expected branch lengths. 
Because polymorphisms shared between populations A and B can 
only result from mutations in the ancestral population C, our 
branch length calculations need only consider coalescent theory 
in a single population of size NC individuals. In particular, expec
tations of branch lengths bβ and bγ are equal to the expectation of 
the time E[T2] to coalescence of two lineages in the diploid popu
lation of size NC, so that

E[bβ] = E[bγ] = 2NC. (16) 

Similar logic applies to trees ε and ζ, with expectations of bε,1 and 
bζ ,1 equaling the expectation of the time T3 to the first coalescence 
with three lineages,

E[bε,1] = E[bζ ,1] =
2NC

3
. (17) 

The lengths of bε,2 and bζ ,2 are again proportional to E[T2] as in 
Equation (16),

E[bε,2] = E[bζ ,2] = 2NC. (18) 

Fig. 2. The six tree topologies possible for samples of two lineages each 
from two populations A and B. Trees are labeled by Greek letters. 
Branches relevant to the calculation of E[Ψ]—branches that are ancestral 
to lineages from both populations—are labeled by bβ, bγ, etc.

Fig. 3. Distinguishing locations of the cherry coalescence for topologies β 
and γ. The ancestral population is C and the descendant populations are A 
(left) and B (right).
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The expected length of branches bδ,1 and bδ,2 together is equal to 
2E[T2] + E[T3],

E[bδ,1] + E[bδ,2] = 4NC +
2NC

3
. (19) 

Finally, we can substitute expressions for the branch lengths 
(Equations (16)–(19)) and the topology probabilities (Equation 
(13)) into Equation (15) to obtain expressions for SFS entries sij. 

We then plug these quantities into Equations (7) and (8) to obtain

E[Ψ] =
et/(2NA) − et/(2NB)

et/(2NA) + et/(2NB)
, (20a) 

E
􏼂
Ψ2􏼃 = 1 −

1
et/(2NA) + et/(2NB)

. (20b) 

The variance of Ψ is then

V[Ψ] =
4et/(2NA)et/(2NB) − et/(2NA) − et/(2NB)

et/(2NA) + et/(2NB)
􏼂 􏼃2 . (20c) 

Examining the expressions in Equations (20a) and (20c), we see 
that both the mean of Ψ and the variance of Ψ do not depend on 
the size NC of the ancestral population. We also observe that if 
the population sizes are equal, NA = NB, then E[Ψ] = 0. Moreover, 
examination of Equation (20) can directly bound the expectation 
and variance. As limNB→0 E[Ψ] = −1 and limNA→0 E[Ψ] = 1, we have 
−1 < E[Ψ] < 1; for variance, we have 0 < V[Ψ] < 1 because, on one 
hand, limt→∞ V[Ψ] = 0, and on the other hand,

V[Ψ] = 1 −
1

et/(2NA) + et/(2NB)
−
(
E[Ψ]

􏼁2

≤ 1 −
1

et/(2NA) + et/(2NB)
< 1 

for NA, NB > 0 and t ≥ 0.
Informally, we can write Equation (20a) as

E[Ψ] = tanh
t

4NA
−

t
4NB

􏼒 􏼓

= tanh “drift in A” − “drift in B”
( 􏼁

.

(21) 

In this simple model, the “amount of drift” is that of a neutral 
population of size NA (or NB) evolving for t generations. 
However, by treating NA and NB as effective population sizes, a 
variety of demographic scenarios that include population growth 
or bottlenecks can be considered. In subsequent subsections, we 
explicitly parameterize models with population size changes 
and present modified versions of Equation (20).

Exponential growth
We next consider populations A and B evolving under the classic 
exponential growth model. A and B begin exponential growth im
mediately after splitting from the ancestral population C, as 
shown in Fig. 1b.

Let population A have size NA,0 at the present time, such that its 
population size over time is

NA,τ = NA,0e−rAτ , (22) 

where τ is time, measured in generations from the present into the 
past, and rA is the growth rate. Equation (22) is defined such that if 

rA > 0, then population A is increasing in size forward in time. If 
population A has size NA,t immediately after the split, then the 
growth rate can be computed from Equation (22) as

rA = −
1
t

ln
NA,t

NA,0

􏼒 􏼓

. (23) 

Slatkin and Hudson (1991) showed that for a pair of lineages, the 
coalescent in a growing population of size NA,τ is equivalent to the 
coalescent in the constant population of size NA,0, with time re
scaled by

T =
erAτ − 1

rA
. (24) 

Hence, the probability that two lineages coalesce in the first t gen
erations in the population of size NA,τ is

P[TA ≤ t] = 1 − exp −
erAt − 1
2NA,0rA

􏼒 􏼓

. (25) 

A corresponding equation holds for population B.
We can repeat the calculations of tree topology probabilities in 

Equations (13) and (14) by replacing the constant-size coalescence 
probability 1 − exp [ − t/(2N)] by the quantity in Equation (25). As a 
result, we obtain the following expressions for expectation and 
variance of Ψ under the exponential growth model:

E[Ψ] = tanh
tA

4NA,0
−

tB

4NB,0

􏼒 􏼓

, (26a) 

E
􏼂
Ψ2􏼃 = 1 −

1
etA/(2NA,0) + etB/(2NB,0)

, (26b) 

V[Ψ] =
4etA/(2NA,0)etB/(2NB,0) − etA/(2NA,0) − etB/(2NB,0)

etA/(2NA,0) + etB/(2NB,0)
􏼂 􏼃2 , (26c) 

where we have introduced a shorthand notation

tA =
erAt − 1

rA
, (27a) 

tB =
erBt − 1

rB
. (27b) 

If only one population is subject to exponential growth, then 
expressions for E[Ψ] and V[Ψ] can be found by taking the limits 
in Equation (26) as the growth rate approaches zero. For example, 
if rB = 0, then we have

E[Ψ] = tanh
tA

4NA,0
−

t
4NB

􏼒 􏼓

, (28a) 

V[Ψ] =
4etA/(2NA,0)et/(2NB) − etA/(2NA,0) − et/(2NB)

etA/(2NA,0) + et/(2NB)
􏼂 􏼃2 , (28b) 

where again tA is defined by Equation (27a).

Bottleneck
For our third model, we assume that immediately after the split, 
population A goes through a bottleneck of length tb with constant 
population size Nb, as shown in Fig. 1c. This type of model has 
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been used in studies of human expansion from Africa (DeGiorgio 
et al. 2009, 2011).

The calculations of E[Ψ] and V[Ψ] are similar to those for the 
population split demography, except that the topology probabil
ities differ: we consider special cases for topologies β and γ 
(Fig. 2). For β, we distinguish between coalescent genealogies in 
which the node (B,B) is located in population B (pβ,B) and in popu
lation C (pβ,C). For γ, we distinguish between genealogies in which 
the node (A,A) occurs in population A after the bottleneck (pγ,A), 
during the bottleneck (pγ,bot), and in population C (pγ,C). The prob
abilities are:

pβ,B =
2
3

e−(t−tb)/(2NA) e−tb/(2Nb) 1 − e−t/(2NB)
􏽨 􏽩

, (29a) 

pβ,C = pγ,C =
1
9

e−(t−tb)/(2NA) e−tb/(2Nb) e−t/(2NB), (29b) 

pγ,A =
2
3

1 − e−(t−tb)/(2NA)
􏽨 􏽩

e−t/(2NB), (29c) 

pγ,bot =
2
3

e−(t−tb)/(2NA) 1 − e−tb/(2Nb)
􏽨 􏽩

e−t/(2NB), (29d) 

pδ = pε = pζ =
2
9

e−(t−tb)/(2NA) e−tb/(2Nb) e−t/(2NB). (29e) 

The expressions for the moments of Ψ are

E[Ψ] = tanh
t − tb

4NA
+

tb

4Nb
−

t
4NB

􏼒 􏼓

, (30a) 

E
􏼂
Ψ2􏼃 = 1 −

1
e(t−tb)/(2NA) + etb/(2Nb)et/(2NB)

, (30b) 

V[Ψ]

=

e

tb

2NA 4e

t
2NA e

t
2NB e

tb

2Nb − e

t
2NB e

tb

2Nb − e

t
2NB e

tb

2NA

⎡

⎢
⎣

⎤

⎥
⎦

e

t
2NB e

tb

2NA + e

t
2NA e

tb

2Nb

⎡

⎢
⎣

⎤

⎥
⎦

2 .

(30c) 

If Nb = NA, then Equation (30) reduces to Equation (20). If tb = 0, 
then expressions in Equation (30) match Equation (20) irrespective 
of the value of Nb.

Founder effect
The final model that we consider is a model that has been pro
posed for simplifying the modeling of founder effects. Instead of 
a prolonged bottleneck, we introduce an instantaneous bottleneck 
into population A (Fig. 1d). An instantaneous bottleneck is defined 
as a burst of coalescences; mathematically, two lineages going 
through an instantaneous bottleneck of strength s behave as if 
going through s (imaginary) generations of drift in the population 
of final size NA. Instantaneous bottlenecks are typically used in si
tuations where the bottleneck is short enough such that the pos
sibility of mutations happening during the bottleneck can be 
disregarded (Galtier et al. 2000; Bunnefeld et al. 2015). In practice, 
this scenario could correspond to a low number of lineages from 
population C settling the whole population A that exists after 
the split.

Similarly to the bottleneck demography scenario, we adjust the 
tree topology probabilities to reflect the demography in Fig. 1d:

pβ,B =
2
3

e−(t+s)/(2NA) 1 − e−t/(2NB)
􏽨 􏽩

, (31a) 

pβ,C = pγ,C =
1
9

e−(t+s)/(2NA) e−t/(2NB), (31b) 

pγ,A =
2
3

1 − e−t/(2NA)
􏽨 􏽩

e−t/(2NB), (31c) 

pγ,bot =
2
3

e−t/(2NA) 1 − e−s/(2NA)
􏽨 􏽩

e−t/(2NB), (31d) 

pδ = pε = pζ =
2
9

e−(t+s)/(2NA) e−t/(2NB). (31e) 

The expressions for the moments of Ψ in this case are:

E[Ψ] = tanh
t + s
4NA

−
t

4NB

􏼒 􏼓

, (32a) 

E
􏼂
Ψ2􏼃 = 1 −

1
e(t+s)/(2NA) + et/(2NB)

, (32b) 

V[Ψ] =
4e(t+s)/(2NA)et/(2NB) − e(t+s)/(2NA) − et/(2NB)
􏼂 􏼃

e(t+s)/(2NA) + et/(2NB)
􏼂 􏼃2 . (32c) 

These expressions reflect the fact that the “strength” of the bottle
neck depends on its duration tb and population size Nb only 
through the ratio tb/(2Nb), as captured by the parameter s. If 
s = 0, then Equation (32) reduces to Equation (20).

Illustrations of E[Ψ] and V[Ψ]
To illustrate our theoretical expressions, we plot E[Ψ] and V[Ψ] for 
a range of parameter values. For these plots, we use the instantan
eous bottleneck formulation, as it has only five parameters t, s, NA, 
NB, and NC instead of six, as in the exponential growth and bottle
neck scenarios.

Figure 4 shows E[Ψ] and V[Ψ] for varying t and s and fixed popu
lation sizes NA = 400, NB = 600, and NC = 1,000. The behavior of 
E[Ψ] confirms the intuition in Equation (21): as the bottleneck 
strength s increases, population A accumulates larger amounts 
of drift due to increased probability of coalescence in the bottle
neck (Equation (32a)), leading to higher positive values of E[Ψ]. 
Similarly, increasing t leads to more drift in population A because 
NA < NB, and A accumulates drift at a higher rate than B. Note that 
if we were to set NA = NB in Equation (32a), then the value of E[Ψ] 
would not depend on the time t since the bottleneck.

The variance V[Ψ] also increases with both the time t since the 
bottleneck and the bottleneck strength s, with stronger depend
ence on t compared to E[Ψ]. As s or t increases, the probability of 
observing a SNP of type 11, s11, decreases, as a type 11 SNP requires 
all four lineages from A and B to persist into population C without 
coalescing, whereas type 12 and type 21 SNPs can be produced 
with only three lineages persisting into population C. SNPs of 
type 11 can appear only in genealogies δ, ε, and ζ where all coales
cences happen in ancestral population C, and the probability of 
observing these genealogies is small for large s and t. The second 
moment E

􏼂
Ψ2􏼃 = (s21 + s12)/(s12 + s21 + s11) then grows large, in

creasing the variance.
We can use our theoretical results to analyze identifiability of 

demographic scenarios with the ψ index. In analyses of genetic 
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data, a positive ψ is used to claim that the population A is located 
further from the source of the range expansion (Peter and Slatkin 
2013), with the population with more drift experiencing bottle
necks during founder events. However, this logic does not account 
for the possibility that other demographic scenarios could gener
ate an identical value of ψ. Figure 5 provides an example of this 
phenomenon by showing that if the population size NB is suffi
ciently small relative to NA, then E[Ψ] could be negative even in 
the presence of a bottleneck in population A. Figure 6 shows the 
dependence of E[Ψ] on NB and t. If NB is small enough in relation 
to NA, then the value of E[Ψ] can decrease with increasing t and 
can even reverse its sign. The negative value of the directionality 
index then obscures the ancient bottleneck in A.

Sampling theory of Ψ
We have demonstrated that the expectation E[Ψ] and variance 
V[Ψ] do not depend on the ancestral population size NC. In this 
section, we show that our confidence in the value of ψ computed 
from SNP data does depend on NC through sample variance.

The random variable Ψ and its associated quantities E[Ψ] and 
V[Ψ] refer to the directionality index for a single SNP under the co
alescent. In a data analysis, ψ is computed using many shared 
SNPs across the genome, say n. Denote by Ψ the (random) 
many-SNP ψ index, signifying that this quantity can be seen as 
the mean of many single-SNP observations of ψ. For n sampled in
dependent shared SNPs, the central limit theorem states that the 
resulting Ψ approaches a Gaussian distribution with variance pro
portional to 1n,

Ψ
d
→ N E[Ψ],

V[Ψ]
n

􏼒 􏼓

. (33) 

As the number of sampled shared SNPs increases, the probability 

that Ψ is close to its mathematical expectation E[Ψ] increases.
Under the infinitely-many-sites model, the number of shared 

SNPs n is itself a random variable that depends on the mutation 
rate μ and the ancestral population size NC, as shared SNPs 
reflect mutations in the ancestral population. More precisely, 
E[n] = ΘE[L]/2, where Θ = 4NCμ is the scaled mutation rate in a dip
loid population of NC individuals, and E[L] is the expected length of 
branches that can yield shared SNPs, in units of 2NC generations. 
All branches that can generate shared SNPs were identified in 

Fig. 2, so we can use Equations (16)–(19) to write an equation for 
E[L]:

2NCE[L] = pβE[bβ] + pγE[bγ] + pδ E[bδ,1] + E[bδ,2]
( 􏼁

+ pε E[bε,1] + E[bε,2]
( 􏼁

+ pζ E[bζ ,1] + E[bζ ,2]
( 􏼁

,

E[L]= pβ + pγ +
7
3

pδ +
4
3

pε +
4
3

pζ . (34) 

For example, with the founder effect model, we get

E[L] =
2
3

e−(t+s)/(2NA) + e−t/(2NB)
􏽨 􏽩

, (35) 

E[n] =
4NCμ

3
e−(t+s)/(2NA) + e−t/(2NB)
􏽨 􏽩

. (36) 

The expected number of shared SNPs depends linearly on the an
cestral population size, and NC then affects the number of shared 
SNPs available for empirical analyses using the directionality 
index.

Equation (36) specifies the dependence of the random variable 
n on the demographic parameters. For example, we can see that 
stronger bottlenecks—higher values of s—lead to an increase 
not just in the variance V[Ψ] (Fig. 4), but also in the sample vari
ance by decreasing the number of available shared SNPs, E[n].

Application to Out-of-Africa expansion of 
Drosophila melanogaster
To test our coalescent-based predictions for ψ, we compute ψ for a 
specific demographic event in two ways. First, we use Equation (1) 
to compute ψ directly from genotypes in natural populations. 
Second, we make use of existing estimates of demographic para
meters to evaluate our equations for E[Ψ] and V[Ψ].

The demographic scenario we consider here is the Out-of- 
Africa expansion of D. melanogaster. It is generally agreed that 
the modern European populations trace to a small founding popu
lation as the species range expanded from Africa (e.g. Stephan and 
Li 2007 ; Arguello et al. 2019). As the founder event was directed 
from Africa to Europe, we expect to see ψ(Europe, Africa) > 0.

ψ computed from sequence data
For our empirical computations, we evaluated ψ from the se
quences of intronic and intergenic X-chromosomal loci used for 

a b c

d e f

Fig. 4. Values of E[Ψ] and V[Ψ] under the founder effect demography of Fig. 1d. The population sizes are constant, with NA = 400, NB = 600, and NC = 1,000. 
The values are computed using Equation (32a) for E[Ψ] and Equation (32c) for V[Ψ]. a) E[Ψ] for varying s, t = 10. b) E[Ψ] for varying s, t = 80. c) E[Ψ] for varying 
s, t = 120. d) V[Ψ] for varying s, t = 10. e) V[Ψ] for varying s, t = 80. f) V[Ψ] for varying s, t = 120.
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demographic inference by Li and Stephan (2006), Laurent et al. 
(2011), and Duchen et al. (2013), originally obtained by Glinka 
et al. (2003) and Ometto et al. (2005). We downloaded sequences 
of X-chromosomal loci from the European Nucleotide Archive 
(ebi.ac.uk/ena), sequence IDs AJ568984 to AJ571588 and 
AM000058 to AM003900 (originally deposited by Glinka et al. 
2003; Ometto et al. 2005).

Each locus had nucleotide data in the form of a single (haploid) 
genotype for a set of inbred lines from European (the Netherlands, 
NTH) and African (Zimbabwe, ZW) populations of D. melanogaster, 
as well as for a single line from a North American population of 
Drosophila simulans. The genetic sequence for each line was hap
loid due to the sequencing being performed with homozygous in
bred lines. The total number of X-chromosomal loci was 229, with 
locus sequence lengths ranging from 210 to 784 nucleotides (me
dian 563).

The D. simulans sequence was used in place of the ancestral 
genotype in the analysis. Across the 229 loci, the maximum num
ber of lines sequenced for the Netherlands population was 12 and 
the minimum number of lines sequenced was 10. For the 
Zimbabwe population, the maximum was 12 and the minimum 
was 9.

Separately for each locus, we used MUSCLE v5.1 (Edgar 2004) 
with default settings (-perturb 0 -perm none -consiters 2 
-refineiters 100) to perform a joint multiple sequence align
ment for the lines from the NTH and ZW populations of D. melano
gaster as well as the D. simulans line.

To compute ψ for a set of loci, we generated a sample of 1,000 
sets of four lines, two from the NTH population and two from 
the ZW population. The sets of four were sampled with replace
ment, but each set had two distinct NTH lines and two distinct 
ZW lines (“distinct” here refers to distinct sample labels, not to dis
tinctness of the genotypes).

For each set of four lines together with the D. simulans line, we 
discarded sites that had insertions or deletions in the alignment of 
five sequences. We next discarded invariable sites as well as sites 
with three or more distinct alleles. Next, we discarded sites that 
failed to meet a sharing criterion. In particular, we kept only those 
shared (biallelic) sites in the sense of the definition in Equation (1), 
requiring the derived allele to be present in at least one copy in 

both NTH and ZW populations and to be polymorphic in the 
pooled pair of populations. We then computed ψ using Equation 
(2) by sampling a single site from the final set of shared sites.

To understand the uncertainty in the ψ computation that arises 
from differences in evolutionary history across loci, we analyzed 
1,000 bootstrap replicate datasets, where each bootstrap replicate 
involves a resample of 229 loci. In particular, in each bootstrap 
replicate, we first sampled 229 loci with replacement. Next, we 
generated 1,000 sets of four lines and computed ψ, as described 
in the previous two paragraphs.

For each bootstrap replicate, we averaged ψ over the 1,000 va
lues, each obtained from a random set of four lineages, obtaining 
a mean ψ for that replicate. We also obtained a variance across the 
1,000 values.

Considering the 1,000 bootstrap replicates, the median of the 
mean ψ values was

ψ NTH, ZW( ) = 0.5280, (37) 

with 95% of mean ψ values lying in the interval (0.4860, 0.5710).
The median across 1,000 bootstrap replicates of the variance of 

ψ was equal to

Var ψ NTH, ZW( )
􏼂 􏼃

= 0.5244, (38) 

and the interval containing the variance values from 95% of the 
replicates was (0.4811, 0.5666).

E[Ψ] computed from demographic estimates
We now compare empirical ψ values with the ψ values predicted 
by demographic models; we use demographic models that have 
been inferred in studies of the European founder event in D. 
melanogaster.

Multiple studies have estimated population sizes and diver
gence times for D. melanogaster. In particular, Li and Stephan 
(2006) used a maximum likelihood method based on the joint 
SFS, and Laurent et al. (2011) and Duchen et al. (2013) used ap
proximate Bayesian computation. All three studies used the 
same set of X-chromosomal sequences from Glinka et al. (2003), 

Fig. 5. Theoretical values of E[Ψ] (Equation (32a)) for varying values of NA 

and NB in the founder effect demography of Fig. 1d. Parameters s and t are 
fixed, with s = 20 and t = 50. The black line shows parameter sets (NA, NB) 
for which E[Ψ] = 0.

Fig. 6. Theoretical values of E[Ψ] (Equation (32a)) for varying values of t 
and NB in the founder effect demography of Fig. 1d. Parameters s and NA 

are fixed, with s = 20 and NA = 500. The black line shows parameter sets 
(t, NB) for which E[Ψ] = 0.
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with the Netherlands representing Europe and Zimbabwe repre
senting Africa.

The study of Laurent et al. (2011) incorporates Asian samples, 
and the study of Duchen et al. (2013) adds North American sam
ples, but here we focus on subsets of the inferred demographic 
parameters in these studies, specifically on the divergence of 
African and European populations shared by all three studies.

The modes of parameter estimates from the three articles are 
summarized in Table 1. The model of Li and Stephan (2006) as
sumes a prolonged bottleneck of constant size in the European 
population. Laurent et al. (2011) and Duchen et al. (2013) instead 
assumed exponential growth in Europe. All three models assume 
constant population size in the African population after the split 
with the European population.

For Li and Stephan (2006), the values for the model in their 
Fig. 1a appear on p. 1,582–1,583; African population size is labeled 
N̂A0 by Li and Stephan (2006, p. 1,582), current European popula
tion size is 􏽢NE0 (p. 1,583), bottleneck European population size is 
N̂E1 (p. 1,583), and time variables are t̂E0 for bottleneck length 
and ̂tE1 for post-bottleneck interval length (p. 1,583). In their infer
ence algorithm, although the data are from the X chromosome, 
the authors use a coalescent process with N diploid individuals 
and a parameterization Θ = 4Nμ. In our calculations in the section 
on “Expectation and variance of Ψ for specific demographic mod
els,” we have also assumed that the coalescent process has N dip
loid individuals and 2N lineages. Because the parameterization of 
Li and Stephan (2006) matches our parameterization in Equation 
(30), we use the values from Li and Stephan (2006) directly.

For Duchen et al. (2013), we extracted parameter values for 
their model C (defined in their Table S2) for the African population 
from their Table 4 (NAc) and for the European population from 
their Table 5 (NEa and NEc immediately after the split and at the 
present time, respectively, and time TAE since the split), exponen
tiating values reported logarithmically. The tables of Duchen et al. 
(2013) report numbers of diploid individuals in a population; 
hence, we use their population size values directly to calculate 
E[Ψ] and V[Ψ].

For Laurent et al. (2011), we extracted estimates of parameter 
values from the X-chromosome column in their Table 3 for the 
model in their Fig. 1. Laurent et al. (2011) assumed equal propor
tions of males and females in the population, explicitly consider
ing the X chromosome, so that the total number of lineages in a 
population of size N is 32 N, and Θ = 3Nμ. To match the diploid auto
somal parameterizations under which we derived our theoretical 
expressions in the section “Expectation and variance of Ψ for spe
cific demographic models,” we re-scaled population sizes reported 
in Table 3 of Laurent et al. (2011) by multiplying them by 34, and we 
then used them to calculate E[Ψ] and V[Ψ]; this procedure is 
equivalent to rederiving Equation (28) with 3N in place of 4N and 
then inserting the N values from Laurent et al. (2011) directly.

For the demographic parameters of Li and Stephan (2006) that 
used a simple bottleneck model, we used Equation (30) with 
NA = NEUR, Nb = NEUR,b, NB = NAFR, and tb = tb from Table 1. For 

the demographic parameters of Laurent et al. (2011) and 
Duchen et al. (2013), which used an exponential growth model, 
we used Equation (28) with NA,0 = NEUR,0, NA,t = NEUR,t, NB = NAFR, 
and the exponential growth rate rA computed from European 
population sizes using Equation (23).

The values of E[Ψ] and V[Ψ] computed for each set of para
meters are shown in Table 1. For the Laurent et al. (2011) and 
Duchen et al. (2013) demographies, the value we expect from 
the coalescent theory—E[Ψ] in Table 1—lies inside the 95% boot
strap interval for the value obtained directly from data in 
Equation (37).

The variance in our empirical calculation (Equation (38)) 
closely matches the values of V[Ψ] implied in Table 1 by the demo
graphic models, with all three values lying in the 95% bootstrap 
interval.

Discussion
Summary
We have examined the directionality index Ψ as a random variable 
under coalescent models of two populations with a shared demo
graphic history. Using this formulation, we have derived exact 
values for the expectation E[Ψ] and variance V[Ψ] of the direction
ality index for four parameterizations of a population split demog
raphy. We have explored the behavior of the expectation and 
variance, showing the dependence of Ψ on demographic para
meters and identifying parameter regions for which a positive va
lue of ψ does not necessarily mean that the “A” population is more 
distant from the source of a range expansion. Our expression for 
V[Ψ] also allowed us to connect the sample variance of ψ across 
many sites to the size of the ancestral population. Finally, we 
showed how our theoretical results can be used to compare the 
predictions of demographic models with empirical observations.

Our explorations of the theoretical behavior of ψ show that in a 
sample of size 4 lineages, E[Ψ] tends to be more sensitive to 
changes in the bottleneck strength s and derived population sizes 
NA and NB than to the time t since the population split (Fig. 4a–c). 
The variance V[Ψ], however, increases quickly with increasing t 
(Fig. 4d–f). These results are informative for considering the ef
fects of bottlenecks on empirical values of ψ. For example, in a 
model in which a bottleneck is ancient, the variance of Ψ would 
be larger compared to a model with a recent bottleneck.

Expressions for E[Ψ] and V[Ψ] (Equations (20), (26), (30), and (32)) 
do not depend on NC, the ancestral population size. This insight 
suggests that predictions about range expansions under the mod
el are largely unaffected by events in the shared history of the two 
populations. However, NC does affect the number of SNPs avail
able for empirical calculation. When data from many sites are 
used to compute ψ, the expected number of shared SNPs in the 
calculation is proportional to ΘC = 4NCμ; for small NC, we might 
not observe enough shared SNPs for the empirical computation 
of ψ to accurately reflect a model-based prediction.

Table 1. Inferred demographic parameters reported for European and African D. melanogaster populations in the previous studies that 
used X-chromosomal loci, and corresponding model-predicted values of E[Ψ] and V[Ψ].

Article t NAFR European bottleneck E[Ψ](EUR, AFR) V[Ψ](EUR, AFR)

Li and Stephan (2006) 158,000 8,603,000 NEUR,b = 2,200 for tb = 3,400 generations, then NEUR = 1,075,000 0.3950 0.5372
Laurent et al. (2011) 168,490 3,589,770 Exponential growth from NEUR,t = 16,550 to NEUR,0 = 1,224,378 0.5165 0.4970
Duchen et al. (2013) 194,984 4,975,360 Exponential growth from NEUR,t = 16,982 to NEUR,0 = 3,122,470 0.4912 0.5092

In all studies, ten generations per year are assumed; we report times in generations.
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Comparison of theoretical and empirical ψ for 
D. melanogaster
In an application to data from D. melanogaster, empirical evalu
ation of ψ revealed a positive value in a scenario with a 
European population in the role of the “A” population and an 
African population in the role of the “B” population. This observa
tion is consistent with the higher level of drift in European popu
lations of D. melanogaster than in African populations: the analysis 
accords with the general understanding of D. melanogaster demo
graphic history. Further, for two of three D. melanogaster modeling 
studies, the empirical value of ψ matched the predictions for E[Ψ] 
from the demographic models (Table 1).

Connections
Our results recapitulate some of the insights of the branching pro
cess analysis of the discrete-time expansion model of Peter and 
Slatkin (2015). In that model, the expectation of Ψ was found to 
be E[Ψ] =

1
2

( N
k − 1)t where N is the population size of each deme, 

k is the founder population size during settlement of a new 
deme, and t is the settlement time of the tth deme, the integer 
time variable that counts sequential founder events from the ori
gin to the most recently settled deme. This expression shows that 
E[Ψ] increases with smaller values for sizes of the founder popula
tions (k) and with the number of founder events (t).

In our formulations, the founder population size corresponds 
to the initial population size after the split NA,t in the exponential 
growth model, the bottleneck population size Nb in the bottleneck 
model, and the reciprocal of the bottleneck strength s in the in
stantaneous bottleneck model. In these cases, we have observed 
a similar pattern in the magnitude of E[Ψ], which increases with 
smaller NA,t (Equation (26a)), smaller Nb (Equation (30a)), or larger 
s (Equation (32a), Fig. 4).

The role of the time variable t, however, differs between the 
model of Peter and Slatkin (2015) and our analysis. In particular, 
the linear chain of many populations by Peter and Slatkin (2015)
gives rise to a linear dependence of E[Ψ] on t, whereas our two- 
population model produces a nonlinear dependence of E[Ψ] on t 
due to interactions among various demographic parameters 
(Fig. 6).

Our study follows a similar spirit to the work of DeGiorgio et al. 
(2011), who derived expressions for the distribution of pairwise 
coalescence times in a serial founder model with a sequence of 
multiple bottlenecks. Many population-genetic statistics are 
functions of expected pairwise coalescence times, among them 
FST (Slatkin 1991) and f4 (Peter 2016). Because our study uses ratios 
of certain expected branch lengths rather than the pairwise co
alescence times themselves, our expressions for E[Ψ] and V[Ψ] 
are perhaps more closely connected to analyses that focus on in
ternal and external branch length computations and other 
coalescent-based branch length ratios (Fu and Li 1993; Ferretti 
et al. 2017; Alimpiev and Rosenberg 2022).

An additional connection to other coalescent studies (Tajima 
1983; Takahata and Nei 1985; Takahata and Slatkin 1990; 
Szpiech and Rosenberg 2011; Rosenberg 2013; Guerra and 
Nielsen 2022; Peter 2022) is that we have focused on the case of 
4 sampled lineages. In many problems, the four-lineage analysis 
is the simplest non-trivial case, it can be studied analytically, 
and it provides insights useful for larger samples.

Further work
Our models are focused on pairs of populations, bottlenecks, 
and infinitely-many-sites mutation. Extended models could 

potentially consider additional phenomena; for example, recur
rent and reverse mutation, the influence of natural selection on 
coalescence times for some sites, linkage among sites, and demo
graphies that allow migration after population divergence. In the 
case of migration, a more recent study of than those that underlie 
Table 1 suggests a high rate of back-migration of D. melanogaster 
from Europe to Africa (Arguello et al. 2019), so that predictions 
for ψ in models that include migration would be meaningful. 
One approach to considering migration with ψ is an extension of 
the discrete-time expansion model of Peter and Slatkin (2015). 
Including migration between demes after founding events and ex
ploring its impact on ψ is possible in a simulation-based extension 
of their model (Kemppainen et al. 2024).

In the framework of our theoretical analysis with four lineages 
and two populations, migration would allow for private mutations 
that appeared in population A to be introduced into population B, 
decreasing the value of ψ. Topologies that are more likely to gen
erate shared mutations (such as δ, ε, and ζ in Fig. 2) would be ob
served more often, due to lineages being transported between 
populations in the time since the split between populations A 
and B, altering the values of E[Ψ] and V[Ψ]. The theory could po
tentially be pursued by adding ψ to coalescent models that allow 
for post-divergence migration (Wakeley 1996 ; Rosenberg and 
Feldman 2002; Teshima and Tajima 2002; Wilkinson-Herbots 
2008; Hobolth et al. 2011; Wilkinson-Herbots 2012).

Data availability
The genetic sequences for D. melanogaster X-chromosomal loci 
were obtained from the European Nucleotide Archive (ebi.ac.uk/ 
ena), sequence IDs AJ568984 to AJ571588, and AM000058 to 
AM003900. Code to perform the computation of ψ from data and 
generate figures and tables in this article is available at github. 
com/EgorLappo/coalescent-psi.
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