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The y directionality index was introduced by Peter and Slatkin (Evolution 67: 3274-3289, 2013) to infer the direction of range expansions
from single-nucleotide polymorphism variation. Computed from the joint site frequency spectrum for two populations, y uses shared
genetic variants to measure the difference in the amount of genetic drift experienced by the populations, associating excess drift
with greater distance from the origin of the range expansion. Although y has been successfully applied in natural populations, its stat-
istical properties have not been well understood. In this article, we define ¥ as a random variable originating from a coalescent process in
a two-population demography. For samples consisting of a pair of diploid genomes, one from each of two populations, we derive ex-
pressions for moments [E[‘}"‘] for standard parameterizations of bottlenecks during a founder event. For the expectation E[V¥], we identify
parameter combinations that represent distinct demographic scenarios yet yield the same value of E[¥]. We also show that the variance
V[¥] increases with the time since the bottleneck and bottleneck severity, but does not depend on the size of the ancestral population;
the ancestral population size affects y computed from many biallelic loci only through its contribution to the total number of loci available
for the computation. Finally, we analyze the values of E[¥] computed from existing demographic models of Drosophila melanogaster and
compare them with empirically computed y. Our work builds the foundation for theoretical treatments of the y index and can help in

evaluating its behavior in empirical applications.
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Introduction

Inference of the demographic history of populations—including
their population-size changes and relationships with other popu-
lations—is a major objective of statistical population genetics (e.g.
Marchi et al. 2021). The combination of statistical methods based
on the coalescent theory with extensive genetic data has enabled
researchers to investigate diverse features of demographic histor-
les (e.g. Pool et al. 2010).

One of the most fundamental ways in which genetic data can
be summarized for statistical analysis is by the site frequency
spectrum (SFS), which counts the numbers of sites—typically
single-nucleotide polymorphisms (SNPs)—that are present in dif-
ferent multiplicities in a sample (e.g. Wakeley and Hey 1997;
Achaz 2009). Comparisons of the empirical SFS in a population
to predictions of a coalescent model can detect phenomena,
such as bottlenecks, expansions, or selective sweeps (e.g.
Ferretti et al. 2010; Ronen et al. 2013). The SFS has received exten-
sive theoretical treatment under many demographic scenarios
and has often been applied for inference in real populations (e.g.
Nielsen et al. 2005; Thornton and Andolfatto 2006).

In data from multiple populations, a joint SFS can be defined
that records SNP allele frequencies in each population
(Gutenkunst et al. 2009). A joint SFS enables inference of pro-
cesses, such as admixture, migration, and differences in selection
between populations (Caicedo et al. 2007; Nielsen et al. 2009;
Excoffier et al. 2013; Zhan et al. 2014; Arguello et al. 2019; Liu
and Fu 2020). In the setting of population pairs, Peter and

Slatkin (2013) proposed a statistic, the y directionality index,
which is computed from the joint SFS for the two populations.
This index was designed for characterizing the process of range
expansion, in which a population sequentially settles locations in-
creasingly distant from its origin (e.g. Ramachandran et al. 2005;
Excoffier and Ray 2008; Excoffier et al. 2009).

In a range expansion, the leading edge of the expansion experi-
ences stronger genetic drift relative to the point of origin (e.g.
Hallatschek and Nelson 2008; Slatkin and Excoffier 2012; Peter
and Slatkin 2015; Peischl and Excoffier 2016). In the genetic history
of individuals at the edge of the expansion, the range expansion
process can manifest as a sequence of population size bottle-
necks, as increasingly distant geographic locations are settled
(e.g. DeGlorgio et al. 2009; Deshpande et al. 2009; DeGiorgio et al.
2011).

For two populations that are part of the expansion, the y direc-
tionality index seeks to identify the direction of the expansion.
The approach relies on the fact that if a given derived allele is
shared between the two populations, then its frequency is ex-
pected to be higher in the derived population at the edge of the
range expansion than in the source population (e.g. Edmonds
et al. 2004; Klopfstein et al. 2006; Excoffier and Ray 2008;
Schlichta et al. 2022). Alleles at low frequency in the source popu-
lation are likely to be lost during the expansion and therefore
would not be shared. The derived population has a smaller found-
ing population size than the source population, so that alleles—if
they are not entirely absent—tend to possess greater frequencies.
The w index considers the population differences of allele
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frequencies specifically in the shared genetic variation between
the two populations.

Among pairwise quantities that can be computed as summary
statistics useful for interpreting population-genetic data (e.g.
Fsr), the y index stands out as a signed quantity. For two popula-
tions A and B, the order of the populations matters, with
w(A, B) = —y(B, A). Therefore, whereas Fsr is often seen as a genetic
measure of distance, y is akin to a vector directed from one popu-
lation to another (see also Peter and Slatkin 2013, Figs. 5 and 7).

The y index was first defined by Peter and Slatkin (2013), who
developed a method that integrates information about pairwise
w with geographic distances between sampling locations to iden-
tify coordinates of the expansion origin. They then applied it to si-
mulated scenarios including isolation-by-distance and range
expansion on a grid of populations, as well as to complex config-
urations involving migration barriers.

Peter and Slatkin (2015) then studied theoretical properties of
in a discrete time-expansion model. The model consisted of a lin-
early arranged set of demes with equal population size, with a sin-
gle deme dy settled initially and the rest of the demes empty. Atan
integer timepoint t, a new deme d; is settled by individuals from
the previous deme d;—;. The quantity of interest was w(do, di) at
time t between the origin deme and the leading edge of the expan-
sion. Peter and Slatkin (2015) showed that in the model, the ex-
pected value of y between the source and the leading edge of
the expansion—which has experienced a sequence of founder
events—depends on the relative founder sizes of settlement
events (the fraction of individuals selected from deme d;_; to settle
d:) and the number of founder events, equal to t in their scaling of
time. Peter and Slatkin (2015) used y to identify the expansion ori-
gin for natural populations of Arabidopsis thaliana, which they pre-
sumed to have expanded spatially in a manner compatible with a
linear arrangement of demes.

Several recent uses of y have since sought to examine scenarios
where, instead of an expansion over a linear spatial dimension, an
expansion involves pairwise computations for a small number of
discrete demes, as few as two. For example, Zhan et al. (2014) ex-
amined the expansion of monarch butterflies from North America
to South America, the Pacific, and Europe, computing w between a
source population in North America and a destination population
elsewhere. Puckett and Munshi-South (2019) examined the ex-
pansion of brown rats from Eastern Asia to the Middle East, the
Middle East to Europe, and Europe to North America, computing
w between pairs of populations in two different geographic re-
gions. loannidis et al. (2021) similarly used pairwise values of y be-
tween pairs of human populations of different Pacific islands to
understand sequences of events in the human settlement of the
region.

In this article, building from the interest in using y for expan-
sions involving small numbers of discrete populations rather
than many demes along a spatial continuum, we examine the y
statistic theoretically in the simplest discrete-deme structured
population: a pair of populations. We define ¥ as a random vari-
able arising from the coalescent process and derive expressions
for moments of ¥ under the coalescent. We focus on the scenario
in which a single diploid individual is sampled in each of a pair of
populations. Next, we consider specific commonly used parame-
terizations of range expansions in the setting of population pairs,
explicitly incorporating exponential growth, bottlenecks, and in-
stantaneous bottlenecks (Fig. 1). We then explore theoretical pre-
dictions for the expectation E[¥] and variance V[¥], interpreting
them in terms of the reliability of inferences and the identifiability
of demographic scenarios. We use the central limit theorem to
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Fig. 1. Four demographic scenarios. a) Population split: an ancestral
population C splits into two populations A and B at time t. b) Exponential
growth: after the split, populations A and B grow at rates r4 and 1z,
respectively. c) Bottleneck: after the split, population A goes through a
bottleneck of population size N, and duration t,,. d) Instantaneous
bottleneck: after the split, population A goes through a burst of
coalescences of strength s. Times t and t — t;, are measured in generations
back from the present.

analyze the sample variance of the y index computed from
many SNPs. Finally, we show how our results can be used in the
evaluation of empirical inferences of demographic parameters
for real populations.

Coalescent-based definition of the y index
w for a pair of genomes

The directionality index y is a two-population statistic computed
from allele frequencies for a set of biallelic SNPs. For the rest of
this article, we assume that the derived and ancestral alleles are
known for each SNP, and we call the SNP shared between two po-
pulationsif the derived allele is present in atleast one copy in both
populations and the SNP is polymorphic in the pooled pair of
populations.

Suppose now that we know allele frequencies for a set of SNPs
in two populations A and B. In its most general form, the value of
the windex is then defined as

Wt B = Y (= o) o

jes

where S is the set of SNPs shared between the two populations, fa
is the frequency of the derived allele of SNPj in population A, and
fej is its frequency in population B (Peter and Slatkin 2015,
Equation 1).

We proceed by focusing on the simplest case in which y can be
meaningfully studied in two populations. In particular, if allele
frequencies are computed using a single diploid individual
sampled from each population, and if shared SNPs are identified
based on this pair of individuals, then the expression for y reduces
to

N21 —N12
AB)=—————— 2
v ) Ny1 +Ny2 +M21 @
where n; is the number of SNPs that have i copies of the derived
allele in the individual from population A and j copies in the indi-
vidual from population B, and i and j can each equal 0, 1, or 2.
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The random variable ¥ under the coalescent

We now analyze the y index as a random variable under the co-
alescent. We use the notation ¥ to distinguish the theoretical ran-
dom variable for the directionality index from the empirical y
computed from data.

We assume that all SNPs are unlinked, so that coalescent trees
for different SNPs are independent. We also assume that SNPs
obey the standard infinitely-many-sites mutation model
(Durrett 2008, p. 29), such that each SNP results from a single mu-
tation on a coalescent tree. Finally, we assume that we have spe-
cified a demographic history for populations A and B (Fig. 1), and
that a single diploid individual is sampled from each population.
Such a sample configuration—one diploid individual with sample
size 2 alleles in each population—allows us to use the simplified
Equation (2).

Conditional on the demography and a sample of size 2 from
each of a pair of populations, the coalescent model defines a prob-
ability distribution over the genealogies of lineages from A and
B. In this framework, we can determine the expectation
E[?](A, B) of the directionality index under the coalescent model
for a single SNP shared between populations A and B. We use
E[¥*] with k > 1 to denote higher moments of the random variable
¥ under the coalescent.

To compute E[¥], we consider probabilities under the coales-
cent model of entries in the joint site frequency spectrum for po-
pulations A and B, conditional on the demography:

0 So1 So2
Sap=| S0 S11 S|, (3)

So2 Sa1 O

where s;; is the probability that a randomly sampled mutation—
that is, the derived variant of a random SNP on the genealogy
of four lineages—occurs in i copies in population A and in
j copies in population B. For example, s;, is the probability
that for a random SNP, the diploid sample from population A
has one ancestral and one derived allele, and the sample from
population B is homozygous with two copies of the derived al-
lele. As a shorthand, we will say that such a SNP has “type
12,” and we indicate other elements of the site frequency spec-
trum similarly.

Suppose now that we have sampled a single shared SNP. First,
the probabilities of a SNP having a specific type are obtained
from the site frequency spectrum S by conditioning on being
shared,

S21 (4a)

P[type 21 | shared SNP] = SHTsn o

11 (4b)

P[type 11 | shared SNP] = P

512 (4c)

P[type 12 | shared SNP] RIS —

Further, taking the total number of sampled SNPs to be 1 in
Equation (2), we know that the value of ¥ is constant for all
SNPs of the same type, with
¥ | shared SNP of type 21=1, (5a)
¥ | shared SNP of type 11=0, (5b)

¥ | shared SNP of type 12 =-1. (5¢)

Combining Equation (4) with Equation (5), we can write the def-
inition of random variable ¥ for a single shared SNP:

s S21
1, robability ———————,
P Y S11 +S12 + 521
s S11
=10 robability ———
A B) P Y s +sn+sn’ ©)
S12

-1, robability ————.
P Y S11+S12 + 521

The expectation of ¥ can then be straightforwardly computed as

Sp1 — S
E[¥] = 21-512 7)
S11 + S12 + 521

The second moment of ¥ is

[E[‘I’Z] _ S21 + 812
S11+S12+ 521

The higher moments of ¥ can be computed similarly, with
E[?] = E[¥°] =E[¥°]=---, )
E[¥?] = E[¥*] = E[¥*] = - (10)

In the remainder of this article, we discuss only the expectation

E[¥] and the variance V[¥] = E[¥?] — E[¥]’, as the other moments
can be obtained from these cases.

The only remaining quantities we need are the s;: the probabil-
ities that a randomly chosen SNP has i copies of the derived allele
in the sample of size 2 from population A and j copies in the sam-
ple of size 2 from population B, with (i, j) = (1, 1), (1, 2), or (2, 1). In
other words, under a coalescent-based demographic model with
infinitely-many-sites mutation, we seek to compute, as a fraction
of all SNPs, the number that occur on genealogical branches an-
cestral to i copies in population A and j copies in population B.

In a random genealogy, the expected total number of SNPs with
typeijis ®F[L;]/2, where L is the total length of branches ancestral
to i lineages from population A and j lineages from population B,
and ©/2 is the Poisson mutation rate along a branch. E[L;] is com-
puted by considering each topology separately:

IE[LU] = Z p‘r[E[Lr,ij]’ (11)

topology «

where p;, is the probability that topology z occurs and L, is the
length of branches ancestral to i lineages from A and j lineages
from B in genealogies with topology 7. The value of s; is then pro-
portional to

sjoc Y PeOE[Ly /2. (12)
topology =

Because we regard lineages within populations as exchangeable—
so that we do not distinguish between two lineages from the same
population—six topologies must be considered in Equation (12)
(Fig. 2). We denote the six topologies a, 8, 7, J, ¢, {. The topology prob-
abilities p, and the expected branch lengths E[L, ;] can be computed
for various demographic models, so that Equation (12) can be calcu-
lated and hence also Equations (7) and (8). In the next section, we
compute these quantities for simple models representing a founder
effect.
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Fig. 2. The six tree topologies possible for samples of two lineages each
from two populations A and B. Trees are labeled by Greek letters.
Branches relevant to the calculation of E[¥]—branches that are ancestral
to lineages from both populations—are labeled by by, b,, etc.

Expectation and variance of ¥ for specific
demographic models

The exact expressions for topology probabilities and branch
lengths in Equation (12) depend on specific parameterizations of
the demographic history. In this section, we derive expressions
for s; and moments of ¥ in Equations (7) and (8) for the four demo-
graphies shown in Fig. 1.

Population split

We first consider a simple population split demography (Fig. 1a). A
single ancestral population C of size N¢ splits into two populations
t generations ago. The two resulting populations A and B have
sizes Na and Ng individuals, respectively.

To compute E[¥] and V[¥], we compute topology probabilities
and relevant branch length expectations for each topology in
Fig. 2. Computations with topology a are not needed because
this topology cannot generate shared polymorphisms. For top-
ology probabilities ps and p,, we must further distinguish the
tree topologies based on the population in which the “cherry co-
alescence” happens. We denote by p, g the probability of the top-
ology # in which the coalescence (B,B) happens in population B; if
the coalescence (B,B) happens in the ancestral population C, then
we denote the probability by p, ¢, with similar notation for top-
ology y. These additional topology labels are depicted in Fig. 3.

First, we compute p,p. The two lineages from population B
must coalesce in population B; the probability of this event is
1 — e ¥(N2) The two lineages from population A must not coalesce
until they enter population C; the probability of that event is
e~Y/CNa) As aresult, two lineages from A and one lineage from B en-
ter population C. In population C, lineages from A and B must co-
alesce first; the probability of this event is 4 in the remaining 1 of
cases, the two A lineages coalesce first. As a result, we obtain
pyp =3e /[l —e/Ne)]. This derivation modifies the two-
population calculation of Tajima (1983) by allowing for different
population sizes for populations A and B rather than assuming
their exchangeability. Using the same logic for other tree topolo-
gles, we obtain the following probabilities:

p,p= % /NN — g t/2N)], (13a)
p A= 2[1 /Nt N) (13b)
} :
L o-t/any) pt/as)
PpC =P, =g ¢ /AW e/, (13c)

2
ps=Pe=pc=73 o~t/(2N4) o=t/(2Np) (13d)

AN AN
Fig. 3. Distinguishing locations of the cherry coalescence for topologies g

and y. The ancestral population is C and the descendant populations are A
(left) and B (right).

For g and y, summing the probabilities of the two cases, we get

Py = %e—mzw - ;e—t/(zm)e—t/(mg)y (14a)

v, %e—t/@NB) _ g o~ 1/(2NR) g=t/(2N5) (14b)

We now compute expected lengths of relevant branches for
specific sample configurations. All branches below the gene tree
root that are shared by at least one pair of lineages from different
populations are labeled in Fig. 2. For example, branch by is ances-
tral to two lineages from population B and one lineage from popu-
lation A for topology g; similarly, branch b, 1 is ancestral to one
lineage from population A and one lineage from population B if
the genealogy has topology ¢.

With Equation (12), we obtain equations for entries of the ex-
pected joint site frequency spectrum S, p:

S1a o (pyE(y] + peklbez), (152)
1 0 (D) + peElbe o)) (15b)
S11 o % [25(Elbs1] + E[b52]) + DoE[Dan] + prElbe]]. (150)

In the final expressions for moments of ¥ (Equations (7) and (8)),
the mutation rate cancels because all branches that can generate
shared sites can only appear in population C, so that ® =4N¢u in
all parts of Equation (15).

We are now left with calculating the expected branch lengths.
Because polymorphisms shared between populations A and B can
only result from mutations in the ancestral population C, our
branch length calculations need only consider coalescent theory
in a single population of size N¢ individuals. In particular, expec-
tations of branch lengths bg and b, are equal to the expectation of
the time E[T,] to coalescence of two lineages in the diploid popu-
lation of size N¢, so that

E[bs] = E[b,] = 2N¢. (16)

Similar logic applies to trees ¢ and ¢, with expectations of b, 1 and
bz1 equaling the expectation of the time T3 to the first coalescence
with three lineages,

E[be1] = E[be 1] =2%~ (17)

The lengths of b,, and b, are again proportional to E[T,] as in
Equation (16),

E[b,.] = E[b; 2] = 2Nc. (18)
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The expected length of branches bs1 and bs, together is equal to
Z[E[TQ] + |E[T3],

Ebsa] + Elbsa] = 4Nc + 5. (19)

Finally, we can substitute expressions for the branch lengths

(Equations (16)—(19)) and the topology probabilities (Equation

(13)) into Equation (15) to obtain expressions for SFS entries s;.

We then plug these quantities into Equations (7) and (8) to obtain

ol/(NA) _ gt/(2Ny)

T et/CL) 1 et/Ns)” (20a)
1
A [
H¥]=1 ol/(2Na) 4 pt/(2Ng) * (20Db)
The variance of ¥ is then
t/(2Na) pt/(2NB) _ pt/(2Na) _ ot/(2Ns)
vy 2t e mme e (209

[et/(Na) 4 et/(2N:)]”

Examining the expressions in Equations (20a) and (20c), we see
that both the mean of ¥ and the variance of ¥ do not depend on
the size N¢ of the ancestral population. We also observe that if
the population sizes are equal, Ny =N, then E[¥] = 0. Moreover,
examination of Equation (20) can directly bound the expectation
and variance. As limy,_,o E[¥] = -1 and limy, o E[¥] = 1, we have
-1 < E[¥] < 1; for variance, we have 0 < V[¥] < 1 because, on one
hand, lim;, ., V[¥] =0, and on the other hand,

1 2
Vi¥]=1- ot/(@NA) 4 pt/(2Ns) (E[¥])

1
< 1= 4 vy <1

for Na, Ng>0andt> 0.
Informally, we can write Equation (20a) as

t t
E[¥] =tanh (m - m) 1)
= tanh(“drift in A” — “drift in B”).

In this simple model, the “amount of drift” is that of a neutral
population of size Nn (or Ng) evolving for t generations.
However, by treating Na and Nj as effective population sizes, a
variety of demographic scenarios that include population growth
or bottlenecks can be considered. In subsequent subsections, we
explicitly parameterize models with population size changes
and present modified versions of Equation (20).

Exponential growth
We next consider populations A and B evolving under the classic
exponential growth model. A and B begin exponential growth im-
mediately after splitting from the ancestral population C, as
shown in Fig. 1b.

Let population A have size Na o at the present time, such that its
population size over time is

Nar=Nape™™, (22)

where ris time, measured in generations from the presentinto the
past, and r, is the growth rate. Equation (22) is defined such that if

ra > 0, then population A is increasing in size forward in time. If
population A has size Na; immediately after the split, then the
growth rate can be computed from Equation (22) as

1, (Na
rA_—?ln<m>. (23)

Slatkin and Hudson (1991) showed that for a pair of lineages, the
coalescent in a growing population of size N4 . is equivalent to the
coalescent in the constant population of size Na o, with time re-
scaled by

TAT _
=21 (24)
N

Hence, the probability that two lineages coalesce in the first t gen-
erations in the population of size Na , is

et —1
P[To <t]=1-exp ~Naors) (25)

A corresponding equation holds for population B.

We can repeat the calculations of tree topology probabilities in
Equations (13) and (14) by replacing the constant-size coalescence
probability 1 — exp[ — t/(2N)] by the quantity in Equation (25). As a
result, we obtain the following expressions for expectation and
variance of ¥ under the exponential growth model:

- ta s
E[‘{’}_tanh<4NAYO 4NB,0)' (26a)

1

19 -
IE[\P ] =1 eta/(2Nao) 4 pts/(2Ngo)’

(26b)

4pta/(2Nao) pts/(2Nso) _ pta/(2Nao) _ ots/(2Npo)
V(¥ == ‘ ¢ - : (26¢)
[etA/(QNA,O) + ets/(ZNB,o)]

where we have introduced a shorthand notation

rat _
tA = ¢ ! ) (278)
Ta
st _
p= 1 (270)
B

If only one population is subject to exponential growth, then
expressions for E[¥] and V[¥] can be found by taking the limits
in Equation (26) as the growth rate approaches zero. For example,
if rg =0, then we have

- bt
E[?] =tanh (4NA,O 4NB>’ (28a)

ta/(2Nao) ot/(2N8) _ pta/(2Nao) _ ot/(2Ng)
] = 4e e e ; e , (28b)
[etA/(ZNA,D) + et/(QNB)]

where again ta is defined by Equation (27a).

Bottleneck

For our third model, we assume that immediately after the split,
population A goes through a bottleneck of length t, with constant
population size Ny, as shown in Fig. 1c. This type of model has
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6 | Lappo and Rosenberg

been used in studies of human expansion from Africa (DeGiorgio
et al. 2009, 2011).

The calculations of E[¥] and V[¥] are similar to those for the
population split demography, except that the topology probabil-
ities differ: we consider special cases for topologies g and y
(Fig. 2). For B, we distinguish between coalescent genealogies in
which the node (B,B) is located in population B @p,B) and in popu-
lation C (p, ). For y, we distinguish between genealogies in which
the node (A,A) occurs in population A after the bottleneck ®,A)
during the bottleneck (py,bot)' and in population C (py,C)- The prob-
abilities are:

PyB = % o~(t=1)/(2Na) ot/ (2N) [1 _ e—t/mm], (29a)
1
—p = 2 o(-0)/(2NA) p=to/(2Ny) o=t/(2N5)
p/r,C—py,C—ge b)/1ZNA) o=tb/(2Nb) o B (29Db)
p,A= %[1 — e-tuyan |o-vam), (290)
2 4 _ _
Pbot =3¢ (t tb>/<2NA>[1 —e tb/<2Nb)] ~t/(2Ns) (294)
14
2
—p. =p, = = ~(=1)/(2Na) p=to/(2N) o=t/(2Nz) 29
Ps=p.=pc=ge e e (29€)

The expressions for the moments of ¥ are

B t=ty Bt
E[¥] _tanh(4NA +_4Nb _4NE>' (30a)
9 1
E[¥]=1- (30b)

o(t=tp)/(2Na) 4 pts/(2Ny) ot/ (2Ng)

V[Y]
bttt bt b
¢2Na | 462Na ¢2Ng 2Ny _ ¢2Np 2Ny _ 02Nj 2N

to bt 5
¢2Ng ¢2Na 4 ¢2Na 02Ny

(30¢)

If N, =Na, then Equation (30) reduces to Equation (20). If t, =0,
then expressions in Equation (30) match Equation (20) irrespective
of the value of Ny,.

Founder effect

The final model that we consider is a model that has been pro-
posed for simplifying the modeling of founder effects. Instead of
a prolonged bottleneck, we introduce an instantaneous bottleneck
into population A (Fig. 1d). An instantaneous bottleneck is defined
as a burst of coalescences; mathematically, two lineages going
through an instantaneous bottleneck of strength s behave as if
going through s (imaginary) generations of drift in the population
of final size N,. Instantaneous bottlenecks are typically used in si-
tuations where the bottleneck is short enough such that the pos-
sibility of mutations happening during the bottleneck can be
disregarded (Galtier et al. 2000; Bunnefeld et al. 2015). In practice,
this scenario could correspond to a low number of lineages from
population C settling the whole population A that exists after
the split.

Similarly to the bottleneck demography scenario, we adjust the
tree topology probabilities to reflect the demography in Fig. 1d:

PyB = % e‘<f+5>/<2NA>[1 - e-t/<2NB>], (31a)
pﬂ,C :py,C — % e—(t+s)/(2NA) e*f/(QNB)' (31b)
pA= %[1 _ e_t/(ZNA)]e_t/(ZNE), (31¢)
P,bot = % t/(2NA) [1 - e—s/(zNA)] o=t/(2Ne) (31d)
Ps=pe=pc = % o~(4)/(2N8) -t/ (2Ns). (31¢)

The expressions for the moments of ¥ in this case are:

t+s t
E[?] =tanh <m - m) (32a)

1

21 =
E[¥°]=1- o(t+)/(2N5) y t/(2N3)*

(32b)
[4e(6+)/(2N) gt/ (2Ne) _ g(6+)/(2Nn) _ gt/(21:)]

V[¥] = 32¢
¥l [e<t+s>/<zNA>+et/<zNB>]2 (82¢)

These expressions reflect the fact that the “strength” of the bottle-
neck depends on its duration t, and population size Ny only
through the ratio t,/(2Ny), as captured by the parameter s. If
s =0, then Equation (32) reduces to Equation (20).

Illustrations of E[¥] and V[¥]

Toillustrate our theoretical expressions, we plot E[¥] and V[¥] for
arange of parameter values. For these plots, we use the instantan-
eous bottleneck formulation, asit has only five parameterst, s, Na,
Ng, and N¢ instead of six, as in the exponential growth and bottle-
neck scenarios.

Figure 4 shows E[¥] and V[¥] for varying t and s and fixed popu-
lation sizes Na =400, Ng =600, and N¢ =1,000. The behavior of
E[?] confirms the intuition in Equation (21): as the bottleneck
strength s increases, population A accumulates larger amounts
of drift due to increased probability of coalescence in the bottle-
neck (Equation (32a)), leading to higher positive values of E[¥].
Similarly, increasing t leads to more drift in population A because
Na < Ng, and A accumulates drift at a higher rate than B. Note that
if we were to set N = Np in Equation (32a), then the value of E[¥]
would not depend on the time t since the bottleneck.

The variance V[¥] also increases with both the time t since the
bottleneck and the bottleneck strength s, with stronger depend-
ence on t compared to E[¥]. As s or t increases, the probability of
observing a SNP of type 11, s11, decreases, as a type 11 SNP requires
all four lineages from A and B to persist into population C without
coalescing, whereas type 12 and type 21 SNPs can be produced
with only three lineages persisting into population C. SNPs of
type 11 can appear only in genealogies 6, ¢, and { where all coales-
cences happen in ancestral population C, and the probability of
observing these genealogies is small for large s and t. The second
moment E[¥?] = (sp1 + S12)/(S12 +S21 +511) then grows large, in-
creasing the variance.

We can use our theoretical results to analyze identifiability of
demographic scenarios with the y index. In analyses of genetic
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Fig. 4. Values of E[¥] and V[¥] under the founder effect demography of Fig. 1d. The population sizes are constant, with Ny = 400, N = 600, and N¢ = 1,000.
The values are computed using Equation (32a) for E[¥] and Equation (32c) for V[¥]. a) E[¥] for varyings, t = 10. b) E[¥] for varyings, t = 80. c) E[¥] for varying
s, t=120. d) V[¥] for varying s, t = 10. e) V[¥] for varying s, t = 80. f) V[¥] for varying s, t = 120.

data, a positive y is used to claim that the population A is located
further from the source of the range expansion (Peter and Slatkin
2013), with the population with more drift experiencing bottle-
necks during founder events. However, this logic does not account
for the possibility that other demographic scenarios could gener-
ate an identical value of y. Figure 5 provides an example of this
phenomenon by showing that if the population size N is suffi-
ciently small relative to Na, then E[¥] could be negative even in
the presence of a bottleneck in population A. Figure 6 shows the
dependence of E[¥] on N and t. If Np is small enough in relation
to Na, then the value of E[¥] can decrease with increasing t and
can even reverse its sign. The negative value of the directionality
index then obscures the ancient bottleneck in A.

Sampling theory of ¥

We have demonstrated that the expectation E[¥] and variance
V[¥] do not depend on the ancestral population size N¢. In this
section, we show that our confidence in the value of y computed
from SNP data does depend on N through sample variance.

The random variable ¥ and its associated quantities E[¥] and
V[¥] refer to the directionality index for a single SNP under the co-
alescent. In a data analysis, y is computed using many shared
SNPs across the genome, say n. Denote by ¥ the (random)
many-SNP y index, signifying that this quantity can be seen as
the mean of many single-SNP observations of y. For n sampled in-
dependent shared SNPs, the central limit theorem states that the
resulting ¥ approaches a Gaussian distribution with variance pro-
portional to 1,

¢§N<[E[\p], @) (33)

As the number of sampled shared SNPs increases, the probability
that ¥ is close to its mathematical expectation E[¥] increases.
Under the infinitely-many-sites model, the number of shared
SNPs n is itself a random variable that depends on the mutation
rate u and the ancestral population size N¢, as shared SNPs
reflect mutations in the ancestral population. More precisely,
E[n] = OF[L]/2, where ® = 4Ncu is the scaled mutation rate in a dip-
loid population of N individuals, and E[L] is the expected length of
branches that can yield shared SNPs, in units of 2N¢ generations.
All branches that can generate shared SNPs were identified in

Fig. 2, so we can use Equations (16)—-(19) to write an equation for
E[L]:

2NGE[L] = pyE[bg] + p,E[b,] + ps(E[bs 1] + E[bs2])
+ P (E[be1] + Ebe2]) + pr(E[be1] + Elbe2]),

7 4 4
E[L]=ps+P; +3Ps +3P: + 3P0 (34)

For example, with the founder effect model, we get

E[L] = % [e—<t+s)/(2NA) + e—r/(zNB)], (35)
E[n] = L”; | (36)

The expected number of shared SNPs depends linearly on the an-
cestral population size, and N¢ then affects the number of shared
SNPs available for empirical analyses using the directionality
index.

Equation (36) specifies the dependence of the random variable
n on the demographic parameters. For example, we can see that
stronger bottlenecks—higher values of s—lead to an increase
not just in the variance V[¥] (Fig. 4), but also in the sample vari-
ance by decreasing the number of available shared SNPs, E[n].

Application to Out-of-Africa expansion of
Drosophila melanogaster

To test our coalescent-based predictions for y, we compute y for a
specific demographic event in two ways. First, we use Equation (1)
to compute y directly from genotypes in natural populations.
Second, we make use of existing estimates of demographic para-
meters to evaluate our equations for E[¥] and V[¥].

The demographic scenario we consider here is the Out-of-
Africa expansion of D. melanogaster. It is generally agreed that
the modern European populations trace to a small founding popu-
lation as the species range expanded from Africa (e.g. Stephan and
Li 2007 ; Arguello et al. 2019). As the founder event was directed
from Africa to Europe, we expect to see y(Europe, Africa) > 0.

w computed from sequence data

For our empirical computations, we evaluated y from the se-
quences of intronic and intergenic X-chromosomal loci used for
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Fig. 5. Theoretical values of E[¥] (Equation (32a)) for varying values of N
and Np in the founder effect demography of Fig. 1d. Parameters s and t are
fixed, with s =20 and t = 50. The black line shows parameter sets (Na, Ng)
for which E[¥] =0.

demographic inference by Li and Stephan (2006), Laurent et al.
(2011), and Duchen et al. (2013), originally obtained by Glinka
et al. (2003) and Ometto et al. (2005). We downloaded sequences
of X-chromosomal loci from the European Nucleotide Archive
(ebi.ac.uk/ena), sequence IDs AJ568984 to AJ571588 and
AMO00058 to AMO003900 (originally deposited by Glinka et al.
2003; Ometto et al. 2005).

Each locus had nucleotide data in the form of a single (haploid)
genotype for a set of inbred lines from European (the Netherlands,
NTH) and African (Zimbabwe, ZW) populations of D. melanogaster,
as well as for a single line from a North American population of
Drosophila simulans. The genetic sequence for each line was hap-
loid due to the sequencing being performed with homozygous in-
bred lines. The total number of X-chromosomal loci was 229, with
locus sequence lengths ranging from 210 to 784 nucleotides (me-
dian 563).

The D. simulans sequence was used in place of the ancestral
genotype in the analysis. Across the 229 loci, the maximum num-
ber of lines sequenced for the Netherlands population was 12 and
the minimum number of lines sequenced was 10. For the
Zimbabwe population, the maximum was 12 and the minimum
was 9.

Separately for each locus, we used MUSCLE v5.1 (Edgar 2004)
with default settings (-perturb 0 -perm none -consiters 2
-refineiters 100) to perform a joint multiple sequence align-
ment for the lines from the NTH and ZW populations of D. melano-
gaster as well as the D. simulans line.

To compute y for a set of loci, we generated a sample of 1,000
sets of four lines, two from the NTH population and two from
the ZW population. The sets of four were sampled with replace-
ment, but each set had two distinct NTH lines and two distinct
ZW lines (“distinct” here refers to distinct sample labels, not to dis-
tinctness of the genotypes).

For each set of four lines together with the D. simulans line, we
discarded sites that had insertions or deletions in the alignment of
five sequences. We next discarded invariable sites as well as sites
with three or more distinct alleles. Next, we discarded sites that
failed to meet a sharing criterion. In particular, we kept only those
shared (biallelic) sites in the sense of the definition in Equation (1),
requiring the derived allele to be present in at least one copy in

2.00 0.04
1.67 0.03
0.02
1.33
- 0.01
X —_
£ 1.00 A —0.00 2
W
=
- —0.01
0.75
-0.02
0.60 -0.03
0.50 . . -0.04

5 25 50 75 100
t

Fig. 6. Theoretical values of E[¥] (Equation (32a)) for varying values of t
and Ng in the founder effect demography of Fig. 1d. Parameters s and Na
are fixed, with s =20 and N, = 500. The black line shows parameter sets
(t, Ng) for which E[¥] =0.

both NTH and ZW populations and to be polymorphic in the
pooled pair of populations. We then computed y using Equation
(2) by sampling a single site from the final set of shared sites.

To understand the uncertainty in the y computation that arises
from differences in evolutionary history across loci, we analyzed
1,000 bootstrap replicate datasets, where each bootstrap replicate
involves a resample of 229 loci. In particular, in each bootstrap
replicate, we first sampled 229 loci with replacement. Next, we
generated 1,000 sets of four lines and computed y, as described
in the previous two paragraphs.

For each bootstrap replicate, we averaged y over the 1,000 va-
lues, each obtained from a random set of four lineages, obtaining
amean y for thatreplicate. We also obtained a variance across the
1,000 values.

Considering the 1,000 bootstrap replicates, the median of the
mean y values was

w(NTH, ZW) = 0.5280, (37)

with 95% of mean y values lying in the interval (0.4860, 0.5710).
The median across 1,000 bootstrap replicates of the variance of
w was equal to

Var[y(NTH, ZW)] = 0.5244, (38)

and the interval containing the variance values from 95% of the
replicates was (0.4811, 0.5666).

E[¥] computed from demographic estimates

We now compare empirical y values with the y values predicted
by demographic models; we use demographic models that have
been inferred in studies of the European founder event in D.
melanogaster.

Multiple studies have estimated population sizes and diver-
gence times for D. melanogaster. In particular, Li and Stephan
(2006) used a maximum likelihood method based on the joint
SFS, and Laurent et al. (2011) and Duchen et al. (2013) used ap-
proximate Bayesian computation. All three studies used the
same set of X-chromosomal sequences from Glinka et al. (2003),
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Table 1. Inferred demographic parameters reported for European and African D. melanogaster populations in the previous studies that
used X-chromosomal loci, and corresponding model-predicted values of E[¥] and V[¥].

Article t Narr

European bottleneck

E[¥](EUR, AFR) V[¥](EUR, AFR)

Li and Stephan (2006)
Laurent et al. (2011)
Duchen et al. (2013)

158,000 8,603,000
168,490 3,589,770
194,984 4,975,360

Exponential growth from Neyr = 16,982 to Ngyro = 3,122,470

Ngurp = 2,200 for t, = 3,400 generations, then Ngyg = 1,075,000 0.3950 0.5372
Exponential growth from Ngyr: = 16,550 to Ngyro = 1,224,378 0.5165 0.4970
0.4912 0.5092

In all studies, ten generations per year are assumed; we report times in generations.

with the Netherlands representing Europe and Zimbabwe repre-
senting Africa.

The study of Laurent et al. (2011) incorporates Asian samples,
and the study of Duchen et al. (2013) adds North American sam-
ples, but here we focus on subsets of the inferred demographic
parameters in these studies, specifically on the divergence of
African and European populations shared by all three studies.

The modes of parameter estimates from the three articles are
summarized in Table 1. The model of Li and Stephan (2006) as-
sumes a prolonged bottleneck of constant size in the European
population. Laurent et al. (2011) and Duchen et al. (2013) instead
assumed exponential growth in Europe. All three models assume
constant population size in the African population after the split
with the European population.

For Li and Stephan (2006), the values for the model in their
Fig. 1a appear on p. 1,582-1,583; African population size is labeled
Nao by Li and Stephan (2006, p. 1,582), current European popula-
tion size is Ngo (p. 1,583), bottleneck European population size is
Ne (p. 1,583), and time variables are g for bottleneck length
and fg; for post-bottleneck interval length (p. 1,583). In their infer-
ence algorithm, although the data are from the X chromosome,
the authors use a coalescent process with N diploid individuals
and a parameterization ® = 4Ng. In our calculations in the section
on “Expectation and variance of ¥ for specific demographic mod-
els,” we have also assumed that the coalescent process has N dip-
loid individuals and 2N lineages. Because the parameterization of
Li and Stephan (2006) matches our parameterization in Equation
(30), we use the values from Li and Stephan (2006) directly.

For Duchen et al. (2013), we extracted parameter values for
their model C (defined in their Table S2) for the African population
from their Table 4 (Nac) and for the European population from
their Table 5 (Nga and Ng. immediately after the split and at the
present time, respectively, and time Tag since the split), exponen-
tiating values reported logarithmically. The tables of Duchen et al.
(2013) report numbers of diploid individuals in a population;
hence, we use their population size values directly to calculate
E[¥] and V[¥].

For Laurent et al. (2011), we extracted estimates of parameter
values from the X-chromosome column in their Table 3 for the
model in their Fig. 1. Laurent et al. (2011) assumed equal propor-
tions of males and females in the population, explicitly consider-
ing the X chromosome, so that the total number of lineages in a
population of size Nis 2N, and © = 3Nu. To match the diploid auto-
somal parameterizations under which we derived our theoretical
expressions in the section “Expectation and variance of ¥ for spe-
cific demographic models,” we re-scaled population sizes reported
in Table 3 of Laurent et al. (2011) by multiplying them by 2, and we
then used them to calculate E[¥] and V[¥]; this procedure is
equivalent to rederiving Equation (28) with 3N in place of 4N and
then inserting the N values from Laurent et al. (2011) directly.

For the demographic parameters of Li and Stephan (2006) that
used a simple bottleneck model, we used Equation (30) with
NA :NEURv Nb :NEUR,bv NB :NAFRy and th=1t from Table 1. For

the demographic parameters of Laurent et al. (2011) and
Duchen et al. (2013), which used an exponential growth model,
we used Equation (28) with Nago =Nruro, Nat = Nrur:, Ng = Narg,
and the exponential growth rate ra computed from European
population sizes using Equation (23).

The values of E[¥] and V[¥] computed for each set of para-
meters are shown in Table 1. For the Laurent et al. (2011) and
Duchen et al. (2013) demographies, the value we expect from
the coalescent theory—E[¥] in Table 1—lies inside the 95% boot-
strap interval for the value obtained directly from data in
Equation (37).

The variance in our empirical calculation (Equation (38))
closely matches the values of V[¥] implied in Table 1 by the demo-
graphic models, with all three values lying in the 95% bootstrap
interval.

Discussion
Summary

We have examined the directionality index ¥ as a random variable
under coalescent models of two populations with a shared demo-
graphic history. Using this formulation, we have derived exact
values for the expectation E[¥] and variance V[¥] of the direction-
ality index for four parameterizations of a population split demog-
raphy. We have explored the behavior of the expectation and
variance, showing the dependence of ¥ on demographic para-
meters and identifying parameter regions for which a positive va-
lue of y does not necessarily mean that the “A” population is more
distant from the source of a range expansion. Our expression for
V[¥] also allowed us to connect the sample variance of y across
many sites to the size of the ancestral population. Finally, we
showed how our theoretical results can be used to compare the
predictions of demographic models with empirical observations.

Our explorations of the theoretical behavior of y show thatin a
sample of size 4 lineages, E[¥] tends to be more sensitive to
changes in the bottleneck strength s and derived population sizes
Na and Nj than to the time t since the population split (Fig. 4a—c).
The variance V[¥], however, increases quickly with increasing t
(Fig. 4d—f). These results are informative for considering the ef-
fects of bottlenecks on empirical values of . For example, in a
model in which a bottleneck is ancient, the variance of ¥ would
be larger compared to a model with a recent bottleneck.

Expressions for E[¥] and V[¥] (Equations (20), (26), (30), and (32))
do not depend on N¢, the ancestral population size. This insight
suggests that predictions about range expansions under the mod-
el are largely unaffected by events in the shared history of the two
populations. However, N¢ does affect the number of SNPs avail-
able for empirical calculation. When data from many sites are
used to compute y, the expected number of shared SNPs in the
calculation is proportional to ®¢ = 4Ncy; for small N¢, we might
not observe enough shared SNPs for the empirical computation
of y to accurately reflect a model-based prediction.
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Comparison of theoretical and empirical y for
D. melanogaster

In an application to data from D. melanogaster, empirical evalu-
ation of y revealed a positive value in a scenario with a
European population in the role of the “A” population and an
African population in the role of the “B” population. This observa-
tion is consistent with the higher level of drift in European popu-
lations of D. melanogaster than in African populations: the analysis
accords with the general understanding of D. melanogaster demo-
graphic history. Further, for two of three D. melanogaster modeling
studies, the empirical value of y matched the predictions for E[¥]
from the demographic models (Table 1).

Connections

Our results recapitulate some of the insights of the branching pro-
cess analysis of the discrete-time expansion model of Peter and
Slatkin (2015). In that model, the expectation of ¥ was found to
be E[¥] = 5 (¥ - 1)t where N is the population size of each deme,
k is the tzounder population size during settlement of a new
deme, and t is the settlement time of the tth deme, the integer
time variable that counts sequential founder events from the ori-
gin to the most recently settled deme. This expression shows that
E[¥] increases with smaller values for sizes of the founder popula-
tions (k) and with the number of founder events (t).

In our formulations, the founder population size corresponds
to the initial population size after the split Na; in the exponential
growth model, the bottleneck population size N, in the bottleneck
model, and the reciprocal of the bottleneck strength s in the in-
stantaneous bottleneck model. In these cases, we have observed
a similar pattern in the magnitude of E[¥], which increases with
smaller Na: (Equation (26a)), smaller Ny, (Equation (30a)), or larger
s (Equation (32a), Fig. 4).

The role of the time variable t, however, differs between the
model of Peter and Slatkin (2015) and our analysis. In particular,
the linear chain of many populations by Peter and Slatkin (2015)
gives rise to a linear dependence of E[¥] on t, whereas our two-
population model produces a nonlinear dependence of E[¥] on t
due to interactions among various demographic parameters
(Fig. 6).

Our study follows a similar spirit to the work of DeGiorgio et al.
(2011), who derived expressions for the distribution of pairwise
coalescence times in a serial founder model with a sequence of
multiple bottlenecks. Many population-genetic statistics are
functions of expected pairwise coalescence times, among them
Fsr (Slatkin 1991) and f4 (Peter 2016). Because our study uses ratios
of certain expected branch lengths rather than the pairwise co-
alescence times themselves, our expressions for E[¥] and V[¥]
are perhaps more closely connected to analyses that focus on in-
ternal and external branch length computations and other
coalescent-based branch length ratios (Fu and Li 1993; Ferretti
et al. 2017; Alimpiev and Rosenberg 2022).

An additional connection to other coalescent studies (Tajima
1983; Takahata and Nei 1985; Takahata and Slatkin 1990;
Szpiech and Rosenberg 2011; Rosenberg 2013; Guerra and
Nielsen 2022; Peter 2022) is that we have focused on the case of
4 sampled lineages. In many problems, the four-lineage analysis
is the simplest non-trivial case, it can be studied analytically,
and it provides insights useful for larger samples.

Further work

Our models are focused on pairs of populations, bottlenecks,
and infinitely-many-sites mutation. Extended models could

potentially consider additional phenomena; for example, recur-
rent and reverse mutation, the influence of natural selection on
coalescence times for some sites, linkage among sites, and demo-
graphies that allow migration after population divergence. In the
case of migration, a more recent study of than those that underlie
Table 1 suggests a high rate of back-migration of D. melanogaster
from Europe to Africa (Arguello et al. 2019), so that predictions
for y in models that include migration would be meaningful.
One approach to considering migration with y is an extension of
the discrete-time expansion model of Peter and Slatkin (2015).
Including migration between demes after founding events and ex-
ploringits impact on y is possible in a simulation-based extension
of their model (Kemppainen et al. 2024).

In the framework of our theoretical analysis with four lineages
and two populations, migration would allow for private mutations
that appeared in population A to be introduced into population B,
decreasing the value of y. Topologies that are more likely to gen-
erate shared mutations (such as 6, ¢, and {'in Fig. 2) would be ob-
served more often, due to lineages being transported between
populations in the time since the split between populations A
and B, altering the values of E[¥] and V[¥]. The theory could po-
tentially be pursued by adding y to coalescent models that allow
for post-divergence migration (Wakeley 1996 ; Rosenberg and
Feldman 2002; Teshima and Tajima 2002; Wilkinson-Herbots
2008; Hobolth et al. 2011; Wilkinson-Herbots 2012).

Data availability

The genetic sequences for D. melanogaster X-chromosomal loci
were obtained from the European Nucleotide Archive (ebi.ac.uk/
ena), sequence IDs AJ568984 to AJ571588, and AMO000058 to
AMO003900. Code to perform the computation of y from data and
generate figures and tables in this article is available at github.
com/EgorLappo/coalescent-psi.
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