
Molecular Phylogenetics and Evolution 65 (2012) 1014–1016
Contents lists available at SciVerse ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier .com/locate /ympev
Letter to the Editor
On the article titled ‘‘Estimating species trees using approximate
Bayesian computation’’ (Fan and Kubatko, Molecular Phyloge-
netics and Evolution 59:354–363)
In their article titled ‘‘Estimating species trees using approxi-
mate Bayesian computation’’ Fan and Kubatko present an algo-
rithm called ST-ABC to sample the posterior distribution of
species trees (Molecular Phylogenetics and Evolution 59: 354–
363). The authors claim that ST-ABC is an approximate Bayesian
computation (ABC) algorithm. Here, I argue that one of the steps
in their algorithm differs from the approach that would be taken
by a proper ABC algorithm. Therefore, the distribution sampled
by ST-ABC might not approximate the true posterior distribution
as in proper ABC algorithms. As a consequence, the estimates
based on posterior samples obtained by ST-ABC might not recover
the true species tree.

ABC algorithms sample an approximate form of the posterior
distribution of a parameter of interest without directly evaluating
the likelihood of the parameter given the data (Tavaré et al., 1997;
Beaumont et al., 2002; Marin et al., 2011). Given the observed data
set D, a prior distribution pðhÞ for parameter h, and a probability
model PðxjhÞ, an ideal version of ABC algorithm where there is no
approximation error proceeds as follows:

Algorithm. ABC (ideal)
10
ht
(1) Simulate a parameter value h� from pðhÞ.
(2) Simulate a data set x� from Pðxjh�Þ.
(3) Accept the parameter value h� if x� ¼ D.
Iterated many times, Algorithm–ABC samples the poster-
ior distribution pðhjDÞ of the parameter h by the following
argument. For a given iteration, a value h� is accepted with
probability proportional to pðh�ÞPðx�jh�ÞIfx�¼Dg, where IfSg is
the indicator function taking a value of 1 on set S and 0
otherwise (Marin et al., 2011). Summing over all iterations,
a Monte Carlo approximation proportional to the sampling
probability of h� obtained by Algorithm–ABC is given by

hðh�Þ /
X

x�
pðh�ÞPðx�jh�ÞIfx�¼Dg ð1Þ

¼ pðh�ÞPðDjh�Þ ð2Þ
/ pðh�jDÞ;

where the proportionality follows by Bayes Theorem. This equa-
tion verifies that the distribution sampled by Algorithm–ABC
indeed has the correct posterior probability pðh�jDÞ for each h�.
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In practice, with high-dimensional datasets, the equality x� ¼ D
to accept a parameter value in the third step of Algorithm–ABC is
hard to satisfy. Therefore, in a typical approximate Bayesian com-
putation algorithm, the third step is replaced by the approximation
x� � D. The premise of ABC is that the correct posterior distribution
is sampled in the ideal version of the algorithm (e.g., Algorithm–
ABC) and an approximate form of the posterior distribution is sam-
pled when using x� � D in place of x� ¼ D. Below, we first provide a
theoretical explanation of why the Algorithm–ST-ABC does not al-
ways sample the correct posterior distribution, even when the
ideal version of ABC is used, implying that it also does not sample
the correct distribution when an approximate version is used. We
then work out a three-taxon example to show that Algorithm–ST-
ABC does not sample the correct posterior distribution of the spe-
cies tree in a specific case.

To apply the ABC argument to ST-ABC, the parameter of interest
denoted by h is the species tree (topology together with the branch
lengths). Let the probability distribution of gene tree topologies in-
duced by the species tree h� be Pðbjh�Þ. The ST-ABC algorithm is as
follows (modified from Fan and Kubatko (2011)):

Algorithm. ST-ABC
(1) Set j ¼ 1.
(2) Sample a parameter value h� from a specified prior distribution

pðhÞ.
(3) Using h�, analytically compute the probability distribution of gene

trees Pðbjh�Þ and obtain the expected frequency of each gene tree
topology, nexp ¼ ðnexp;1;nexp;2; . . . ;nexp;GÞ, by multiplying each
probability by the sample size N.

(4) Computea Dj ¼
PG

i¼1
ðnobs;i�nexp;iÞ2

nexp;i
.

(5) Increment j by 1 and repeat steps (2)–(4) J times.
(6) Retain the aJ sampled species trees with the smallest values of Dj .
a The denominator in Step 4 of the original algorithm in Section 2.1 of Fan and
Kubatko reads nexp;j due to a typographical error which we replaced by nexp;i .
Another typographical error kindly pointed out by the Associate Editor appears in
Section 2.3.1, where the tree (H (C (G,O)) should read as (((H,C),G),O).

For illustrative purposes, consider an exact version of
Algorithm–ST-ABC, in which for all retained values of h,
the statistics Dj computed in Step 4 of Algorithm–ST-ABC
are exactly zero, so that nobs ¼ nexp. The arguments carry
over straightforwardly for the genuine ABC algorithm
where Dj > 0.
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Fig. 1. Species trees and gene trees for the counterexample with three taxa. The probability of each gene tree is calculated for each species tree assuming that the time
between speciation events is t ¼ � logð3=4Þ.

Letter to the Editor / Molecular Phylogenetics and Evolution 65 (2012) 1014–1016 1015
A Monte Carlo approximation proportional to the sampling
probability of a species tree h� obtained by Algorithm–ST-ABC is gi-
ven by

h0ðh�Þ / pðh�ÞPðnexpjh�;NÞIfnobs¼nexpg

¼ pðh�ÞIfnobs¼NPðbjh�Þg

¼ pðh�ÞIfðnobs=NÞ¼Pðbjh�Þg: ð3Þ

The equality on the second line follows from the fact that given a
species tree h� and the sample size N, the expected values for the
numbers of observations of the various gene tree topologies given
h� are known (Degnan and Salter, 2005).

If Algorithm–ST-ABC is a proper ABC algorithm, then h0ðh�Þmust
be proportional to hðh�Þ given in expression (1). Substituting the
generic data D in expression (2) with the specific data nobs for
the ST-ABC case and setting the right-hand sides of expressions
(2) and (3) proportional to each other, we get

pðh�ÞPðnobsjh�Þ / pðh�ÞIfðnobs=NÞ¼Pðbjh�Þg:

Hence, Algorithm–ST-ABC correctly samples the posterior distri-
bution of species tree only if Ifðnobs=NÞ¼Pðbjh�Þg is proportional to the
likelihood of the observed data under h�:

Pðnobsjh�Þ / Ifðnobs=NÞ¼Pðbjh�Þg:

Since the indicator function Ifðnobs=NÞ¼Pðbjh�Þg takes a value of 1 if
nobs=N ¼ Pðbjh�Þ and is 0 otherwise, the last proportionality im-
plies that in Algorithm–ST-ABC, the probability of the observed
data nobs given the species tree h� is taken to be 1 if the observed
frequencies nobs=N match the probabilities Pðbjh�Þ in the distribu-
tion of gene tree topologies and is 0 otherwise. However, the Deg-
nan–Salter distribution of gene tree topologies Pðbjh�Þ assigns a
positive value to Pðnobsjh�Þ for any h� because gene trees in the ob-
served sample can always be embedded in any species tree h�,
implying that nobs is a possible outcome under any h�. Such prob-
abilities are not taken into account in sampling the species trees
by Algorithm–ST-ABC. In general, Pðnobsjh�Þ is not proportional to
Ifðnobs=NÞ¼Pðbjh�Þg.

The following counterexample shows that the Algorithm–ST-
ABC does not always sample the correct posterior distribution.
We consider a three-taxon case with one lineage in each taxon.
In this case, there are three labeled species tree topologies, which
we denote by h1; h2; h3, and three labeled gene tree topologies,
which we denote by b1; b2; b3. Given species tree hi, the probability
of each gene tree bj whose labels at the leaves do not match the
species tree labels is given by the well-known formula
PðbjjhiÞ ¼ ð1=3Þe�t ; j – i, where t is time between the two specia-
tion events measured in coalescent units. The probability of the
gene tree whose labels do match the labels of the species tree is
then given by PðbjjhiÞ ¼ 1� ð2=3Þe�t ; j ¼ i. For computational con-
venience we fix t ¼ � logð3=4Þ so that PðbjjhiÞ ¼ 1=4; j – i and
PðbjjhiÞ ¼ 2=4; j ¼ i. Further, we assume that each species tree
has a prior probability of 1=3. We consider a sample of size
N ¼ 4 gene trees and given the probabilities for each gene tree bj

under each species tree hi, we compute the expected value of the
distribution of gene trees under each species tree hi by
nexpi

¼ ½NPðb1jhiÞ NPðb2jhiÞ NPðb3jhiÞ� (Fig. 1 shows the probabilities
of each gene tree given each species tree and provides expected
values of gene trees for a sample of size 4).

Let us now assume that the observed sample satisfies
nobs ¼ nexp1

. That is, using the last column for species tree h1 in
Fig. 1, we have nobs ¼ ½2 1 1�. We can now compute the statistic
Di for each species tree hi by Step 4 of Algorithm–ST-ABC. The sta-
tistics are as follows:

D1 ¼
ð2� 2Þ2

2
þ ð1� 1Þ2

1
þ ð1� 1Þ2

1
¼ 0;

D2 ¼
ð2� 1Þ2

1
þ ð1� 2Þ2

2
þ ð1� 1Þ2

1
¼ 3

2
;

D3 ¼
ð2� 1Þ2

1
þ ð1� 1Þ2

1
þ ð1� 2Þ2

2
¼ 3

2
:

Note that we have chosen the observed counts to be exactly equal
to the expected counts nexp1

, such that only D1 is zero. The poster-
ior sample from Algorithm–ST-ABC for our example will consist of
h1 with probability 1, because only the species trees with Di ¼ 0
are retained in the sample, and this condition is satisfied only
for i ¼ 1. However, we have a positive prior probability of 1=3
for each species tree hi and there exists positive probability of
observing the sample PðnobsjhiÞ under each species tree, since all
the gene tree probabilities PðbjjhiÞ in Fig. 1 are positive. Therefore,
PðnobsjhiÞpðhiÞ must be positive for all species trees, implying that
the posterior probability of each species tree hi –which is
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proportional to PðnobsjhiÞpðhiÞ– must be positive as well. Conse-
quently, the true posterior distribution of species trees has more
than one value of the species tree (i.e, h1) in its support. This true
posterior distribution is not recovered by Algorithm–ST-ABC, be-
cause Algorithm–ST-ABC samples only the one value of the spe-
cies tree, h1, with probability 1 and assigns zero posterior
probability to the other species trees h2 and h3.

The key difference between Algorithm–ST-ABC and Algorithm–
ABC is as follows. In standard ABC, a new random data set is gener-
ated under the model conditional on each parameter value drawn
from its prior distribution (Step 2 of Algorithm–ABC), whereas in
Algorithm–ST-ABC the fixed quantity nexp (the expected value cal-
culated from the distribution of gene tree topologies under the
parameter value for a sample of size N) is used instead of such a
random data set. Using the fixed quantity nexp in Algorithm–ST-
ABC eliminates the sampling variability associated with the
likelihood of a species tree given the observed data, or PðnobsjhÞ.
In ST-ABC, it is as if the random data set that would have been sim-
ulated under Algorithm–ABC is always substituted by nexp.

Fan and Kubatko found that Algorithm–ST-ABC performs well
in practical species tree estimation problems. Algorithm–ST-ABC
can be converted into a proper ABC algorithm if Step 3 of Algo-
rithm–ST-ABC is substituted by a step in which a data set of size
N is randomly drawn from the probability distribution of gene tree
topologies Pðbjh�Þ and the data set generated is compared with the
observed data nobs. It would then be interesting to examine how a
proper ABC algorithm compares with Algorithm–ST-ABC in its
ability to estimate species trees.
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