Does gene tree discordance explain the mismatch between macroevolutionary models and empirical patterns of tree shape and branching times?

Supplementary Figures

Tanja Stadler^{1,2,*}, James H. Degnan³, Noah A. Rosenberg⁴

February 23, 2016

 1 ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland

² Swiss Institute of Bioinformatics (SIB), Switzerland

³ Department of Mathematics and Statistics, University of New Mexico, 311 Terrace NE, Albuquerque, NM, 87131, USA

- ⁴ Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
- \ast Corresponding author: tanja.stadler@bsse.ethz.ch

Figure 1: (Supplementary Figure). Mean Sackin statistic of gene trees divided by mean Sackin statistic of species trees $(\overline{S}_g/\overline{S}_s)$. Solid lines correspond to complete species sampling $\rho = 1$, dashed lines to sampling probability $\rho = 0.75$, and dot-dashed lines to sampling probability $\rho = 0.5$. Plots are obtained based on 100,000 simulated species tree–gene tree pairs at each choice of parameter values, taking means separately for the gene trees and the species trees.

Figure 2: (Supplementary Figure). Mean number of cherries in gene trees divided by mean number of cherries in species trees $(\overline{H}_g/\overline{H}_s)$. Solid lines correspond to complete species sampling $\rho = 1$, dashed lines to sampling probability $\rho = 0.75$, and dot-dashed lines to sampling probability $\rho = 0.5$. Plots are obtained based on 100,000 simulated species tree–gene tree pairs at each choice of parameter values, taking means separately for the gene trees and the species trees.

Figure 3: (Supplementary Figure). The γ statistic for empirical trees from Tree-BASE. Each black dot represents a tree. The figure also shows simulated species tree γ_s values. The species tree γ_s value depends on turnover and species sampling; line colors indicate turnover, and line type indicates species sampling, as in Figure 2. Note that in the simulations, we subtracted mean species tree γ_s values from mean gene tree γ_g values to produce $\overline{\gamma}_g - \overline{\gamma}_s$. As the number of points is too low here to obtain mean γ values for empirical trees at each tree size, we only plot each empirically observed γ statistic.