

Figure S1: Topology analysis of Property 3 at $\alpha=0.01$ under a random matrix model with admixture. (A) Simulations in which Property 3 holds. (B) Simulations in which Property 3 fails. Nodes on each graph represent all possible unrooted binary labeled topologies for $n=4$ (left column) and $n=5$ (right column). The 4-taxon source NJ tree $\mathcal{T}_{S}^{(4)}$ is constructed from $\mathbf{S}^{(4)}$, and the 5-taxon admixed NJ tree $\mathcal{T}_{D}^{(5)}$ is inferred from the associated $\mathbf{D}^{(5)}$. The NJ tree topologies are classified and assigned to nodes. A directed edge from $\mathcal{T}_{S}^{(4)}$ to $\mathcal{T}_{D}^{(5)}$ corresponds to a given ordered pair of distance matrices $\left(\mathbf{S}^{(4)}, \mathbf{D}^{(5)}\right)$ from which the connected trees are constructed. The edge weight is proportional to the frequency of a connected tree pair's occurrences, with the exception that for those with nonzero frequencies less than $1 \%$, the edges are kept at $1 \%$ weight and are indicated with blue dotted lines. Shaded nodes represent all possible topologies with $n=5$ that violate Property 3 given that $t_{1}$ and $t_{2}$ are source taxa and $t_{5}$ is the admixed taxon. Because only 4 of 7 shaded topologies are attainable (Corollary 2), only those 4 shaded topologies have incoming edges in panel (B). The node $\left(\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right)\right)$ does not have an outgoing edge in panel (B) because Property 3 holds when $\mathcal{T}_{S}^{(4)}=\left(\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right)\right)$ (Proposition 3). The simulations shown correspond to those in Figure 5 and Table 4 .


Figure S2: Topology analysis of Property 3 at $\alpha=0.25$ under a random matrix model with admixture. (A) Simulations in which Property 3 holds. (B) Simulations in which Property 3 fails. The plots are constructed using the same procedure as in Figure S1.


Figure S3: Topology analysis of Property 3 at $\alpha=0.5$ under a random matrix model with admixture. (A) Simulations in which Property 3 holds. (B) Simulations in which Property 3 fails. The plots are constructed using the same procedure as in Figure S1.

