
Supplementary Figures

Figure S1 Joint density of the frequency M of the most frequent allele and statistics FST , G′
ST , and D, for different scaled

migration rates 4Nm, considering K = 40 subpopulations. The simulation procedure and figure design follow Figure 3.
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Figure S2 The means AF, AG, AD, AG′
N

, and AG′′ of the maximal values of FST , G′
ST , D, G′

ST,Nei, and G′′
ST respectively, over

the interval M ∈ [ 1
2 , 1), as functions of the number of subpopulations K. AF(K), AG(K), and AD(K) are copied from Figure

2. AG′
N

and AG′′ are computed numerically from eqs. S4.24 and S4.27. The x-axis is plotted on a logarithmic scale. The figure

design follows Figure 2.
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Figure S3 Joint density of the frequency M of the most frequent allele and statistics G′
ST,Nei and G′′

ST , for different scaled

migration rates 4Nm, considering K = 2 subpopulations. The black solid line represents the maximum value of G′
ST,Nei and

G′′
ST in terms of M (eqs. S4.24 and S4.27); the red dashed line represents the mean G′

ST,Nei, and G′′
ST in sliding windows of

M of size 0.02 (plotted from 0.51 to 0.99). Colors represent the density of loci, estimated using a Gaussian kernel density

estimate with a bandwidth of 0.007, with density set to 0 outside the minimum and maximum values. Loci are simulated

using coalescent software MS, assuming an island model of migration and conditioning on 1 segregating site. Each panel

considers 100,000 replicate simulations, with 100 lineages sampled per subpopulation. The figure design follows Figure 3.
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Figure S4 Joint density of the frequency M of the most frequent allele and statistics G′
ST,Nei and G′′

ST , for different scaled

migration rates 4Nm, considering K = 7 subpopulations. The simulation procedure follows Figure S3. The figure design

follows Figures 4 and S3.

SI 4 | Alcala and Rosenberg



Figure S5 Joint density of the frequency M of the most frequent allele and statistics G′
ST,Nei and G′′

ST , for different scaled

migration rates 4Nm, considering K = 40 subpopulations. The simulation procedure follows Figure S3. The figure design

follows Figures S1 and S3.
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Supplementary File S1. PROPERTIES OF THE MAXIMAL VALUES OF G′
ST AND D AS FUNCTIONS OF

M

In this file, we derive the conditions under which the peaks (local maxima) of the maximal values of G′
ST (eq. 10) and D

(eq. 11) in terms of M are reached, we derive their values, and we show the non-differentiability of the maximal G′
ST and D at

the peaks.

1. Position and value of the peaks in the maximum value of G′
ST as a function of M

From eq. 2, G′
ST = 1 if and only if

(HT − HS)(K − 1 + HS)

HT(K − 1)(1 − HS)
= 1.

Solving for HS, G′
ST = 1 if and only if HS = 0 or 1 − HS = K(1 − HT). HS = 0 leads to S = M, or 1

K ∑K
k=1 p2

k = 1
K ∑K

k=1 pk.

This equation is in turn equivalent to ∑K
k=1 pk(1 − pk) = 0. Thus, HS = 0 if and only if each pk is equal either to 0 or to 1.

Because for all 1
2 6 M < 1, 0 < HT 6 1

2 , and it follows that K
2 6 K(1 − HT) < K. In addition, because HS > 0, 1 − HS 6 1.

Thus, 1 − HS = K(1 − HT) requires that K = 2, HT = 1
2 , and HS = 0, which is equivalent to having p1 = 1 and p2 = 0,

or p1 = 0 and p2 = 1. We conclude G′
ST = 1 if and only if all pk are either equal to 0 or equal to 1. This condition is

the same as the condition for FST = 1 derived by Alcala & Rosenberg (2017, p. 1583), and thus leads to local maxima in

the maximal value of G′
ST as a function of M at the same positions as the peaks in the maximum of FST : at M = i

K , with

i = dK
2 e, dK

2 e+ 1, . . . , K − 1.

Because the maximum value of G′
ST as a function of M (eq. 10) is continuous, and because it is bounded above by 1 and is

equal to 1 only at the peaks, it follows that the maximum value of G′
ST is strictly below 1 between the peaks.

2. Position of the peaks in the maximum value of D as a function of M

From eq. 3, D = 1 if and only if
K(HT − HS)

(K − 1)(1 − HS)
= 1.

Solving for HS, D = 1 if and only if 1 − HS = K(1 − HT). As shown in Supplementary File S1.1, this condition is met if and

only if K = 2 and M = 1
2 , with p1 = 1 and p2 = 0, or p1 = 0 and p2 = 1. Thus, D values are only unconstrained in the unit

interval in one specific case.

For i = bK
2 c, bK

2 c+ 1, . . . , K − 1, we define the interval Ii by [ 1
2 , i+1

K ) for i = bK
2 c in the case that K is odd, and by [ i

K , i+1
K )

for all other (i, K). For M in Ii, bKMc = i is constant. We denote x = {KM} = KM − i, so that M = i+x
K . Denote by QD

i (x)

the function of x that gives the maximum value of D on interval Ii for M,

QD
i (x) =

2K(i + x2)− 2(i + x)2

(K − 1)[K − 2x(1 − x)]
, (S1.1)

where x ranges in [0, 1) (or [ 1
2 , 1) in the case of odd K and i = bK

2 c) and integers K and i satisfy K > 2 and bK
2 c 6 i 6 K − 1.

D∗(M) is continuous at each M = i
K , with limx→1 QD

i (x) = QD
i+1(0) for each i with bK

2 c 6 i 6 K − 2. The derivative of

QD
i (x) is

dQD
i (x)
dx

= 4
(2i − K + 1)x2 + [(K − i − 1)2 + (i − 1)2 + (K − 2)]x − i2

(K − 1)[K − 2x(1 − x)]2
. (S1.2)

For x > 0, limx→0+ dQD
i (x)/dx = −4i2/[K2(K − 1)], a strictly negative quantity for all K > 2 and bK

2 c 6 i 6 K − 1. In

addition, limx→1− dQD
i (x)/dx = 4(K − i − 1)2/[K2(K − 1)], a strictly positive quantity for all K > 2 and bK

2 c 6 i 6 K − 2.

Hence, changing variables back from x to M, we see that for each point M = i
K where bK

2 c 6 i 6 K − 1, the continuous
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function D∗(M) has a positive derivative when approaching from the left and a negative derivative when approaching from

the right. Thus, D∗(M) has a local maximum at each i
K .

3. No other peaks in the maximum value of D as a function of M

We show that for each K > 2, the only peaks in D∗(M) occur at M = i
K for bK

2 c 6 i 6 K − 1.

For each i, we have shown that limx→0+ dQD
i (x)/dx < 0 and limx→1− dQD

i (x)/dx > 0, with equality in the latter equation

if and only if i = K − 1. As a smooth function on [0, 1] with the property that its derivative changes from negative to

nonnegative on [0, 1], QD
i (x) has at least one critical point on [0, 1] that represents a local minimum. We show that QD

i (x) has

no more than one critical point in [0, 1]; because it has a local minimum, it can have no local maxima interior to the interval

[0, 1], so that D∗(M) can only have local maxima at points M = i
K .

The denominator of dQD
i (x)/dx is positive in [0, 1]. We find the roots of the numerator of dQD

i (x)/dx to obtain the critical

points of QD
i (x). Excluding the case of odd K and i = bK

2 c, we have

x =
−[(K − i − 1)2 + (i − 1)2 + K − 2]±

√
[(K − i − 1)2 + (i − 1)2 + K − 2]2 + 4i2(2i − K + 1)

2(2i − K + 1)
. (S1.3)

The negative root is negative for K > 2, leaving only a single critical point in the interval [0, 1].

For the case of odd K and i = bK
2 c, the numerator of dQD

i (x)/dx is linear in x, with root x = 1
2 . Hence, noting that for odd

K and i = bK
2 c, QG

i (x) approaches its local maximum on [ 1
2 , 1) as x → 1, on the interval [ 1

2 , K+1
2K ), a local minimum occurs at

M = 1
2 .

4. Value of the peaks in the maximum value of D as a function of M

For M = i
K , with integers K > 2 and bK

2 c 6 i 6 K − 1, the maximal D from eq. 11 becomes

D∗(M) =
2KM(1 − M)

K − 1
=

KHT
K − 1

. (S1.4)

The function 2KM(1 − M)/(K − 1) serves as an upper bound for D at all values of M, as D 6 KHT
K−1 for all HS > 0, with

equality if and only if HS = 0, D∗(M) touches the curve 2KM(1 − M)/(K − 1) only at values M for which HS can equal 0, or

M = i
K for bK

2 c 6 i 6 K − 1.

5. Non-differentiability of the maximal values of G′
ST and D at the peaks

Because bKMc and {KM} are non-differentiable for M = i
K with i = dK

2 e, dK
2 e+ 1, . . . , K − 1, the numerators and denomina-

tors of the maximum values of G′
ST and D (eqs. 10 and 11) are also non-differentiable at these points, and thus, the maximal

values of G′
ST and D are also non-differentiable at these points.

6. Limit of the maximal value of G′
ST

From eq. 10, for fixed M in [ 1
2 , 1), because 0 6 {KM} < 1 and bKMc/(KM) → 1 when K → ∞,

lim
K→∞

[K(K − 1) + 2{KM}(1 − {KM})](bKMc+ {KM}2 − KM2)

K(K − 1)[K − 2{KM}(1 − {KM})]M(1 − M)
= 1.

7. Limit of the maximal value of D

Similarly, applying eqs. 5 and 11, for fixed M in [ 1
2 , 1), because 0 6 {KM} < 1 and and bKMc/(KM) → 1 when K → ∞,

lim
K→∞

2K
(
bKMc+ {KM}2 − KM2)

(K − 1) (K − 2{KM}(1 − {KM})) = 2M (1 − M) = HT .
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Supplementary File S2. THE SIZE OF THE PERMISSIBLE RANGE FOR G′
ST AND D

This file provides the computation of the integrals AG(K) (eq. 13) and AD(K) (eq. 14).

1. Computing AG(K) (eq. 13)

AG(K) is the integral of the maximum value of G′
ST in terms of M (eq. 10), divided by the size range of possible M values, 1

2 :

AG(K) = 2
1∫

1
2

[
[K(K − 1) + 2{KM}(1 − {KM})](bKMc+ {KM}2 − KM2)

K(K − 1)[K − 2{KM}(1 − {KM})]M(1 − M)

]
dM. (S2.1)

For each interval Ii, the maximum value of G′
ST is a smooth function

QG
i (x) =

[K(K − 1) + 2x(1 − x)]
[
K(i + x2)− (i + x)2]

(K − 1) [K − 2x(1 − x)] (i + x)(K − i − x)
, (S2.2)

where x lies in [0, 1), i is an integer that lies in [bK
2 c, bK

2 c+ 1, . . . , K − 1], and K is an integer greater than or equal to 2. Using

the fact that x = KM − i, we obtain dx = K dM. We can break integral AG(K) into a sum of integrals of QG
i (x) over intervals

Ii,

AG(K) =



2
K

K−1

∑
i= K

2

1∫
0

QG
i (x) dx for even K,

2
K

[ 1∫
1
2

QG
K−1

2
(x) dx +

K−1

∑
i= K+1

2

1∫
0

QG
i (x) dx

]
for odd K.

(S2.3)

Because QG
i (x) is a rational function, we use partial fraction decomposition to compute its integral. QG

i (x) can be written

QG
i (x) = 1 − Kh2(K, i)

2(x + i)
− Kh2(K, K − i − 1)

2(K − x − i)
− K

√
2K − 1 h1(K, i)

(2x − 1)2 + (2K − 1)
− 2K(2x − 1)h0(K, i)

(2x − 1)2 + (2K − 1)
. (S2.4)

In this expression, h1(K, i), h2(K, i), and h3(K, i) are functions that are independent of x:

h0(K, i) =
K3(2i − K + 1)

(K − 1)[i2 + (i + 1)2 + (K − 1)][(K − i − 1)2 + (K − i)2 + (K − 1)]
(S2.5)

h1(K, i) =
4Ki(K − i − 1)[(K − i)2 + (i + 1)2 − 1]

(K − 1)[i2 + (i + 1)2 + (K − 1)][(K − i − 1)2 + (K − i)2 + (K − 1)]
√

2K − 1
(S2.6)

h2(K, i) =
2i(i + 1)
K(K − 1)

[
1 − K2

i2 + (i + 1)2 + (K − 1)

]
. (S2.7)

Letting y = 2x − 1, we integrate by noting
∫ y

y2+c dy = 1
2 log(y2 + c) and

∫ 1
y2+c dy = 1√

c arctan(y/
√

c), where c is a

positive constant not dependent on y. For dK
2 e 6 i 6 K − 1,

2
K

1∫
0

QG
i (x) dx =

2
K
− 2h1(K, i) arctan

(
1√

2K − 1

)
+ h2(K, i) log

(
i

i + 1

)
+ h2(K, K − i − 1) log

(
K − i − 1

K − i

)
, (S2.8)

and for i = K−1
2 ,

2
K

1∫
1
2

QG
K−1

2
(x) dx =

1
K
− h1

(
K,

K − 1
2

)
arctan

(
1√

2K − 1

)
+ h2

(
K,

K − 1
2

)
log

(
K − 1
K + 1

)
. (S2.9)
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From eq. S2.6, h1(K, i) = h1(K, K − i − 1). Consequently, for even K, we simplify the expression for AG(K) by noting that

∑K−1
i=K/2 h1(K, i) = ∑K/2−1

i=0 h1(K, i), and 2 ∑K−1
i=K/2 h1(K, i) = ∑K−1

i=0 h1(K, i). We can similarly simplify the expression for AG(K)

when K is odd, because ∑K−1
i=(K+1)/2 h1(K, i) = ∑

(K−3)/2
i=0 h1(K, i), and thus, [2 ∑K−1

i=(K+1)/2 h1(K, i)] + h1[K, K−1
2 ] = ∑K−1

i=0 h1(K, i).

Because ∑K−1
i=K/2 h2(K, K − i − 1) log[(K − i − 1)/(K − i)] = ∑K/2−1

i=0 h2(K, i) log[i/(i + 1)], we can group terms involving

h2 in the expression for AG(K) when K is even (eq. S2.3) into a single sum ∑K−1
i=0 h2(K, i) log[i/(i + 1)]. Similarly, because

∑K−1
i=(K+1)/2 h2(K, K − i − 1) log[(K − i − 1)/(K − i)] = ∑

(K−3)/2
i=0 h2(K, i) log[i/(i + 1)], we can group the terms involving h2

in the expression for AG(K) when K is odd into a sum ∑K−1
i=0 h2(K, i) log[i/(i + 1)].

Substituting eqs. S2.8 and S2.9 into eq. S2.3, grouping the expressions with h1 and h2, taking 0 log 0 = 0, and simplifying,

the expressions for AG(K) for even and odd K equalize and we obtain eq. 13.

2. Increase of AG(K) as a function of K

We must show that ∆G(K) = AG(K + 1)− AG(K) > 0. We numerically computed AG(K) (eq. 13) and ∆G(K) for K ranging

from 2 to 10,000; we found that ∆G(K) > 0 for all K in that range.

Although this numerical result does not formally prove that ∆G(K) > 0 for all K, we note that because 1 > G′
ST > FST

owing to the normalization in the definition of G′
ST , 1 > AG(K) > AF(K). Hence, because limK→∞ AF(K) = 1, we also have

limK→∞ AG(K) = 1.

3. Computing AD(K) (eq. 14)

AD(K) is the integral of the maximum value of D in terms of M (eq. 11), divided by the size range of possible M values, 1
2 :

AD(K) = 2
1∫

1
2

2K
K − 1

bKMc+ {KM}2 − KM2

K − 2{KM}(1 − {KM})dM. (S2.10)

Using QD
i (x) (eq. S1.1), we break AD(K) into a sum of integrals over domains Ii,

AD(K) =



2
K

K−1

∑
i= K

2

1∫
0

QD
i (x) dx for even K,

2
K

[ 1∫
1
2

QD
K−1

2
(x) dx +

K−1

∑
i= K+1

2

1∫
0

QD
i (x) dx

]
for odd K.

(S2.11)

We use a partial fraction decomposition of the rational function QD
i (x):

QD
i (x) = 1 − 2

K − 1

[
(2x − 1) f1(K, i)

(2x − 1)2 + (2K − 1)
+

f2(K, i)
(2x − 1)2 + (2K − 1)

]
, (S2.12)

where f1(K, i) = 2i − K + 1 and f2(K, i) = i2 + (K − i − 1)2 are functions that do not depend on x.

Letting y = 2x− 1, QD
i (x) can be integrated by again applying

∫ y
y2+c dy = 1

2 log(y2 + c) and
∫ 1

y2+c dy = 1√
c arctan(y/

√
c),

where c is a positive constant that does not depend on y. For dK
2 e 6 i 6 K − 1,

2
K

1∫
0

QD
i (x) dx =

2
K
− 4[i2 + (K − 1 − i)2]

K(K − 1)
√

2K − 1
arctan

(
1√

2K − 1

)
, (S2.13)

and for i = K−1
2 ,

2
K

1∫
1
2

QD
K−1

2
(x) dx =

1
K
− (K − 1)

K
√

2K − 1
arctan

(
1√

2K − 1

)
. (S2.14)
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We can eliminate terms in i from eq. S2.11 when K is even by noting

K−1

∑
i= K

2

[i2 + (K − 1 − i)2] =
K−1

∑
i= K

2

i2 +
K−1

∑
i= K

2

(K − 1 − i)2 =
K−1

∑
i=0

i2. (S2.15)

Similarly, we can eliminate terms in i from the expression for AD(K) when K is odd:

K−1

∑
i= K+1

2

[i2 + (K − 1 − i)2] =

( K−1

∑
i=0

i2
)
−

(
K − 1

2

)2

. (S2.16)

Because ∑K−1
i=0 i2 = K(K − 1)(2K − 1)/6, we substitute eqs. S2.15 and S2.16 into eq. S2.11 and simplify the sums. The

expressions for AD(K) when K is even and odd equalize, and we obtain eq. 14.

4. Decrease of AD(K) as a function of K

To show that AD(K) is decreasing in K, we must show that dAD/dK < 0 for all K > 2. From the expression for AD(K) in

eq. 14,

dAD
dK

=
1
3

[
1
K
−

2 arctan
( 1√

2K−1

)
√

2K − 1

]
. (S2.17)

Let f (x) = arctan(x)− (x − x3/3). Because f (0) = 0 and f ′(x) = x4/(1 + x2) > 0, f (x) > 0 for positive x. Hence,

arctan
(

1√
2K − 1

)
>

1√
2K − 1

− 1
3(2K − 1)3/2 . (S2.18)

Applying inequality S2.18 in eq. S2.17, we obtain

dAD
dK

6 − 4K − 3
9K(2K − 1)2 , (S2.19)

which is strictly negative for all K > 2. We conclude that dAD/dK < 0 and hence that AD(K) decreases monotonically as a

function of K.

For the limit of AD(K) as K → ∞, we use l’Hôpital’s rule to find limK→∞ arctan( 1√
2K−1

)/( 1√
2K−1

) = 1, so that

limK→∞ AD(K) = 1
3 .
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Supplementary File S3. MS COMMANDS TO SIMULATE NUCLEOTIDE SEQUENCES UNDER AN EQUI-

LIBRIUM ISLAND MODEL WITH K SUBPOPULATIONS AND SCALED MIGRA-

TION RATE 4NM

K = 2

./ms 200 100000 -s 1 -I 2 100 100 0.1

./ms 200 100000 -s 1 -I 2 100 100 1

./ms 200 100000 -s 1 -I 2 100 100 10

For K = 7

./ms 700 100000 -s 1 -I 7 100 100 100 100 100 100 100 0.1

./ms 700 100000 -s 1 -I 7 100 100 100 100 100 100 100 1

./ms 700 100000 -s 1 -I 7 100 100 100 100 100 100 100 10

For K = 40

./ms 4000 100000 -s 1 -I 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0.1

./ms 4000 100000 -s 1 -I 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1

./ms 4000 100000 -s 1 -I 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
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Supplementary File S4. PROPERTIES OF NEI’S G′
ST AND MEIRMANS AND HEDRICK’S G′′

ST

This supplementary information file provides results regarding alternative formulations of FST and G′
ST—Nei’s G′

ST and

Meirmans and Hedrick’s G′′
ST—that include a multiplicative term based on the number of sampled populations K.

Mathematical constraints on G′
ST and G′′

ST

Using HT , HS, and DST = HT − HS, Nei (1987, pp. 188-191) defined a measure G′
ST,Nei:

D′
ST =

K
K − 1

(HT − HS)

H′
T = HS + D′

ST

G′
ST,Nei =

D′
ST

H′
T

=
K(HT − HS)

KHT − HS
.

From eqs. 4 and 5, substituting HS = 2(M − S) and HT = 2M(1 − M) for the biallelic case, G′
ST,Nei becomes

G′
ST,Nei =

K(S − M2)

M(K − 1 − KM) + S
. (S4.20)

Meirmans & Hedrick (2011, eq. 4) defined a second quantity G′′
ST by

G′′
ST =

G′
ST,Nei

G′
ST,Nei,max

=
K(HT − HS)

(KHT − HS)(1 − HS)
. (S4.21)

From eqs. 4 and 5, substituting HS and HT by their values as functions of M and S, eq. S4.21 becomes:

G′′
ST =

K(S − M2)

[M(K − 1 − KM) + S](1 − 2M + 2S)
. (S4.22)

Maximal values of G′
ST and G′′

ST

We first show that if M is fixed, G′
ST,Nei is increasing when treated as a function of S. By Theorem 1 of Alcala & Rosenberg

(2017), for fixed M and K, S is positive, satisfying M2 6 S 6 [bKMc+ {KM}2]/K. In particular, because 1
2 6 M < 1, we

have 1
4 6 S 6 1. The derivative of G′

ST,Nei with respect to S is

dG′
ST,Nei

dS
=

K(K − 1)M(1 − M)

[M(K − 1 − KM) + S]2
. (S4.23)

The numerator is positive, as 1
2 6 M < 1 and K > 2. Noting HT = 2M(1 − M) and HS = 2(M − S), the denominator equals

1
4 (KHT − HS)

2, a quantity that is also strictly positive, as HT > HS by the Wahlund principle, HT > 0, and K > 2. G′
ST,Nei is

therefore an increasing function of S, so that its maximum as a function of M occurs when S lies at its largest permissible

value given M. For fixed M, 1
2 6 M < 1, Theorem 1 of Alcala & Rosenberg (2017) gives the maximum for S as a function of

M. Inserting this maximum, we have:

G′
ST,Nei 6

bKMc+ {KM}2 − KM2

KM(1 − M)− M + bKMc/K + {KM}2/K
. (S4.24)

Similarly, we show that G′′
ST is an increasing function of S for M in [ 1

2 , 1) and integers K > 2. For fixed M, the derivative of

G′′
ST with respect to S is

dG′′
ST

dS
=

K
[
−2(S − M2)2 + (K − 1)M(1 − M)[1 − 2M(1 − M)]

]
[M(K − 1 − KM) + S]2(1 − 2M + 2S)2 ,

=
K[(K − 1)HT(1 − HT)− (HT − HS)

2]

2[M(K − 1 − KM) + S]2(1 − HS)2 .

(S4.25)
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The denominator in eq. S4.25 is positive, as a product of the positive 1
4 (KHT − HS)

2 and (1 − HS)
2 for 0 6 HS 6 1

2 . Hence,

the sign of dG′′
ST/dS is determined by the sign of its numerator. We find the roots of the numerator as a function of HT ,

denoted HT,1 and HT,2:

HT,1 =
K − 1 + 2HS +

√
(K − 1)[K − 1 + 4HS(1 − HS)]

2K
,

HT,2 =
K − 1 + 2HS −

√
(K − 1)[K − 1 + 4HS(1 − HS)]

2K
.

(S4.26)

To show that G′′
ST is increasing in S for permissible values of S, we examine the roots. For biallelic markers, 0 6 HS 6 1

2 ,

and HS(1 − HS) is an increasing function of HS. It then follows that HT,1 is also an increasing function of HS. Consequently,

the minimum value of HT,1, treated as a function of HS, is reached at HS = 0, yielding HT,1 > (K − 1)/K > 1
2 for

all K > 2. Because for biallelic markers HT 6 1
2 , HT,1 > HT . For HT,2, because 0 6 HS 6 1

2 , HS(1 − HS) > 0, and

HT,2 6 [K − 1 + 2HS −
√
(K − 1)2]/(2K) = HS/K < HS for all K > 2. Because the Wahlund principle ensures that HT > HS,

HT,2 < HT .

Because the numerator of dG′′
ST/dS is a quadratic expression in HT with a negative leading term −KH2

T , it is positive

between its roots. We have shown that the permissible values of HT satisfy HT,2 < HT 6 HT,1. Hence, the numerator of

dG′′
ST/dS is non-negative for all 0 6 HS 6 1

2 and HS 6 HT 6 1
2 , with equality requiring HT = HT,1 = 1

2 , K = 2, HS = 0, and

M = 1
2 .

This argument demonstrates that for each M 6= 1
2 , G′′

ST is an increasing function of S on the permissible interval for S. Its

maximum as a function of M occurs when S lies at its largest permissible value given M. Hence, for fixed K > 2 and fixed M,
1
2 6 M < 1, using Theorem 1 from Alcala & Rosenberg (2017) to specify this value of S given M, we substitute the maximum

of S into eq. S4.20:

G′′
ST 6

bKMc+ {KM}2 − KM2

[KM(1 − M)− M + bKMc/K + {KM}2/K](1 − 2M + 2(bKMc+ {KM}2)/K)
. (S4.27)

Note that for M = 1
2 , eq. S4.27 evaluates to 1, the largest possible value for G′′

ST , so that eq. S4.27 is also valid for M = 1
2 .

Comparison of the ranges of possible values of FST , G′
ST , D, G′

ST,Nei, and G′′
ST

We computed the ranges of possible values of G′
ST,Nei and G′′

ST , denoted AG′
N

and AG′′ , numerically, for K ranging from 2 to

10,000, using the same procedure as for G′
ST . Results appear in Figure S2.

Simulation-based distributions of G′
ST,Nei and G′′

ST

We performed simulations using the same procedure as that used to produce Figures 3, 4, and S1. Results appear in

Figures S3–S5.
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