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Mathematical constraints on FST:
biallelic markers in arbitrarily many populations

SUPPLEMENTARY FILE S1: rectangular and linear
stepping-stone models
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IN addition to the island migration model simulations in the
main text, we also considered the rectangular and linear

stepping-stone migration models. This supplementary text com-
pares properties of M and FST observed in the three models.

Simulations

The simulation approach follows that used for the island model.
In the rectangular stepping-stone model, subpopulations are
arranged on a rectangular bounded habitat. Each subpopulation
receives migrants from each adjacent subpopulation with the
same probability. Subpopulations not on the habitat boundaries
receive migrants at the same rate m

4 from each of four adjacent
subpopulations; subpopulations on habitat edges receive mi-
grants from each of three adjacent subpopulations at rate m

3 ;
subpopulations at vertices receive migrants from each of two
adjacent subpopulations at rate m

2 (Maruyama 1970).
In the linear stepping-stone model, subpopulations are ar-

ranged along a linear bounded habitat. Each subpopulation
receives migrants from each adjacent subpopulation at the same
rate: interior subpopulations receive migrants at rate m

2 from
each of two adjacent subpopulations, whereas subpopulations
at habitat boundaries receive migrants from a single adjacent
subpopulation at rate m (Maruyama 1970).

Figure S1 provides a schematic of the parametrization of
all three models. For K = 2, all three migration models (island,
rectangular stepping-stone, linear stepping-stone) are equivalent.
Under the rectangular stepping-stone model, for K = 7, we
considered a 4 × 2 habitat with one subpopulation missing at
the edge; for K = 40, we considered an 8 × 5 habitat.

Results

Rectangular stepping-stone model. Under the rectangular
stepping-stone model, properties of FST in relation to M are
qualitatively similar to those under the island model, but with
higher FST (Figures S2B,E,H and S3B,E,H). For a fixed number
of subpopulations K, the geometry in the rectangular stepping-
stone model, with 2 to 4 connections per subpopulation, gen-
erates less migration among the subpopulations, so that the
genetic difference among subpopulations is higher than in the
fully connected graph of the island model. Thus, with M, K, and
4Nm held constant, FST is generally higher in the rectangular
stepping-stone model.
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Linear stepping-stone model. In the linear stepping-stone
model, FST is higher still than in the rectangular model (Fig-
ures S2C,F,I and S3C,F,I). Connectivity among subpopulations is
reduced, with each subpopulation having only 1 or 2 neighbors.
The probability that a mutation remains localized and fixed in
some subpopulations while being absent in others is greater
than in the other geometries, so that FST exceeds that observed
in the other models.

Proximity of the joint density of M and F to the upper bound in
stepping-stone models. For a fixed number of subpopulations
and a fixed scaled migration rate, F̄ST/F̄max is smaller under the
island model than under the rectangular stepping-stone model,
and smaller under the rectangular model than under the linear
model (Figure S4). This observation can be explained by the
stronger constraints on migration in the linear case, in which
immigrants come from at most 2 other subpopulations, than
in the rectangular case, with up to 4 neighbors, and the island
model, with K − 1. The smaller number of neighbors prevents
genetic homogenization between subpopulations and thus leads
to larger FST values.

Compared to the relatively limited effect on F̄ST/F̄max in the
island model of the number of subpopulations K (Figure S4A),
under the rectangular and linear stepping-stone models, K has a
stronger influence on F̄ST/F̄max—which increases with K (Fig-
ure S4B,C). This result can be explained by noting that unlike
in the island model, which is fully connected irrespective of
the number of subpopulations, at a fixed migration rate, the in-
creasing number of subpopulations produces greater isolation of
distant subpopulations in the stepping-stone models, generating
greater genetic differentiation and thus leading to FST values
closer to their upper bounds. Our results thus provide a more
precise formulation of the classical pattern that under the linear
stepping-stone model, FST values tend to be closer to 1 than
under an island model (Maruyama 1970): under stepping-stone
models, FST values tend to be closer to their upper bound in
terms of M than under an island model.
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Figure S1 Three migration models. (A) Island model. (B) Rect-
angular stepping-stone model. (C) Linear stepping-stone
model. Quantities on the arrows represent the backward mi-
gration rates between pairs of subpopulations.
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Figure S2 Joint density of the frequency M of the most fre-
quent allele and FST , for different migration models and scaled
migration rates 4Nm, considering K = 7 subpopulations. Pan-
els A,D,G for the island model are copied from Figure 3B,E,H
for ease of comparison. The simulation procedure and figure
design follow Figure 3.
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Figure S3 Joint density of the frequency M of the most fre-
quent allele and FST , for different migration models and scaled
migration rates 4Nm, considering K = 40 subpopulations. Pan-
els A,D,G for the island model are copied from Figure 3C,F,I
for ease of comparison. The simulation procedure and figure
design follow Figure 3.
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Figure S4 F̄ST/F̄max, the ratio of the the mean FST to the mean
maximal FST given the observed frequency M of the most fre-
quent allele, as a function of the number of subpopulations K
and the scaled migration rate 4Nm, for three migration models.
(a) Island model. (b) Rectangular stepping-stone model. (c)
Linear stepping-stone model. Panel A for the island model is
copied from Figure 4 for ease of comparison. The simulation
procedure and figure design follow Figure 4.
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Figure S5 Joint density of the frequency M of the most fre-
quent allele and FST , for different number of subpopulations
K and scaled migration rates 4Nm, with SNPs simulated un-
der a infinitely-many-sites model. (A) K = 2, 4Nm = 0.1.
(B) K = 7, 4Nm = 0.1. (C) K = 40, 4Nm = 0.1. (D)
K = 2, 4Nm = 1. (E) K = 7, 4Nm = 1. (F) K = 40,
4Nm = 1. (G) K = 2, 4Nm = 10. (H) K = 7, 4Nm = 10.
(I) K = 40, 4Nm = 10. SNPs are simulated using coales-
cent software MS, assuming an island model of migration, a
scaled mutation rate θ = 1, and 100,000 replicate simulations,
with 100 lineages sampled per subpopulation. For K = 2,
θ = 1/ ∑199

i=1
1
i ≈ 0.1702698. For K = 7, θ = 1/ ∑699

i=1
1
i ≈ 0.1403.

For K = 40, θ = 1/ ∑3999
i=1

1
i ≈ 0.1127251. To obtain single-SNP

simulations, simulations with more than one segregating sites
were discarded. The figure design follows Figure 3.
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