
MBE Discoveries Article

Supplementary Information for manuscript

"Coalescent theory of migration network motifs"
NICOLAS ALCALA∗, 1, AMY GOLDBERG∗, †, UMA RAMAKRISHNAN‡ and NOAH A. ROSENBERG∗

∗Department of Biology, Stanford University, Stanford, CA 94305-5020, USA, †Department of Evolutionary Anthropology, Duke University, Durham, NC

27708-9976, USA, ‡National Centre for Biological Sciences, Tata institute of Fundamental Research, Bangalore, Karnataka 560065, India

Copyright © 2019
Manuscript compiled: Friday 24th May, 2019%
1Affiliation correspondence address and email for the corresponding author.

MBE May 2019 1



11 12 13

22 23

33coalescence

M12

M21/2

M21/2 M12/2

M31/2

M13/2

M12/2M21

M23/2

M23/2

M32/2

M23

M32

M32/2
1

1

1

M13

M31

Figure S1 State diagram of the Markov chain representing the coalescent process of two lineages
sampled in K = 3 subpopulations. States appear in gray and correspond to those presented
in Figure 2; transition rates between states appear in black. Mij corresponds to the scaled mi-
gration rate between subpopulations i and j. This diagram applies to all motifs with K = 3
subpopulations—motifs 4 to 7 in Figure 1. For example, motif 4 corresponds to the case where
M12 = M21 = M13 = M31 = M23 = M32 = 0, and motif 5 corresponds to the case where
M12 = M21 = M and M13 = M31 = M23 = M32 = 0.
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Figure S2 Relationships between πS, ¯̄F, τ, and network metrics, for different scaled migration rates
M. πS is computed from eq. 4, ¯̄F from eq. 6, and τ from eq. 7. The network metrics correspond to
the metrics most highly correlated with the population-genetic statistics, as determined in Figure 3:
the mean vertex degree |E|/|V| for πS, the motif density |E|/(|V|2 ) for ¯̄F, and the mean vertex de-
gree |E|/|V| for τ. (A) M = 0.1, πS. (B) M = 0.1, ¯̄F. (C) M = 0.1, τ. (D) M = 1, πS. (E) M = 1, ¯̄F.
(F) M = 1, τ. (G) M = 10, πS. (H) M = 10, ¯̄F. (I) M = 10, τ.
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Figure S3 Change of total nucleotide diversity ∆πT,ij=(π
j
T−πi

T)/πi
T following a transition from

motif i to motif j, for all transitions involving the loss of a single edge or a single vertex. (A) Motif
transitions involving an edge loss, ranked by ∆πT,ij value. (B) Motifs ranked from largest to small-
est diversity loss following edge loss. For each motif, the mean loss or gain is computed across all
possible transitions to another motif. (C) Motif transitions involving a vertex loss, ranked by ∆πT,ij
value. (D) Motifs ranked from largest to smallest mean diversity loss following vertex loss. In all
panels, ∆πT,ij values assume M = 1, and black horizontal bars represent minimum and maximum

values for M in (0, ∞). Values of πi
T and π

j
T are computed from Table S1; minima and maxima of

∆πT,ij are obtained numerically. “Undefined" values correspond to the case where π
j
T=πi

T = ∞.
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Table S1 Exact expected total coalescence times, and weak and strong migration limits, for all mo-
tifs with 1 to 4 subpopulations. The total coalescence time of a motif is t̄T = (1/K2)∑K

i=1 ∑K
j=1 t̄ij,

where coalescence times t̄ij are computed from Tables 2, 3, and 4. When the motif has multiple
disconnected components, the total coalescence times for all components are provided; the total
coalescence time of the whole motif is then infinite. For example, motif 4 corresponds to 3 isolated
subpopulations, leading to 3 components with coalescence time 1, so the value reported in the
table is {1, 1, 1}. When M → 0, between-subpopulation coalescence times tend to infinity; the
weak-M column gives the Maclaurin series of t̄T in M, which gives a sense of the rate of increase
of coalescence time as M nears 0. The strong-M column corresponds to the asymptotic approxima-
tion of t̄T when M tends to infinity. The a column corresponds to the value of the scaling factor a
obtained when writing t̄T in the form aK[1 + f (M)], with K corresponding to the number of subpop-
ulations in a component and f (M) a rational function of M.
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Figure S4 Relationships between the change of diversity πS resulting from a motif transition, ∆πS,
and the change in mean vertex degree, ∆(|E|/|V|) for M = 1. πS is computed from eq. 4. (A) Edge
loss. (B) Vertex loss. All transitions involving loss of a single edge or vertex are shown.

Supplementary File S1. Maxima spreadsheet to compute solutions to eqs. 9-13.
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Table S2 Numerical approximation of expected within-subpopulation coalescence times for all
motifs with 1 to 4 subpopulations. Values are computed from Tables 2, 3, and 4; when values de-
pend on M, ranges of possible coalescence times are computed by minimizing and maximizing the
coalescence times from Tables 2, 3, and 4 with respect to M, considering M in (0, ∞). Values with
no decimal places or a single decimal place are exact; when three decimal places are shown, the
value is an approximation.
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Table S3 Numerical approximation of the expected value of α = (1/FST − 1)/M for all motifs with 1
to 4 subpopulations, so FST ≈ 1/(1 + αM). For a given motif, the range of possible α values gives a
sense of how much the expression of FST can be approximated by a simple expression of the form
1/(1 + αM). In addition, for each motif, α quantifies the influence of migration on FST values: when
1/α � M, FST ≈ 1, whereas when 1/α � M, FST ≈ 0. Values are computed from Tables 2, 3, and
5, using the formula α = (1/FST − 1)/M; when α values depend on the value of M, ranges are
computed by minimizing and maximizing α with respect to M, considering M in (0, ∞). Values
with no decimal places or a single decimal place are exact; when three decimal places are shown,
the value is an approximation.
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