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Appendix S1. Additional methodological considerations for the study system

INDEPENDENCE OF THE CREEKS

We considered the three creeks independently for the analyses because the creeks displayed notable differences in

creek characteristics, and because localized analyses facilitate actionable conservation management. Although San

Francisquito Creek is beyond the annual migration distance for California red-legged frog ( Fellers and Kleeman

2007), Matadero and Deer Creeks meet at a confluence, and some frog dispersal might occur between them. Never-

theless, the surveys suggest that occupancy in one creek has little influence on occupancy in the second: the nearest

Matadero Creek segment to Deer Creek is usually occupied (14/20 years surveyed), but the closest Deer Creek seg-

ment is usually unoccupied (15/19 years). In addition, because Deer and Matadero Creeks differ in their biotic and

abiotic characteristics (including predators and agricultural use), modeling Deer and Matadero Creek separately helps

target best management strategies and locations for habitat enhancement.

CLOSURE ASSUMPTION

Following MacKenzie et al. (2003), we made a closure assumption, namely that segment occupancy remained con-

stant between surveys of a given year. This assumption is likely appropriate because surveys were completed dur-

ing summer months (June-August), when creeks are reduced to a series of pools with refugia. California red-

legged frog movements >30m occurred only between the months of October and May in Point Reyes, California

( Fellers and Kleeman 2007). In addition, the average time between the first and last survey of a segment in a given

year was short (∼2 months), likely ensuring closure in most surveys.

Appendix S2. Building the posterior distribution of the parameters from the general
SPOM

STATE TRANSITIONS

Let Θ = (e, c, α,K1, ...,KN , d11, ..., dNN ) be the vector of model parameters, let zt = (z1,t, ..., zN,t) be the vector

of true (hidden) segment occupancies at the beginning of year t (before the extinction phase), let z′t = (z′1,t, ..., z
′
N,t)

be the vector of true segment occupancies after the extinction phase of year t, and let zt+1 = (z1,t+1, ..., zN,t+1) be

the vector of segment occupancies at the beginning of year t+ 1 (after the colonization phase of year t).

The probability that segment i is in state z′i,t depends only on its own extinction probability, Ei, and on its previous

occupancy, zi,t. Extinction of segment i is possible only if zi,t = 1 and z′i,t = 0 — that is, if zi,t(1 − z′i,t) = 1.

Extinction then occurs with probability Ei. Non-extinction of segment i is possible under two cases. If zi,t = 1 and

z′i,t = 1 — that is, if zi,tz′i,t = 1 — then non-extinction occurs with probability 1 − Ei. If zi,t = 0 and z′i,t = 0 —

that is, if (1 − zi,t)(1 − z′i,t) = 1 — then non-extinction occurs with certainty (trivially). The case of zi,t = 0 and

z′i,t = 1 is not permissible, because the extinction phase cannot convert a patch from unoccupied to occupied. Because

extinction events in all segments are independent, the probability of a transition from state zi,t to state z′i,t is:

Pr(z′t|zt,Θ) =

N∏
i=1

[
zi,t(1− z′i,t)Ei + zi,tz

′
i,t(1− Ei) + (1− zi,t)(1− z′i,t)

]
. (S2.1)

This product proceeds over all N patches in the habitat.
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The probability that segment i is in state zi,t+1 depends on its colonization probability, Ci,t—which is a function of

z′t, the occupancy of all other segments after the extinction phase—and on its previous occupancy, z′i,t,

Pr(zt+1|z′t,Θ) =

N∏
i=1

[
(1− z′i,t)zi,t+1Ci,t + (1− z′i,t)(1− zi,t+1)(1− Ci,t) + z′i,tzi,t+1

]
. (S2.2)

Here, analogously to the extinction phase, we are using the fact that z′i,t = 0 and zi,t+1 = 1 produces the first term,

z′i,t = 0 and zi,t+1 = 0 the second term, z′i,t = 1 and zi,t+1 = 1 the third term, and z′i,t = 1 and zi,t+1 = 0 is

impermissible.

We obtain the probability of transition from occupancy vector zt to vector zt+1 by summing the product of the

transition probabilities Pr(zt+1|z′t,Θ) (eq. S2.1) and Pr(z′t|zt,Θ) (eq. S2.2) over the set of all possible intermediate

states z′t. This set has 2N possible vectors, where N is the number of segments:

Pr(zt+1|zt,Θ) =
∑
z′t

Pr(zt+1|Θ, z′t) Pr(z′t|Θ, zt). (S2.3)

OCCUPANCY DETECTION

Because occupancy detection is imperfect, the values of the occupancy variables zi,t are not known. Rather, several

possible states can match the observed data. As a result, to compute the probability of the observed data, we must

compute probabilities for all possible values of the unknown occupancies.

Let Ji,t be the the number of surveys in segment i and year t and let Yi,j,t be the observed occupancy in the jth

survey of segment i in year t, where Yi,j,t = 0 or 1 for all segments 1 ≤ i ≤ N , surveys 1 ≤ j ≤ Ji,t and all years

1 ≤ t ≤ T . At each survey, the probability of detection given species presence is p. Following MacKenzie et al.

(2002, 2003):

Pr(Yi,1,t = x1, ..., Yi,Ji,t,t = xJi,t |zi,t = 1) =

Ji,t∏
j=1

pxj (1− p)1−xj ,

Pr(Yi,1,t = x1, ..., Yi,Ji,t,t = xJi,t |zi,t = 0) =

{
1, if x1 = x2 = ... = xJi,t = 0

0, otherwise.

(S2.4)

Because we consider surveys to be independent, we obtain the probability of observing the 1×(
∑N
i=1 Ji,t) vector Yt =

(Y1,1,t, Y1,2,t, ..., Y1,J1,t,t, Y2,1,t, ..., Y2,J2,t,t, ..., YN,JN,t,t) given true occupancy zt by multiplying the probabilities

across segments:

Pr(Yt|zt) =

N∏
i=1

Ji,t∏
j=1

Pr(Yi,j,t|zi,t). (S2.5)

LIKELIHOOD FUNCTION

For each year t, denote each possible state of the occupancy vector zt by a number between 1 and 2N . We denote

by qt the 2N × 1 column vector containing the values of Pr(Yt|zt) (computed from eq. S2.5), and by D(qt) the

2N × 2N diagonal matrix in which elements on the diagonal correspond to qt; we further denote by φ0 the 1 × 2N

row vector of the initial probabilities of each possible state z1 in the initial year (eqs. S2.9 and S2.10). The probability
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of the observed data Y1 in the first year is:

Pr(Y1) =
∑
z1

Pr(z1) Pr(Y1|z1),

= φ0q1.

(S2.6)

This sum proceeds over all 2N possible occupancy states z1.

We denote by φt(Θ) the 2N × 2N yearly transition matrix, where element φtk` corresponds to the probability of

transition from state k at time t to state ` at time t+ 1, as computed from eq. S2.3. Given the model parameters Θ, the

probability of the two observed vectors Y1 and Y2 is:

Pr(Y1,Y2|Θ) =
∑
z1

∑
z2

Pr(z1) Pr(Y1|z1) Pr(z2|z1,Θ) Pr(Y2|z2)

= φ0D(q1)φ1(Θ)q2.

(S2.7)

Similarly, we obtain the likelihood of the parameters given all observations Y1, ...,YT:

L(Θ|Y1, ...,YT) = φ0

[
T−1∏
t=1

D(qt)φt(Θ)

]
qT. (S2.8)

Note that eq. S2.8 is equal to eq. 5 from MacKenzie et al. (2003). Nevertheless, vectors φ0 and qT, and matrices

D(qt) and φt(Θ) have different expressions, owing to the fact that our model differs from that of MacKenzie et al.

(2003) in terms of extinction and colonization dynamics.

ESTIMATING THE SHARED PARAMETERS FROM THEIR LIKELIHOOD

With the likelihood function of the shared parameters (eq. 1), and assuming they have specified prior distributions, we

can obtain parameter estimates and credible intervals by computing their posterior distribution using Bayes’ theorem.

Elements of vector φ1997 that correspond to possible states z1997 lie in the open interval (0, 1), and their value

reflects the prior probability of the states in 1997. We consider either an uninformative or an informative prior. Our

uninformative prior is a discrete uniform distribution over the set A1997 of all possible states in 1997 (2m elements,

where m is the number of patches with uncertain occupancy in 1997). Denoting by φ1997,k the prior probability of

state k,

φ1997,k =


1

2m
, if k ∈ A1997

0, otherwise.
(S2.9)

Our informative prior corresponds has the property that, for each patch with missing data, the occupancy follows a

Bernoulli distribution with parameter equal to the mean occupancy of non-missing data in Y1997, denoted by z̄1997.

As a result, given a state k with m patches with missing data, its probability of having exactly m0 specific patches

where the missing data is 0 (unoccupied) andm1 = m−m0 remaining patches where the missing data is 1 (occupied),

is

φ1997,k = (1− z̄1997)m0 z̄m1
1997. (S2.10)
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We consider a uniform prior for the mean dispersal distance α−1, measured in meters,

Pr(α−1) =

 1, if α−1 ∈ [50, 500]

0, otherwise.
(S2.11)

We consider uniform priors for the model parameters (p, e, c),

Pr(p, e, c) =


1

1.5
, if p ∈ [0, 1], e ∈ [0, 1], and c ∈ [0, 1.5]

0, otherwise.
(S2.12)

Note that because p is a probability, a prior defined on [0, 1] covers its entire range. Similarly, although e is not a

probability, because we set K = 1 in the general SPOM, E = e/K = e, and e is also equivalent to a probability

and restricted to the interval [0, 1]. c is not a probability, and could be greater than 1. In the case of the California

red-legged frog, we found that setting a maximum of 1.5 for the prior was enough to cover the parameter space where

the posterior is large (see Fig. 3). In order to accommodate other uses, we allow the range of the prior to be set by the

user in our implementation MIDASPOM.

Multiplying the prior probability Pr(Θ0) of the model parameters (eqs. S2.11, S2.12) by the likelihood of the

parameters given the occupancy dataset between 1997 and 2016 (eq. 1), where the probability of all possible states in

1997 corresponds either to eq. S2.9 or to eq. S2.10, we obtain the posterior distribution of the parameters given the

observed data:

Pr(Θ0|Y1997, ...,Y2016) ∝ Pr(Θ0)L(Θ0|Y1997, ...,Y2016). (S2.13)

When a single dataset Y1997, ...,Y2016 is considered, all parameters are estimated jointly, and the mode of the

joint posterior distribution is then used to obtain maximum a posteriori estimates α̃−1, ẽ, c̃, in each creek; the 2.5%

and 97.5% quantiles of the marginal posterior distributions are used to construct 95% credible intervals. When M

datasets YX = (YX
1997, ...,Y

X
2016) are considered (e.g., M = 3 independent creeks Y1, Y2, and Y3), the dispersal

distance is estimated first, because it is assumed to be a property of the species and thus the same for all datasets.

Because we assume the datasets to be independent, the joint likelihood of the parameters of the datasets is the product

of the likelihoods of each dataset. The posterior distribution of α is then obtained by multiplying the likelihood of the

parameters by their prior distribution, and integrating over all possible values of parameters e and c:

Pr(α−1|Y1, ...,YM)

∫ ∫ (1,1.5)

(e=0,c=0)

M∏
X=1

[Pr(Θ0)L(Θ0|YX)]. (S2.14)

The mode of the posterior distribution is then used to obtain a maximum a posteriori estimate α̃−1. Parameters e

and c are then estimated independently for each dataset assuming a mean dispersal distance of α̃−1 using eq. S2.13.

The numerical evaluation of the function proceeded as described in Appendix S5, using eq. S5.2. We built an

approximate likelihood function, denoted by L(Θ0|Y1997, ...,Y2016) (eq. S5.7; see Appendix S5).
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Appendix S3. Building the posterior distribution of the parameters under different
hypotheses

LIKELIHOOD FUNCTIONS

In this section, we derive the likelihood of the model parameters Θh used for Bayesian inference under each hypothesis

(eq. 2). We can divide the likelihood computation into two parts: the likelihood for the years 1902 to te, and the

likelihood for the years te to 1997. The likelihood after te does not depend on the parameters under each hypothesis

Θh, so its expression is similar under the two hypotheses:[
1996∏
t=te

D(qt)φt(Θ0)

]
q1997, (S3.1)

where φt(Θ0) is computed as in eq. S2.8. Because the product in eq. S3.1 proceeds over years prior to the onset

of data collection (1997), all states are equally likely and the elements of qt are all equal to 1/2N and are constant

through time. Thus, D(qt) = (1/2N )I in eq. S3.1, where I is the 2N × 2N identity matrix. q1997 is computed as in

eq. S2.8.

The likelihood for the years 1902 to te = tD under hypothesis 1 depends both on Θ0 = (e, c, α) and Θ1 = KD,

φ1902

tD−1∏
t=1902

D(qt)φt(Θ0,Θ1). (S3.2)

To compute φt(Θ0,Θ1), we first compute Pr(z′t|zt,Θ0,Θ1) from eq. S2.1 using (Θ0,Θ1) in place of Θ, and

Pr(zt+1|z′t,Θ0,Θ1) from eq. S2.2 using (Θ0,Θ1) in place of Θ and setting Ci,t = c
∑N
j=1,j 6=i exp(−αdij)KDz

′
j,t.

We then compute Pr(zt+1|zt,Θ0,Θ1) from eq. S2.3 using Pr(z′t|zt,Θ0,Θ1) in place of Pr(z′t|zt,Θ) and

Pr(zt+1|z′t,Θ0,Θ1) in place of Pr(zt+1|z′t,Θ). We finally compute φt(Θ0,Θ1) from eq. S2.8 using

Pr(zt+1|zt,Θ0,Θ1) in place of Pr(zt+1|zt,Θ). Because the product in eq. S3.2 proceeds over years prior to the

onset of data collection (1997), D(qt) = (1/2N )I in eq. S3.2. Combining eqs. S3.1 and S3.2 leads to the likelihood

of the parameters under hypothesis 1,

L(Θ1, z1902|Y1997,Θ0) = φ1902

[
tD−1∏
t=1902

D(qt)φt(Θ0,Θ1)

][
1996∏
t=tD

D(qt)φt(Θ0)

]
q1997. (S3.3)

Similarly, the likelihood for the years 1902 to te = tL under hypothesis 2 depends both on Θ0 = (e, c, α) and

Θ2 = (KL, dL),

φ1902

tL−1∏
t=1902

D(qt)φt(Θ0,Θ2). (S3.4)

To compute φt(Θ0,Θ2), we first compute Pr(z′t|zt,Θ0) from eq. S2.1 using Θ0 in place of Θ, and

Pr(zt+1|z′t,Θ0,Θ2) from eq. S2.2 using (Θ0,Θ2) in place of Θ and using Ci,t = c
[∑N

j=1,j 6=i exp(−αdij)Kz′j,t+

exp(−αdL)KL

]
. We then compute Pr(zt+1|zt,Θ0,Θ2) from eq. S2.3 using Pr(z′t|zt,Θ0) in place of Pr(z′t|zt,Θ)

and Pr(zt+1|z′t,Θ0,Θ2) in place of Pr(zt+1|z′t,Θ). We finally compute φt(Θ0,Θ2) from eq. S2.8 using

Pr(zt+1|zt,Θ0,Θ2) in place of Pr(zt+1|zt,Θ). Because the product in eq. S3.4 proceeds over years prior to the

onset of data collection (1997), D(qt) = (1/2N )I in eq. S3.4. q1997 is computed as in eq. S2.8. Combining eqs. S3.1
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and S3.4 leads to the likelihood of the parameters under hypothesis 2,

L(Θ2, z1902|Y1997,Θ0) = φ1902

[
tL−1∏
t=1902

D(qt)φt(Θ0,Θ2)

][
1996∏
t=tL

D(qt)φt(Θ0)

]
q1997. (S3.5)

Note that the likelihood for the years te to 1997 under the null hypothesis is equal to that under hypothesis 1 with

KD = K, in which case (Θ0,Θ1) can be reduced to Θ0,

L(z1902|Y1997,Θ0) = φ1902

[
tD−1∏
t=1902

D(qt)φt(Θ0)

][
1996∏
t=tD

D(qt)φt(Θ0)

]
q1997,

= φ1902

[
1996∏
t=1902

D(qt)φt(Θ0)

]
q1997.

(S3.6)

ESTIMATING THE PARAMETERS FROM THEIR LIKELIHOOD

With the likelihood function of the parameters under each hypothesis, and assuming the parameters have specified

prior distributions, we can obtain parameter estimates and credible intervals by computing their posterior distributions

using Bayes’ theorem. We consider a log-uniform prior between 0.1 and 100 for KD (resp. KL),

Pr(KD = x) =


1

x[ln(100)− ln(0.1)]
, if KD ∈ [0.1, 100]

0, otherwise,
(S3.7)

and a uniform prior between 200 and 4000 for dL,

Pr(dL = x) =


1

3800
, if dL ∈ [200, 4000]

0, otherwise.
(S3.8)

We consider a uniform prior between 1902 and 1982 for tD and tL:

Pr(tD = x) =


1

1982− 1902
, if tD ∈ [1902, 1982]

0, otherwise.
(S3.9)

We consider a discrete uniform distribution over the set of all 2N − 1 possible non-empty occupancy states for z1882

φ1882,k =


0, k such that z1882 = (0, 0, ..., 0)

1

2N − 1
, otherwise.

(S3.10)

We multiply the prior distribution of the parameters (the product of eqs. S3.7 and S3.9 under hypothesis 1, and of

eqs. S3.7, S3.8 and S3.9 under hypothesis 2) with the likelihood function under the hypothesis (eq. S3.3 or S3.5),

assuming the initial occupancy follows eq. S3.10, to obtain the posterior distribution of Θh:

Pr(Θh, z1882|Y1997) ∝ Pr(Θh)L(Θh, z1882|Y1997). (S3.11)
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The mode of the posterior distribution is used as a maximum a posteriori estimate of a parameter, K̃D and t̃D under

hypothesis 1, and K̃L, d̃L and t̃L under hypothesis 2; the 2.5% and 97.5% quantiles of the posterior distributions are

used as 95% credible intervals. Note that even though our method provides a posterior distribution for the occupancy

in the initial year z1882, this value is not of interest, and we will thus simply integrate the joint posterior distribution

of the other parameters over all possible values of z1882. The numerical evaluation of the function proceeded as

described in Appendix S5, using eq. S5.4 under hypothesis 1 and eq. S5.6 under hypothesis 2.

Similarly to what was done to approximate the likelihood of the general SPOM, we built an approximate likelihood

function for each hypothesis, denoted by L̃(Θh, z1882|Y1997) (eq. S5.8; see derivation in Appendix S5), where

h = 1 under hypothesis 1, and h = 2 under hypothesis 2. This approximate likelihood only considers the most likely

occupancy states instead of all possible states. See Fig. Appendix S13 for an assessment of the accuracy of the model

testing using the approximate likelihood. The exact likelihood was used to infer parameters from Matadero and Deer

Creeks, while the approximate likelihood was used to infer parameters from San Francisquito Creek.

Appendix S4. Data imputation from the a posteriori estimates of the shared param-
eters

METHOD

An interesting use of the posterior distribution of model parameters is for imputation of missing data; this computation

makes it possible, for example, to track temporal changes in patch occupancy. The missing data can be imputed using

the maximum a posteriori estimates of α−1, p, e, and c (from eqs. S2.13 and S2.14) α̃−1, p̃, ẽ and c̃. To perform the

imputation, for all years t = 1998, ..., 2016, we compute the probability vector ψt for all possible states in year t:

ψt = φ1997

t∏
s=1997

D(qt)φs(Θ̃0)qt, (S4.1)

where matrices φt(Θ̃0) are computed from eq. S2.3 with Θ̃0 = (α̃−1, ẽ, c̃) , vectors qt are computed from eq. S2.5,

and the initial probability φ1997 is computed assuming a discrete uniform distribution over the set of all possible states

(eq. S2.9). ψt is a 1× 2N vector. Then, for each year t, the imputed state is that corresponding to max(ψt).

We can obtain the distribution of the proportion of segments occupied in year t, denoted by r. To do so, for each year

t and for r, we sum the elements of φt corresponding to occupancy vectors with a proportion of occupied segments r.

RESULTS

Over the time frame of the study, all creeks declined in proportion of occupied segments (Fig. Appendix S17(a), (c),

(e)). Matadero and Deer Creeks had a higher proportion of segments occupied by R. draytonii until 2002-2003, with

probably more than 80% occupancy. They then experienced a decline between 2004 and 2007, and have had 30-70%

occupancy since 2007. Occupancy in San Francisquito Creek decreased continuously between 1997 and 2007, and

likely totally disappeared in 2008.

Although declines in proportion of occupied segments are similar in Matadero and Deer Creeks, their occupancy

dynamics were different (Fig. Appendix S17(b) and (d)). In Matadero Creek, segments 5 to 10 became extinct in

2005 and most likely stayed extinct until 2016, while other segments mostly stayed occupied during that period

(Fig. Appendix S17(b)). Such dynamics are expected, because of the relatively small extinction and colonization

parameters in Matadero Creek. As a result, segment extinction is unlikely, but once it occurs, because colonization is
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also unlikely, unoccupied segments tend to stay unoccupied for a long time. In contrast, in Deer Creek, segments 2

to 8 have been periodically switching from occupied to unoccupied every 1-4 years (Fig. Appendix S17(d)). This is

expected due to the large extinction and colonization parameters estimated that lead to a rapid turnover of occupancy.

Occupancy dynamics in San Francisquito Creek show a long persistence (10 years) of populations in the middle of

the creek (segment 9; Fig. Appendix S17(f)), and a gradual disappearance of other populations, with occasional spo-

radic colonizations (e.g., segment 5 in 2003) and recolonizations (e.g., segment 19 in 1999) of neighboring segments.

Such dynamics are expected, because of the large extinction rate that leads to a steady decline of occupancy, and

because of the moderate colonization parameter and small dispersal distance that only enable occasional colonizations

of segments close to the few occupied ones.

Appendix S5. Numerical computation of the posterior distribution

In this appendix, we present the numerical computation of the posterior distribution of the parameters (eqs. S2.13

and S3.11). Our implementation of the method is written in C, using the BLAS library for numerical algebra compu-

tations and the MPI library for parallel computing, and is available under the GNU General Public License.

NUMERICAL COMPUTATION OF THE POSTERIOR DISTRIBUTION OF THE SHARED PARAMETERS

In order to compute the posterior distribution of the parameters (eq. S2.13) across the range of the prior distributions

of continuous variables (eqs. S2.12 and S2.11), we evaluate the likelihood function from eq. S2.8 on a regular grid for

(e, c, α−1) with a given resolution (default is 0.01 for e and c, and 25 for α−1). We obtain values L
(
( a
100 ,

b
100 , 50 +

25β)|Y1, ...,YT

)
for all integers a from 0 to 100, integers b from 0 to 150, and integers β from 0 to 18.

Because the prior probabilities of e and c are constant (eq. S2.12) across the range considered ([0,1]), and because

that of α is 1/450 (eq. S2.11) across the range considered ([50,500]), from eq. S2.13 the posterior probability is pro-

portional solely to the likelihood function multiplied by a factor 1/450. Computing the proportionality constant thus

enables us to obtain the posterior distribution. Because the posterior distribution has an integral of 1, the proportion-

ality constant corresponds to 1/450 multiplied by the integral L of the likelihood. We approximate this integral by

numerical integration over the grid, using the trapezoid rule,

L̂ = (0.01× 1

150
×25)

{
1

8

[
L ((0, 0, 50)|Y1, ...,YT) + L ((1, 0, 50)|Y1, ...,YT) + L ((0, 1.5, 50)|Y1, ...,YT)

+L ((1, 1.5, 50)|Y1, ...,YT) + L ((0, 0, 500)|Y1, ...,YT) + L ((1, 0, 500)|Y1, ...,YT)

+L ((0, 1.5, 500)|Y1, ...,YT) + L ((1, 1.5, 500)|Y1, ...,YT)
]

+
1

12

99∑
a=1

[
L
(( a

100
, 0, 50

)
|Y1, ...,YT

)
+ L

(( a

100
, 1.5, 50

)
|Y1, ...,YT

)
+L

(( a

100
, 0, 500

)
|Y1, ...,YT

)
+ L

(( a

100
, 1.5, 500

)
|Y1, ...,YT

)]

+
1

12

149∑
b=1

[
L
((

0,
b

100
, 50

)
|Y1, ...,YT

)
+ L

((
1,

b

100
, 50

)
|Y1, ...,YT

)

+L
((

0,
b

100
, 500

)
|Y1, ...,YT

)
+ L

((
1,

b

100
, 500

)
|Y1, ...,YT

)]
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+
1

12

17∑
β=1

[
L ((0, 0, 50+25β) |Y1, ...,YT) + L ((1, 0, 50+25β) |Y1, ...,YT)

+L ((0, 1.5, 50+25β) |Y1, ...,YT) + L ((1, 1.5, 50+25β) |Y1, ...,YT)
]

+
1

6

99∑
a=1

149∑
b=1

[
L
((

a

100
,
b

100
, 50

)
|Y1, ...,YT

)
+ L

((
a

100
,
b

100
, 500

)
|Y1, ...,YT

)]

+
1

6

99∑
a=1

17∑
β=1

[
L
(( a

100
, 0, 50+25β

)
|Y1, ...,YT

)
+ L

(( a

100
, 1.5, 50+25β

)
|Y1, ...,YT

)]

+
1

6

149∑
b=1

17∑
β=1

[
L
((

0,
b

100
, 50+25β

)
|Y1, ...,YT

)
+ L

((
1,

b

100
, 50+25β

)
|Y1, ...,YT

)]

+

99∑
a=1

149∑
b=1

17∑
β=1

L
((

a

100
,
b

100
, 50+25β

)
|Y1, ...,YT

)}
. (S5.1)

Finally we compute a numerical approximation of the posterior probability of the parameters,

Pr(Θ|Y1, ...,YT) =
L(Θ|Y1, ...,YT)

L̂
, (S5.2)

for Θ values from the grid, where the likelihood L comes from eq. S2.8. Note that because we used uninformative

priors, the prior probability terms in the numerator and denominator cancel out in eq. S5.2 and the posterior probability

depends only on the likelihood function.

NUMERICAL COMPUTATION OF THE POSTERIOR DISTRIBUTION UNDER DIFFERENT HYPOTHE-

SES

We similarly obtain the posterior distribution of the parameters under each hypothesis (eq. S3.11) across the range of

the prior distributions of continuous variables (eqs. S3.7, S3.8, and S3.9), by evaluating the likelihood function from

eq. S3.3 or S3.5 on a regular grid for parameters KD and tD, or KL, dL, and tL. Because the prior distributions of

KD and KL are log-uniform, we evaluate the likelihoods of parameters log10(KD) and log10(KL), so as to obtain a

regular grid (default resolution of 0.02 for log10(KD) and log10(KL), 200 for dL, and 5 for tD and tL). The likelihood

can be used to compute the joint posterior distributions of log10(KD) and tD, and that of log10(KL), dL, and tL.

Under hypothesis 1, because the prior probability of log10(KD) is uniform (eq. S3.7) across the range considered

([log10(0.1), log10(100)] = [−1, 2]), we evaluate the likelihood function from eq. S3.3 at values log10(KD) = a−50
50 ,

for all integers a ranging from 0 to 150. In addition, because the prior probability of tD is uniform (eq. S3.9) across

the range [1902,1982], we evaluate the likelihood function from eq. S3.3 at values tD = 5b + 1902, for all integers

b ranging from 0 to 16. The prior distribution of log10(KD) is 1
3 over the interval considered ([−1, 2]), and the prior

distribution of tD is 1
81 (from eq. S3.9) over the range considered ([1902,1982]). Note that the prior distribution of

the initial occupancy z1902 (eq. S3.10) is already included in the likelihood function (eq. S3.3). Thus, similarly to

the derivation of eq. S5.2, we compute an approximation of the integral of the likelihood of (ln(KD), tD, z1902) by

numerical integration over the grid,

L̂1 =
(

0.02×5
){1

4

[
L
(

(10−1, 1902, z1902)|Y1997

)
+ L

(
(10−1, 1982, z1902)|Y1997

)
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+L
(

(102, 1902, z1902)|Y1997

)
+ L

(
(102, 1982, z1902)|Y1997

)]
+

1

4

149∑
a=1

[
L
(

(10
a−50
50 , 1902, z1902)|Y1997

)
+ L

(
(10

a−50
50 , 1982, z1902)|Y1997

)]
+

1

4

15∑
b=1

[
L
(

(10−1, 5b+1902, z1902)|Y1997

)
+ L

(
(102, 5b+1902, z1902)|Y1997

)]
+

149∑
a=1

15∑
b=1

L
(

(10
a−50
50 , 5b+1902, z1902)|Y1997

)}
. (S5.3)

Finally we compute a numerical approximation of the posterior probability of the parameters under hypothesis 1,

Pr(Θ1, z1902|Y1997) =
L(Θ1, z1902|Y1997)

L̂1

, (S5.4)

for Θ1 values from the grid.

Similarly, under hypothesis 2, because the prior probability of log10(KL) is uniform (eq. S3.7) across the range

considered [log10(0.1), log10(100)], we evaluate the likelihood function from eq. S3.5 at values log10(KL) = a−50
50 ,

for all integers a ranging from 0 to 150. In addition, because the prior probability of tL has a discrete uniform

distribution (eq. S3.9) across the range [1902,1982], we evaluate the likelihood function from eq. S3.5 at values

tL = 5b + 1902, for all integers b ranging from 0 to 16. Finally, because the prior probability of dL is uniform

(eq. S3.8) across the range [200,4000], we evaluate the likelihood function from eq. S3.5 at values dL = 200γ, where

γ ranges from 1 to 20. The prior density of log10(KL) is 1
3 over the interval considered ([−1, 2]), the prior density of

tL is 1
81 (from eq. S3.9) over the range considered ([1902,1982]), and the prior density of dL is 1

3800 (from eq. S3.8)

over the range considered ([200,4000]). Thus, similarly to the derivation of eq. S5.3, we compute an approximation

of the integral of the likelihood of (ln(KL), dL, tL, z1997) by numerical integration over the grid,

L̂2 =
(

0.02×200×5
){1

8

[
L
(

(10−1, 200, 1902, t1902)|Y1997

)
+ L

(
(102, 200, 1902, t1902)|Y1997

)
+L
(

(10−1, 4000, 1902, t1902)|Y1997

)
+ L

(
(102, 4000, 1902, t1902)|Y1997

)
+L
(

(10−1, 200, 1982, t1902)|Y1997

)
+ L

(
(102, 200, 1982, t1902)|Y1997

)
+L
(

(10−1, 4000, 1982, t1902)|Y1997

)
+ L

(
(102, 4000, 1982, t1902)|Y1997

)]
+

1

12

149∑
a=1

[
L
(

(10
a−50
50 , 200, 1902, t1902)|Y1997

)
+ L

(
(10

a−50
50 , 4000, 1902, t1902)|Y1997

)
+L
(

(10
a−50
50 , 200, 1982, t1902)|Y1997

)
+ L

(
(10

a−50
50 , 4000, 1982, t1902)|Y1997

)]
+

1

12

19∑
γ=2

[
L
(

(10−1, 200γ, 1902, t1902)|Y1997

)
+ L

(
(102, 200γ, 1902, t1902)|Y1997

)
+L
(

(10−1, 200γ, 1982, t1902)|Y1997

)
+ L

(
(102, 200γ, 1982, t1902)|Y1997

)]
+

1

12

15∑
b=1

[
L
(

(10−1, 200, 5b+1902, t1902)|Y1997

)
+ L

(
(102, 200, 5b+1902, t1902)|Y1997

)
+L
(

(10−1, 4000, 5b+1902, t1902)|Y1997

)
+ L

(
(102, 4000, 5b+1902, t1902)|Y1997

)]
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+
1

6

149∑
a=1

19∑
γ=2

[
L
(

(10
a−50
50 , 200γ, 1902, t1902)|Y1997

)
+ L

(
(10

a−50
50 , 200γ, 1982, t1902)|Y1997

)]

+
1

6

149∑
a=1

15∑
b=1

[
L
(

(10
a−50
50 , 200, 5b+1902, t1902)|Y1997

)
+ L

(
(10

a−50
50 , 4000, 5b+1902, t1902)|Y1997

)]
+

1

6

19∑
γ=2

15∑
b=1

[
L
(

(10−1, 200γ, 5b+1902, t1902)|Y1997

)
+ L

(
(102, 200γ, 5b+1902, t1902)|Y1997

)]

+

149∑
a=1

19∑
γ=2

15∑
b=1

L
(

(10
a−50
50 , 200γ, 5b+1902, t1902)|Y1997

)}
. (S5.5)

Finally we compute a numerical approximation of the posterior probability of the parameters under hypothesis 2,

Pr(Θ2, z1902|Y1997) =
L(Θ2, z1902|Y1997)

L̂2

, (S5.6)

for Θ2 values from the grid.

Note that there are no parameters to estimate under hypothesis 0. Consequently, we do not need a numerical

computation and can directly compute the likelihood function from eq. S3.6.

MANY-PATCHES APPROXIMATION

When the number of patches N becomes large, vectors qt and matrices φt(Θ)—which respectively have dimensions

2N × 1 and 2N × 2N—become too large to compute. In order to solve this issue, we have implemented a sparse

approximation algorithm based on the algorithm from Reichel et al. (2015) (Algorithm 1). Algorithm 1 consists

in approximating the smallest elements of qt to zero, that is, to consider that the unlikeliest occupancy states are

impossible. The algorithm uses the m most likely states at the beginning of each year, where m is an input parameter,

to compute approximate values of vectors qt and matrices φt(Θ) with reduced dimensions.

Algorithm 1 Many-patches likelihood approximation when values of qt are different

1: for t := 1 to T do
2: Compute vector qt from eq. S2.5

3: Sort the elements of qt from greatest to smallest, and store the corresponding states in variables

z1, z2, ..., z2
N

4: Set At := {z1, z2, ..., zm}

5: Set A∗ :=
T⋃
t=1

At, and m∗ := |A∗|

6: for k := 1 to m∗ do
7: Compute vector φk =

(
Pr(zt+1=z1|Θ, zt=zk),Pr(zt+1=z2|Θ, zt=zk), ...,Pr(zt+1 = z2

N |Θ, zt = zk)
)

from eq. S2.2

8: Sort the elements of φk from greatest to smallest, and store the corresponding states in variables

z′1, z′2, ..., z′2
N

9: Set Ek := {z′1}

10: Set A∗∗ := A∗ ∪

(
m∗⋃
k=1

Ek

)
, and m∗∗ := |A∗∗|

11: Compute m∗∗ × 1 vectors φ̃0 and q̃t, and m∗∗ ×m∗∗ matrix φ̃t(Θ), using states in A∗∗
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The first for loop (lines 1–4 in Algorithm 1) finds the m most likely states at the beginning of each year t (sets

At) given the observed occupancies Yt. The next step (line 5 in Algorithm 1) computes the union of these sets, A∗,
which is at most of size min(mT, 2N ), if sets At are all disjoint. The second for loop (lines 6–9 in Algorithm 1)

finds the most likely states after the extinction phase of year t, Ek, starting from each state k from At. The next

step (line 10) computes the union of these sets and A∗, A∗∗, which is at most of size min(2mT, 2N ), if sets At and

Et are all disjoint. This set A∗∗ is the final set of states that are used for the computation of all quantities (line 11

in Algorithm 1). The size of this set, m∗∗, depends on the parameter m; if m << 2N , then m∗∗ << 2N and the

approximate likelihood will be much faster to compute than the exact likelihood.

The approximate likelihood of the parameters given all observations Y1, ...,YT is thus:

L̃(Θ|Y1, ...,YT) = φ̃0

[
T−1∏
t=1

D(q̃t)φ̃t(Θ)

]
q̃T. (S5.7)

The posterior distributions for the three creeks under the many-patches approximate algorithm are presented in

Fig. Appendix S18, along with the exact posterior distributions for the two creeks with the smallest number of seg-

ments, Matadero and Deer Creek. Corresponding point estimates and credible intervals are presented in Table Ap-

pendix S9. We can see that even for very small values of m (m = 2 and m = 5), results are very close to those under

the exact algorithm. This is due to the fact that few of occupancy states are likely at each step, resulting in many values

close to 0 in vectors qt and matrices φt(Θ).

When all elements of qt are equal due to the absence of surveys, such as during the time period before sampling, we

cannot reduce the number of occupancy states by approximating the smallest elements of qt to zero (Algorithm 1). In-

stead, we approximate the smallest elements of φt(Θ) to zero (Algorithm 2), by computing the most likely occupancy

trajectories from the prior occupancy probability φ0.

Algorithm 2 Many-patches likelihood approximation when values of qt are equal

1: Compute φ0 from eq. S2.9 or S2.10

2: Sort the elements of φ0 from greatest to smallest, and store the corresponding states in variables z10, z
2
0, ..., z

2N

0

3: Set A0 := {z10, z20, ..., zm0 }
4: for k := 1 to m do
5: for t := 0 to T − 1 do
6: Compute vector φ′t,k =

(
Pr(z′t=z1t |Θ, zt=zkt ),Pr(z′t=z2t |Θ, zt=zkt ), ...,Pr(z′t = z2

N

t |Θ, zt = zkt )
)

as

in eqs. S3.3, S3.5, or S3.6

7: Sort the elements of φ′t,k from greatest to smallest, and store the corresponding states in variables

z′1t , z
′2
t , ..., z

′2N

t

8: Set Et,k := {z′1t }
9: Compute vector φt+1,k =

(
Pr(zt+1=z1t |Θ, z′t=z′1t ),Pr(zt+1=z2t |Θ, z′t=z′1t ), ...,Pr(zt+1=z2

N

t |Θ, zt=z′1t )
)

as in eqs. S3.3, S3.5, or S3.6

10: Sort the elements of φt+1,k from greatest to smallest, and store the corresponding states in variables

z1t+1, z
2
t+1, ..., z

2N

t+1

11: Set Ct+1,k := {z1t+1}

12: Set A∗ := A0 ∪
[
m⋃
k=1

T−1⋃
t=0

(Et,k ∪ Ct+1,k)

]
, and m∗ := |A∗|

13: Compute m∗ × 1 vectors φ̃0 and q̃t, and m∗ ×m∗ matrix φ̃t(Θ), using states in A∗
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The first steps (lines 1–3 in Algorithm 2) find the m most likely initial states given the prior occupancy in the

first year, φ0. The for loop (line 4–11 in Algorithm 2) computes the most likely succession of occupancy states,

starting from each of these m states, by computing the probability of each state after each extinction of colonization

phase of years 1 to T . The next step (line 12) computes the union of all sets of states, A∗, which is at most of size

min(2mT, 2N ), if sets are all disjoint. This set A∗ is the final set of states that are used for the computation of

all quantities (line 13 in Algorithm 2). The size of this set, m∗, depends on the parameter m; if m << 2N , then

m∗ << 2N and the approximate likelihood will be much faster to compute than the exact likelihood.

The approximate likelihood of the parameters given the prior probability of the initial state φ0 and the survey in the

first sampled year Y1 is thus:

L̃(Θ|Y1) = φ̃0

[
T−1∏
t=1

D(qt)φ̃t(Θ)

]
q̃T. (S5.8)

The approximate likelihood function from eq. S5.8 was used in place of eqs. S3.3, S3.5, and S3.6 to compute the

likelihood of the different hypotheses in the case of San Francisquito Creek, which has many segments. The accuracy

of the likelihood estimation was assessed using parametric bootstrapping: 100 simulations were performed under the

most likely model from Table Appendix S7 (hypothesis 1, in situ die-off), and Algorithm 2 was used to compare the

models. Results are presented in Fig. Appendix S13(c); consistent with the results from Table Appendix S7, the null

model was rejected in favor of hypothesis 1 (log10(K0,1) < −1) in all simulations, while there was little support for

hypothesis 2 (| log10(K0,2)| < 0.5) in any simulation.
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Supplementary tables

Table Appendix S6: Parameter estimation. Point estimates mentioned as >x indicate that the posterior probability
of the parameter plateaus for all values larger than x (see Figs. 4 and Appendix S16).

Hypothesis Parameter Estimate 95% credible intervals
Sh

ar
ed

pa
ra

m
et

er
s

- α 175 [125,425]
MATADERO CREEK

- p 0.77 [0.69,0.82]
- e 0.12 [0.06,0.24]
- c 0.46 [0.22,0.96]

DEER CREEK
- p 0.75 [0.64,0.81]
- e 0.39 [0.21, 0.52]
- c 1.34 [0.75, 1.87]

SAN FRANCISQUITO CREEK
- p 0.69 [0.57,0.77]
- e 0.47 [0.33,0.62]
- c 0.81 [0.43,1.30]

H
yp

ot
he

si
sp

ar
am

et
er

s

MATADERO CREEK
H0: no change - - -

H1: in situ die-off KD > 1.26 [1.05,100]
tD 1982 [1902,1982]

H2: source population loss
KL > 0.13 [0.13,100]
dL 200 [200,3600]
tL 1902 [1902,1982]

DEER CREEK
H0: no change - - -

H1: in situ die-off KD > 1.45 [1.38, 100]
tD 1982 [1912, 1982]

H2: source population loss
KL > 66.1 [0.18, 100]
dL 200 [200,3400]
tL 1982 [1902, 1982]

SAN FRANCISQUITO CREEK
H0: no change - - -

H1: in situ die-off KD 100 [41.69,100]
tD 1982 [1977,1982]

H2: source population loss
KL 0.1 [0.1,79.43]
dL 4000 [400,4000]
tL 1902 [1902,1982]
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Table Appendix S7: Hypothesis tests. In each creek, the hypothesis with substantial or strong evidence is highlighted
in bold.

Numerator Denominator log10(Bayes factor)a

MATADERO CREEK
H0: no change H1: in situ die-off 0.058
H0: no change H2: source population loss -0.011

H1: in situ die-off H2: source population loss -0.069
DEER CREEK

H0: no change H1: in situ die-off -0.944*
H0: no change H2: source population loss -0.387

H1: in situ die-off H2: source population loss 0.558*
SAN FRANCISQUITO CREEK

H0: no change H1: in situ die-off -44.616**
H0: no change H2: source population loss 0.087

H1: in situ die-off H2: source population loss 44.680

a Bayes factors are computed from eq. 3, using the likelihood from eq. 2 for Matadero and Deer Creeks and from
eq. S5.8 for San Francisquito Creek.
* Substantial evidence
** Strong evidence
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Table Appendix S8: Model selection using the Akaike Information Criterion. The AIC is computed from the
maximum likelihood of the parameters L(Θh, z1902|Y1997) as AIC=2k − 2 lnL(Θh, z1902|Y1997), where k is the
number of model parameters and h is the hypothesis. For Matadero and Deer Creeks, likelihoods for hypotheses H0,
H1, and H2 are computed from eqs. S3.6, S3.3, and S3.5, respectively; for San Francisquito Creek, likelihoods for
hypotheses H0, H1, and H2 are computed from eq. S5.8. The number of parameters is 0 for H0, 2 for H1, and 3 for
H2. This analysis provides an alternative to the Bayes factor model selection presented in Table Appendix S7.

Hypothesis AIC
MATADERO CREEK

H0: no change 11.86
H1: in situ die-off 14.74
H2: source population loss 17.00

DEER CREEK

H0: no change 18.31
H1: in situ die-off 14.96
H2: source population loss 17.07

SAN FRANCISQUITO CREEK

H0: no change 342.90
H1: in situ die-off 130.09
H2: source population loss 348.90
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Table Appendix S9: Parameter estimation under the exact and approximate algorithms, as a function of the
number of states from each year retained in the approximation, m. See Fig. Appendix S18.

Algorithm Estimate 95%CI

M
A

TA
D

E
R

O
C

R
E

E
K

p
Exact 0.77 [0.69,0.82]
Approximate m = 2 0.78 [0.69,0.82]
Approximate m = 5 0.77 [0.68,0.82]
Approximate m = 10 0.77 [0.69,0.82]
Approximate m = 20 0.77 [0.69,0.82]

e
Exact 0.12 [0.06,0.24]
Approximate m = 2 0.10 [0.04,0.17]
Approximate m = 5 0.10 [0.04,0.19]
Approximate m = 10 0.11 [0.05,0.20]
Approximate m = 20 0.11 [0.05,0.22]

c
Exact 0.46 [0.22,0.96]
Approximate m = 2 0.36 [0.17,0.71]
Approximate m = 5 0.38 [0.17,0.76]
Approximate m = 10 0.40 [0.18,0.81]
Approximate m = 20 0.42 [0.20,0.86]

D
E

E
R

C
R

E
E

K

p
Exact 0.75 [0.64,0.81]
Approximate m = 2 0.79 [0.69,0.84]
Approximate m = 5 0.77 [0.67,0.83]
Approximate m = 10 0.76 [0.65,0.82]
Approximate m = 20 0.75 [0.65,0.82]

e
Exact 0.39 [0.21,0.52]
Approximate m = 2 0.38 [0.21,0.53]
Approximate m = 5 0.35 [0.19,0.50]
Approximate m = 10 0.39 [0.19,0.53]
Approximate m = 20 0.39 [0.21,0.52]

c
Exact 1.34 [0.75,1.87]
Approximate m = 2 1.40 [0.82,1.92]
Approximate m = 5 1.19 [0.67,1.76]
Approximate m = 10 1.34 [0.67,1.87]
Approximate m = 20 1.34 [0.75,1.87]

S
A

N
F

R
A

N
C

IS
Q

U
IT

O
C

R
E

E
K

p
Approximate m = 2 0.67 [0.56,0.75]
Approximate m = 5 0.69 [0.58,0.77]
Approximate m = 10 0.69 [0.57,0.76]
Approximate m = 20 0.69 [0.57,0.77]

e
Approximate m = 2 0.45 [0.33,0.58]
Approximate m = 5 0.51 [0.36,0.63]
Approximate m = 10 0.50 [0.35,0.63]
Approximate m = 20 0.47 [0.33,0.62]

c
Approximate m = 2 0.95 [0.60,1.31]
Approximate m = 5 0.99 [0.56,1.34]
Approximate m = 10 0.92 [0.52,1.33]
Approximate m = 20 0.81 [0.43,1.30]
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Supplementary figures
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Figure Appendix S10: Bayesian parameter estimation of the mean dispersal distance (α−1) of the California
red-legged frog. The gray area represents the prior distribution, the red area represents the posterior distribution of
the parameters given the observed data in the three creeks (computed from eq. S2.13). This posterior distribution was
computed simultaneously with that of other parameters presented in Fig. 3.



SM 22

Probability of detection

D
en

sit
y

(a)

Extinction parameter

Co
lo

ni
za

tio
n 

pa
ra

m
et

er

(b)
D

ee
r 

C
re

ek

~c = 

~e = ~p =  0.75

Figure Appendix S11: Bayesian parameter estimation of the probability of detection (p), the extinction param-
eter (e), and the colonization parameter (c) of the California red-legged frog in Deer Creek, using an uninfor-
mative prior (eq. S2.9) for the missing occupancy in the initial year (1998). Note that there is no missing data in
the initial year in Matadero and San Francisquito Creeks, so this type of analysis is not needed for these creeks. The
figure is analogous to Fig. 3(c)-(d).
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Figure Appendix S12: Accuracy of the Bayesian parameter estimation of the extinction and colonization pa-
rameters from Fig. 3. (a) Matadero Creek. (b) Deer Creek. (c) San Francisquito Creek. Shades of gray represent
the density of point estimates ẽ and c̃, estimated using a Gaussian kernel density estimate with a bandwidth of 0.05.
We performed 100 Monte Carlo simulations of patch occupancy data. Simulations started from the initial occupancy
Y1997, and patch occupancies of the following years were successively drawn from the set of possible occupancies
using probability transitions from eq. S2.2, with extinction and colonization parameters corresponding to the maxi-
mum a posteriori estimates of ẽ and c̃: 0.12 and 0.46 in Matadero Creek, 0.39 and 1.34 in Deer Creek, 0.47 and 0.81
in San Francisquito Creek (from Fig. 3). Colored dots represent the true values of e and c used for the simulations;
dashed lines represent the mean ẽ and c̃ across the 100 simulations. Point estimates of e and c in (a)-(c) are similar to
that in Fig. 3(c), (f), (i), and the distribution of point estimates from the simulations match the posterior distribution
obtained from the actual dataset. The results support the accuracy of the credible intervals provided in Fig. 3.
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Figure Appendix S13: Accuracy of the Bayesian model comparison from Table Appendix S7. (a) Matadero Creek.
(b) Deer Creek. (c) San Francisquito Creek. Boxplots represent the Bayes factors of hypotheses 0 and 1 (K0,1), 0
and 2 (K0,1), and 1 and 2 (K0,1). For each creek, we performed 100 Monte Carlo simulations of patch occupancy
data under the most likely hypothesis as determined by the Bayes factors between the three 3 models (Table Appendix
S7). Simulations started from a random initial occupancy z1882, and patch occupancies of the following years were
successively drawn from the set of possible occupancies using probability transitions from eq. S2.2, with extinction and
colonization parameters corresponding to the maximum a posteriori estimates of ẽ and c̃: 0.12 and 0.46 in Matadero
Creek, 0.39 and 1.34 in Deer Creek, 0.47 and 0.81 in San Francisquito Creek (from Fig. 3). For Matadero Creek,
simulations were done under hypothesis 0 (null hypothesis), and the model likelihoods were computed from eqs. S3.3,
S3.5, and S3.6. We assumed that the segment sizes K were constant through time and equal to 1 and that no source
population was present during the following 115 years. For Deer Creek, simulations were done under hypothesis
1 (increased in situ die-off), and the model likelihoods were computed from eqs. S3.3, S3.5, and S3.6. For San
Francisquito Creek, simulations were done under hypothesis 1 (increased in situ die-off), and the model likelihoods
were computed from eq. S5.8. We assumed that the segment sizes K were equal to their maximum a posteriori
estimate K̃D = 100 before the event occurring at t̃D = 1982, and equal to 1 after 1982.
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Figure Appendix S14: Bayesian estimation of the timing of the population reduction event, under two hypotheses.
(a) In situ die-off hypothesis, Matadero Creek. (b) Habitat loss hypothesis, Matadero Creek. (c) In situ die-off
hypothesis, Deer Creek. (d) Habitat loss hypothesis, Deer Creek. (e) In situ die-off hypothesis, San Francisquito
Creek. (f) Habitat loss hypothesis, San Francisquito Creek. Under hypothesis 1, the model parameter tD corresponds
to the timing of the event increasing in situ die-off. Under hypothesis 2, the model parameter tL corresponds to the
timing of the loss of a source population. These posterior distributions were computed simultaneously with that of
other parameters presented in Figs. 4 and Appendix S16.



SM 26

Matadero Creek(a)

KD
0.1 1 10 100

KD=1.26~

prior
posterior

0.6

D
en

si
ty

Figure Appendix S15: Bayesian estimation of model parameters under the in situ die-off hypothesis (H1) in
Matadero Creek. Figure design matches that of Fig. 4.
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Figure Appendix S16: Bayesian estimation of model parameters for the California red-legged frog, under the
source population loss hypothesis instead of the in situ die-off hypothesis presented in Fig. 4. (a) Matadero Creek.
(b) Deer Creek. (c) San Francisquito Creek. The model parameters KL and dL correspond to the population size and
the distance to the creek of a source population. The shades of red represent the joint posterior probability of KL and
dL (see scale on the right). Other parameters of the SPOM appear in Table 1.
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Figure Appendix S17: Estimated trajectories of the occupancy and segment occupancy of three creeks. (A)
Number of occupied segments, Matadero Creek. (B) Segment occupancy, Matadero Creek. (C) Number of occupied
segments, Matadero Creek. (D) Segment occupancy, Matadero Creek. (E) Number of occupied segments, Matadero
Creek. (F) Segment occupancy, Matadero Creek. Shades of red represent probabilities (see legend). We assumed that
extinction and colonization parameters correspond to their maximum a posteriori estimates (see Fig. 3).
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Figure Appendix S18: Bayesian parameter estimation of the probability of detection (p), the extinction param-
eter (e), and the colonization parameter (c) of the California red-legged frog in the three creeks, using the
many-patches approximate algorithm. Panels (a), (g), and (m) are analogous to Fig. 3(a), (c), and (e). Panels (b)-
(e), (h)-(k) , and (n)-(q) are analogous to Fig. 3(b), (d), (f). Panels (f) and (l) are copied from Fig. 3(b) and (d) for
comparison. Note that the exact algorithm cannot be used in San Francisquito Creek due to the large number of states,
so it is not reported here.
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