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The concordance of gene trees and species trees is reconsidered in detail, allowing for samples of
arbitrary size to be taken from the species. A sense of concordance for gene tree and species tree
topologies is clarified, such that if the ““collapsed gene tree” produced by a gene tree has the same
topology as the species tree, the gene tree is said to be topologically concordant with the species
tree. The term speciodendric is introduced to refer to genes whose trees are topologically concor-
dant with species trees. For a given three-species topology, probabilities of each of the three pos-
sible collapsed gene tree topologies are given, as are probabilities of monophyletic concordance and
concordance in the sense of N. Takahata (1989), Genetics 122, 957-966. Increasing the sample size is
found to increase the probability of topological concordance, but a limit exists on how much the
topological concordance probability can be increased. Suggested sample sizes beyond which this
probability can be increased only minimally are given. The results are discussed in terms of implica-

tions for molecular studies of phylogenetics and speciation.
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1. INTRODUCTION

It has long been known that the genealogical history of
orthologous genomic regions of several species need not
be identical to the history of the species themselves (e.g.,
Hudson, 1983; Nei, 1986; Neigel and Avise, 1986; Doyle,
1992; Ruvolo, 1994; Maddison, 1997; Nichols, 2001;
Nordborg, 2001). Two main phenomena can explain this
apparent anomaly. First, ancient coalescence of lineages
can occur in an order that differs from the branching
order of species. Second, if genes are exchanged between
two species that are not sister species, subsequent to their
divergence from a common ancestor, gene trees may
place those two species together in a clade. This grouping
will disagree with the species tree. Depending on the taxa
under consideration, gene exchange may result from
horizontal gene transfer or from hybridization.
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In practice, other causes can explain disagreements
between gene genealogies and species tree topologies.
The assumption that a genomic region is orthologous
across all species studied may be erroneous. Alterna-
tively, if insufficient genetic information is used, a gene
tree may be incorrectly inferred, potentially leading to
discordance with the species tree.

Understanding the relationship between gene trees and
species trees is useful for deducing properties of specific
genes (e.g., Ting et al., 2000) and for inference of species
phylogenies from discordant gene trees (e.g., Ruvolo,
1997; Satta et al., 2000; Chen and Li, 2001). The fraction
of genes whose trees agree with a species tree can also be
used to estimate population sizes of ancestral species
(e.g., Chen and Li, 2001; Takahata and Satta, 2002).

Applications that use gene trees to study individual
genes, species trees, or ancestral population sizes require
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the probability of concordance of gene trees and species
trees under a species divergence model. Thus, this prob-
ability has been a frequent source of discussion (Hudson,
1983; Nei, 1986; Pamilo and Nei, 1988; Takahata, 1989;
Wu, 1991; Hudson, 1992; Moore, 1995). Assume that
three species have equal and constant haploid population
sizes (all equal to N) and equal generation times. If one
lineage is sampled from each species and if the species
tree topology and gene genealogy are known exactly, the
concordance probability P(7,) for the gene tree and
species tree is (Hudson, 1983; Nei, 1986)

P(T)=1-3¢™" (1)

In (1), 7; is the quotient of the number of generations
that elapsed between the more ancient divergence and the
more recent divergence, and the haploid population size
N. Equation (1) follows from the fact that the waiting
time to the coalescence of two lineages is exponentially
distributed with mean 1, in units of N generations (e.g.,
Tajima, 1983). The probability that the gene tree topol-
ogy is determined by a coalescence that occurs between
the two divergence points is 1 —e ™. In this circumstance,
the gene tree is congruent to the species tree. If the gene
tree topology is determined by a coalescence prior to the
more ancient divergence, an event that has probability
e~ three ancestral lineages are present. Then the prob-
ability that the most recent coalescence joins the
two lineages ancestral to the pair of sister species equals
1/3. Thus, the concordance probability is 1—e 2+
(1/3) e™™. The probability of either discordant tree
topologyisi [1—P(T;)], or (1/3) e ™. Similar reasoning
gives corresponding concordance probabilities in cases of
four and five species (Pamilo and Nei, 1988).

A natural extension to this work is to determine the
effect of increasing the sample sizes above one lineage per
species. However, with multiple lineages per species, the
meaning of “concordance” of gene trees and species trees
is unclear. Using different definitions of concordance,
Pamilo and Nei (1988) and Takahata (1989) reached dif-
ferent conclusions about the effect of sample size on
concordance probability. Both senses of concordance
were somewhat problematic. With Pamilo and Nei’s
(1988) definition, concordance was difficult to assess
analytically, and some possible gene trees were classified
so that they were not concordant with any of the possible
species tree topologies (other problems with the defini-
tion were discussed by Takahata, 1989). Although this
failure to classify all gene trees as concordant with some
species tree can be resolved (Takahata, 1989), it is hard
for the definition to accommodate more than three
species. Because Pamilo and Nei’s sense of concordance
depends on a distance measurement between pairs of
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species (based on mean coalescence times of two lineages,
one from each species), the gene tree topology is decided
from a pairwise distance matrix. With three species, this
decision is straightforward; with more species, however,
results may depend on which algorithm for constructing
the topology from the matrix is used (for example,
UPGMA or neighbor-joining).

Takahata’s (1989) definition, though more mathemat-
ically tractable and more easily generalizable, had the
flaw (recognized by Takahata) that for samples of size
one, it did not recover the intuitive definition of concor-
dance used by previous authors (e.g., Hudson, 1983;
Pamilo and Nei, 1988), namely that of gene trees and
species trees having the same topology. As with Pamilo
and Nei’s (1988) definition, under Takahata’s (1989)
definition, gene trees could also be constructed that were
not concordant with any species tree topology.

In this article, I reconsider the concordance probability
using a precise definition of the zopological concordance of
gene trees and species trees. As described in Section 2, for
samples of size 1 taken from each species, this definition
coincides with the intuitive sense of agreement between gene
trees and species trees. For larger sample sizes, the definition
is closely related to Takahata’s (1989) use of “consistency.”
Using the new definition and a three-species divergence
model, in Section 3 I calculate the probability that given a
gene, a sample of arbitrary size, and a species phylogeny, the
gene tree is topologically concordant with the species tree. 1
also give the probability that gene trees and species trees are
monophyletically concordant, that is, topologically concor-
dant in such a way that all three species are monophyletic.
Using simulations in Section 4, I discuss the effects of
divergence times and sample sizes on the topological con-
cordance probability. Implications for studies of phylogeny
and speciation are described in Section 5.

This article differs from Takahata’s (1989) approach,
in that the new definition of concordance enables com-
putation of the likelihoods of all three collapsed gene tree
topologies given the species tree topology. Additionally,
the present method allows large-sample limiting con-
cordance probabilities (speciodendricity probabilities) to
be computed fairly easily. Also, when samples differ in
size across species, the probabilities of genotype data
conditioned on alternate topologies are not equal, and
they cannot be calculated from half of one minus the
concordance probability. Adjusted likelihoods, incor-
porating this fact, are given here.

The main question addressed is: “conditioned on the
species tree topology and assuming no gene exchange
between species, what is the probability that a tree of
orthologous genes is topologically concordant with a
species tree?” Because I am concerned only with the
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relationship of the genealogical shape of gene trees to
species trees, several important issues are not considered.
First, I assume that full knowledge of gene trees is avail-
able. In practice, however, gene trees are inferred from
the DNA sequences of copies of a gene in different indi-
viduals. Error in reconstructed gene trees can be intro-
duced by stochastic differences in the number of muta-
tional changes that have happened along different
lineages, by heterogeneity in mutation rates across sites,
by failure to account for intragenic recombination, by
problems with heuristics that underlie phylogenetic
inference algorithms, or by genotyping errors. Some of
these issues have been studied by Saitou and Nei (1986).

2. TERMINOLOGY

The terms “species” and “population” are imperfect for
the concept needed here, namely that of organisms that are
grouped with a common label and that are treated as
having descended from the bifurcation (or multifurcation)
of a similar ancestral group. Each group maintains the
same label for the entire period between its origin and its
bifurcation into two new groups (if such an event occurs).
For lack of a better term, I refer to such groups as “spe-
cies.” It is to be understood that these groups can be dif-
ferent species in the traditional “biological species concept”
sense, or different populations within a traditional species.

Because the coalescent approach treats time as
increasing backwards from the present, I adopt the same
convention. However, I still use ““before’” to mean “more
ancient,” and I employ “later” and “after” to mean
“more recent.” The directionality of other words that
refer to time should be clear from the context.

2.1. Congruence and Topological Concordance

Many terms have been used to codify the concept of a
gene tree and species tree having the same topology.
Gene trees and species trees have been referred to
as being “in agreement,” ‘“‘concordant,” ‘“‘congruent,”
“consistent,” “identical,” and “isomorphic,” and gene
trees as ‘“‘matching” or ‘“‘tracking’ the species tree. For
the purposes of this article, supposing that one lineage is
sampled from each of several species, the gene tree and
species tree are said to be congruent if and only if they
have the same topology (Figs. 1i and 1ii).

If more than one lineage is sampled from any of the
species, then the gene tree has more tips than the species
tree and the two cannot have the same topology. Thus,
the words “congruent,” “‘identical” and ‘“‘isomorphic™
are inappropriate when sample sizes are greater than one.
In this situation, I refer to a gene tree and species tree as

being topologically concordant if and only if the collapsed

2 <
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FIG. 1. Congruence of gene trees and species trees. 4, B, and C are
present-day species. (i) Gene tree that is both congruent and Takahata-
congruent to the species tree. (ii) Gene tree that is congruent but not
Takahata-congruent to the species tree. (iii) Gene tree that is neither
congruent nor Takahata-congruent to the species tree.

gene tree is congruent to the species tree. To construct the
collapsed gene tree from a gene tree, proceed backwards
in time until a coalescence of lineages occurs between two
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FIG. 2. Concordance of gene trees and species trees. A, B, C, and D are present-day species. Circles indicate interspecific coalescences that are used
in determining the collapsed gene tree. The collapsed gene trees for (i), (ii), (iii), and (iv) all have topology (((4B) C) D). For (v) the collapsed gene tree
has topology ((4B)(CD)), and for (vi), the topology is (((BC) D) A). The six trees represent the six classes partitioned by the terms fopological con-
cordance, Takahata-concordance, monophyletic concordance, and all species monophyletic. (i) All four terms apply. (ii) Topological concordance,
Takahata-concordance. (iii) Topological concordance, monophyletic concordance, all species monophyletic. (iv) Topological concordance. (v) All

species monophyletic. (vi) None of the terms applies.

species. Group the two species involved in this coales-
cence into a clade. Continue backwards in time until
another coalescence occurs between two clades (where
“clade” is understood to subsume “species’ as a special
case). If both clades involved in this coalescence have
already experienced inter-clade coalescences, ignore the

event. If one or neither of the clades has already had inter-
clade coalescences, group these two clades into a larger
clade. Proceed backwards in time until all species have
been involved in inter-clade coalescences. Examples of
collapsed gene trees are described in Fig. 2. Note that this
definition of topological concordance between gene trees
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and species trees recovers the definition of congruence
when only one lineage is sampled from each species,
because the collapsed gene tree will be identical to the
gene tree itself. Also, topological concordance probability
describes the quantity P* that was briefly discussed by
Takahata (1989).

For the case of three species, the new definition of “to-
pologically concordant” is similar to “consistent,” as given
by Takahata (1989). With three species, Takahata (1989)
defined the gene tree and species tree to be “consistent™ if the
most recent interspecific coalescence occurred between the
pair of sister species in the phylogeny, and if this event took
place later than the first bifurcation of the ancestral group to
all three species (Figs. 2i and 2ii). The difference between the
definition of topological concordance here and Takahata’s
(1989) use of “consistency” is that in the present formulation,
if the most recent interspecific coalescence happened prior to
the first bifurcation of the ancestral group, the gene tree and
species tree would still be topologically concordant if this
event took place between the sister species (Figs. 2iii and 2iv).
In this same situation, Takahata’s (1989) definition
would label them “inconsistent.” In many circumstances,
the probability that the most recent coalescence occurred
before the original bifurcation is negligibly small, so that
Takahata’s (1989) definition is often a reasonable
approximation to the one here, as will be seen below.

I use ““concordant™ because “consistent” has many
different meanings in phylogenetic contexts. Henceforth
I distinguish between the new definition and that of
Takahata using “topologically concordant” (or simply
“concordant”) and ‘‘Takahata-concordant” (with
samples of size one, ‘“congruent” and ‘“Takahata-
congruent”). Stated precisely, a gene tree taken from any
number of species is Takahata-concordant with the
species tree if and only if (a) the collapsed gene tree is
congruent to the species tree, and (b) the collapsed gene
tree contains no coalescences prior to the most ancient
species divergence. A gene tree is topologically concordant
with the species tree if and only if (a) holds. In the case of
one lineage per species, it is acceptable to use “topologi-
cally concordant” and ““congruent” interchangeably.

It is useful to define another form of concordance,
similar to Neigel and Avise’s (1986) “phylogenetic status
I” and Mountain and Cavalli-Sforza’s (1997) ““consis-
tency.” A gene tree and species tree are defined to be
monophyletically concordant or M-concordant if and only
if (a) the gene tree and species tree are topologically con-
cordant, and (b) for each species, all lineages sampled
from that species form a monophyletic group. For the
case of two species, examples of M-concordance are
given in Figs. 2i and 2iii. If only two species are con-
sidered, M-concordance is equivalent to ‘‘reciprocal
monophyly” (e.g., Moritz, 1994).
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In summary, we have the following relationships
between the concepts, producing the six classes of
genealogies shown in Figs. 2i-2vi:

1. Monophyletic concordance implies topological
concordance.

2. Takahata-concordance implies topological con-
cordance.

3. Monophyletic concordance implies all species are
monophyletic.

4. Topological concordance and all
monophyletic imply monophyletic concordance.

species

2.2. Speciodendric Genes

“Orthology” was defined by Fitch (1970) to include
genes whose homology was the result of speciation and
subsequent descent, with no duplication. According to
Fitch (1970, p. 113), for orthologous genes, “the history of
the gene reflects the history of the species.” Although mean-
ings of this term have since diversified (Ouzounis, 1999),
recent usage of “orthologous” has focused on the first part
of Fitch’s idea: genes that have diverged via speciation as
opposed to duplication. No term has come to have the
meaning of the second part: genes whose trees reflect the
species tree. To fill this gap in terminology, I propose the
term speciodendric. Stated precisely, a gene is speciodendric
with respect to a given set of species if the gene tree con-
structed from all copies of the gene in all of the species in the
set is topologically concordant with the species tree. It is
understood that only genes that are homologous (sensu
Fitch, 2000) across a set of species can have this property.

Note that Fitch’s (2000) re-definition of “orthology”’
contains a misleading statement about gene trees made
from orthologous genes (p. 228). It is not true that all
orthologous genes are speciodendric: consider Fig. 3ii, in
which genes are orthologous, but not speciodendric with
respect to the species shown. It is also not true that all
speciodendric genes are orthologous. To see this, con-
sider Fig. 3iii, in which xenologous genes, or genes for
which transfers across species are a part of their histories,
are speciodendric for the three species (of course,
xenology need not imply speciodendricity: in Fig. 3iv,
xenologous genes are not speciodendric). It is even pos-
sible for paralogous genes, those whose histories reflect
duplication, to be speciodendric, and vice versa (Fig. 3v).

3. THEORY

In this section, I compute the probability that a gene
tree and species tree are topologically concordant in the
case of three species. This probability depends on sample
sizes and on demographic histories of the three species.
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FIG 3. Gene trees for speciodendric and non-speciodendric genes. Circles indicate interspecific coalescences that are used in determining the
collapsed gene tree. Squares indicate gene duplications. After a duplication event, “new’ copies of genes are drawn more lightly than the old copies.
For ease of representation, each species is treated as having only four lineages. (i) Speciodendric orthologous genes. (ii) Non-speciodendric
orthologous genes. (iii) Speciodendric xenologous genes. (iv) Non-speciodendric xenologous genes. (v) Speciodendric paralogous genes. (vi) Non-spe-

ciodendric paralogous genes.

Suppose that an ancestral group of organisms
separated into two descendant clades ¢, +¢, generations
in the past. One of the clades separated further into two
groups (4 and B) ¢, generations in the past. It is simplest
to assume that each modern and ancestral species has
had constant haploid population size N during its entire

existence, so that time can be easily scaled in coalescent
units (here, ¢ generations equals 7 =4 coalescent time
units). It would be straightforward to assume that the
size of an ancestral species is the sum of the sizes of its
descendants: then the scaling of time would be different
before and after the divergence of the ancestor. Before
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FIG. 4. Three-species divergence model. The quantities 7, s, and g
are numbers of sampled lineages. 7; and 7, are lengths of time periods
in coalescent units. The remaining variables, m, n, I, x, and k—x, all
represent numbers of ancestral lineages. Note that the variable x, which
represents the number of ancestral lineages to species 4 present at time
T, + T, is only sensible when no interspecific coalescences occur during
the two-species phase.

the divergence, ¢ generations would equal 5 coalescent
time units and after the divergence, ¢ generations would
equal % coalescenttime units. This complication, as well
as deterministic fluctuations in the number of individuals
in each species, or different population sizes or mating
systems across species, could be accommodated by
deducing results in coalescent units and rescaling to units
of generations (see Nordborg, 2001).

The history of the three species is divided into
“phases,” in each of which the demographic properties of
the three species are constant for the duration of the
phase. As soon as a species divergence is reached, a new
phase is entered. The model shown in Fig. 4 diagrams the
“three-species phase” the “two-species phase,” and the
“one-species phase” or ‘“ancestral phase.” Looking
backwards in time, as soon as the first interspecific
coalescence occurs, the collapsed gene tree is determined.
If this event occurs between lineages ancestral to species
A and B, the gene tree is topologically concordant with
the species tree.

3.1. Takahata-Concordance Probability

In the present, r, s, and ¢ lineages are sampled from
species 4, B, and C, respectively. Let g;;(T) be the prob-
ability that i lineages derive from j lineages that existed 7’
coalescent time units in the past (e.g., Tavaré, 1984,

Eq. (6.1)),

8i(T)= Zl: e Mk=DT/2 2k —D)(=D j41ipg
ij

e
k=i, @
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where agy = a(a+1)---(a+k—1)fork > 1 withay = 1;
and ap; =a(a—1)---(a—k+1) for k> 1 with a;; = 1.
g;(T') =0, except when 1 < j <i. Note that g;;(0) = Jd;;,
where J;; is Kronecker’s delta. Also, of course
>i-18;(T)=1forallT. For example, (2) yields

gu(T) = 1_%e_T+%e_3T
gu(T)=3e"—3e"

g5(T) = e .

gn(T)=1-e"

gu(T)=1 2, (T) —e T

The probability that species 4 and B are respectively
represented by m and n ancestral lineages at time 7 is
g:m(Ty) 8,,(T3). The probability that the m+ n lineages in
the ancestral species at time 7; coalesce to k lineages at
time 7347, is then g,,, (7). During the process of
coalescence of these m+n lineages to k lineages in the
two-species phase, denote the probability that an inter-
specific coalescence occurs between a lineage of species 4
and a lineage of species B by Fi-2(m, n, 0).

More generally, suppose that in an ancestral species, a,
b, and c¢ lineages represent descendant species 4, B, and
C, respectively, and that coalescences take place until the
total number of lineages is k. Then let F;-?(a, b, ¢) be the
probability that at least one interspecific coalescence
occurs during this process, and that the most recent
interspecific coalescence joins a lineage from species A and
a lineage from species B. Similarly, Fi:(a, b, c) and
F?€(a, b, c) are the probabilities that an interspecific
coalescence occurs and that the most recent interspecific
coalescence is between lineages from species 4 and C,
and lineages from species B and C, respectively. Values
of F{#%(a, b, c) can be computed as in the Appendix;
some are given in Table 1. Fi-%(m, n,0) is equal to
Takahata’s (1989, Eq. (11) and Table 1) Hj, where j in
his notation corresponds to m +n here.

The probability of Takahata-concordance is (equiv-
alently to Eq. (14) of Takahata, 1989)

s m+n

P e TT) =Y Y Y gn(T) gn(D)

m=1 n=1 k=1

X &min k(D) Fie*(m,n,0).  (3)

Intuitively, (3) is the conditional probability of Takahata-
concordance given configurations of lineages throughout
the history of the three species, summed over possible
configurations.
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TABLE 1

Values of F;"#(a, b, ¢)

(a,b) ¢c=1 c¢=2 ¢=3 ¢=4 c¢c=1 c¢=2 c¢=3 c=4

k =1 (same values as for k = 2) k=3

(1,1 0.333 0.222 0.167 0.133 0 0.167 0.150 0.127
(2,1) 0.389 0.261 0.197 0.158 0.333 0.250 0.193 0.157
(2,2) 0478 0.333 0.257 0.209 0.467 0.331 0.256 0.209
(3,1) 0417 0.280 0.211 0.169 0.400 0.277 0.210 0.169
(3,2) 0.523 0.372 0.289 0.237 0.520 0.371 0.289 0.237
(3,3) 0.578 0.422 0.333 0.276 0.577 0.422 0.333 0.276
(4,1) 0433 0.291 0.219 0.176 0.427 0.290 0.219 0.176
(4,2) 0.551 0.395 0.309 0.255 0.550 0.395 0.309 0.255
(4,3) 0.611 0.454 0.362 0.302 0.611 0.453 0.362 0.302
(44) 0.648 0491 0.397 0.333 0.648 0.491 0.397 0.333

k=4 k=5
(1,1 0 0 0.100 0.107 0 0 0 0.067
2,1) 0 0.200 0.180 0.152 0 0 0.133 0.137
(2,2) 0.400 0.320 0.253 0.208 0 0.267 0.241 0.204

(3,1) 0.300 0.260 0.206 0.167 0 0.200 0.190 0.163
(3,2) 0.500 0.368 0.288 0.237 0.400 0.352 0.285 0.236
(3,3) 0571 0421 0.333 0.276 0.543 0.416 0.332 0.276
(4,1) 0.387 0.283 0.217 0.175 0.267 0.260 0.212 0.173
(42) 0.542 0.394 0.309 0.254 0.508 0.389 0.308 0.254
4,3) 0.609 0.453 0.362 0.302 0.599 0452 0.362 0.302
(44) 0.647 0.491 0.397 0.333 0.644 0.490 0.397 0.333

Note. For a, b, and c lineages representing species 4, B, and C,
respectively, in coalescing to k total lineages, Fi%(a, b, c) is the prob-
ability that the most recent interspecific coalescence joins a lineage of 4
and a lineage of B.

3.2. Topological Concordance Probability

To compute the probability of topological concordance,
a term must be added to the Takahata-concordance prob-
ability for the probability of all of the following: (a) no
interspecific coalescences happen in the two-species phase;
(b) the most recent interspecific coalescence happens in the
one-species phase; and (c) this coalescence joins ancestral
lineages of species 4 and B. Assuming that m and n
lineages from species 4 and B are present at time 73, and
that these lineages have k total ancestors at time 7; + 7, the
probability that no interspecific coalescences happen in the
two-species phase is 1 — Fi-2(m, n, 0). All the coalescences
are intraspecific, and at time 7} + 7;, there are, say, X, and
X, lineages ancestral to species A and species B, respec-
tively. Because k total lineages are present at time 7; + 75,
X, + X, = k. Also, each species is represented by at least
one lineage,so 1 < X, X, <k-—1.

In order to determine probabilities of events in the one-
species phase, we will need to consider all possible values
of X, and X,. Thus, Pr(X; =x, X, =k—x| X, + X, =k)
is needed. This probability, henceforth denoted

Noah A. Rosenberg

W ny. . k—x(12), depends on the numbers of ancestral
lineages to species 4 and B at time 7, (m and n), the
number of lineages at time 75 + 7, (k), and the duration of
the two-species phase (7). Using Bayes’s theorem, we have

Wonny, k-0 (12)
=Pr(X;=x, X, =k—x| X+ X,=k)
=Pr(X,=x, X, =k—x)/Pr(X,+ X, =k)
=Pr(X,=x) Pr(X, =k—x)/Pr(X,+ X, =k)

— gmx(];) gn,k—x(n)
Zf;{ gmt(T'2) gn,k—t(n)

Simultaneous to the entry of lineages from A and B
into the one-species phase, lineages ancestral to species C
also enter the one-species phase. The probability that
species C is represented by / ancestral lineages at time
T +T is gy (Ts +T)).

The last quantity needed for the calculation is the
probability F{*2(a, b, ¢) that for a, b, and c lineages from
species A, B, and C present at the ancestral divergence,
the most recent interspecific coalescence occurs between
lineages ancestral to species 4 and B. This probability is
necessary because if the most recent interspecific coales-
cence involves a lineage from species C, the collapsed
gene tree will be discordant with the species tree.

Combining the various components, the topological
concordance probability is

Q)

PC(ra S, 4, Tj’n E)

P

m

m+n

[g,ma;) (1) gmini(T3)

1

~

=1

-1

xy

=1

X [Fﬁ’B(m, n,0)+[1—Fi#(m,n,0)]
k
|:I/I/(m, n), (x, k—x) (Té)

XY Lga(Ta+T3) FA(x, k—x, 1)1]“. )

For samples of size 1 in each species, (5) recovers the
formula given in (1), while the Takahata-concordance
probability in (3) gives 1—e™ (as was noted by
Takahata, 1989).

3.3. Speciodendricity Probability

As a special case, when sample sizes equal the total
number of copies of the gene in the respective species,
(5) gives the probability that the gene is speciodendric.
It will be seen in Section 4.2 that the topological
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concordance probability often converges rapidly as
sample size increases. Because population sizes tend to be
large, so that the probability of speciodendricity is close
to the limit given by the abstract case of an infinite
sample size, a useful approximation to the speciodendri-
city probability is obtained by substituting co into (5) in
place of r, s, and ¢. Thus, the probability of specio-
dendricity is approximately

o m+n

P T)=3 Y h) [gm(:rs)g,,(n)gm,,,k(n)

m=1 n=1

X [Ff?'B(m, n,0)+[1—F¢%(m,n,0)]
k-1

X z |:I/I/(m,n), (x,k—x)(];)
x=1

X i [gI(Té +Té) Ff,B(xa k_x, I)]i|i|i|a
I=1
(6)

where g;(T') is the large-sample limiting probability that
at time 7', a sample has j ancestral lineages (Tavaré, 1984,
Egs. (6.3) and (6.4)).

3.4. Probabilities of the Alternate Topologies

If sample sizes differ between species 4 and B, then the
probabilities of alternate topologies ((AC) B) and
((BC) A) (this notation is the same as in, for example,
Pamilo and Nei, 1988) cannot simply be obtained by
halving the probability of discordance. The probabilities
of these topologies are analogous to (5), except that each
topology can only be obtained if the most recent inter-
specific coalescence occurs in the ancestral phase. Thus,
the expressions are simpler than the corresponding
expression for topology ((4B) C) given in (5):

Q((AC)B)(”, s,q, T, T5)
s m+n

Z D [g,m(n)gm(n)gm+n,k(n)

m=1 n=1 k=1
k-1

X[l_Fﬁ’B(m, n, O)] z |:I/I/(m,n),(x,k—x)(712)
x=1

X3 Lea(TAT) FEC(x k—x, 1)]“ ™)

I=1
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Q((BC)A)(ra s,q, 15, 1)
s m+n

Zr: Z Z |:grm(1—;) gsn(]—;) gm+n,k(Té)

m=1 n=1 k=1
k—1

X [1 _Fg’B(ma n, 0)] Z [mm,n),(x,k—x)(n)
x=1

xS [gy(T+T) FPC(x, k—x, l)]H. ®

By adding P (Eq. (5)), Qc) 5> and Qe 4), it is easily
verified that the sum of the probabilities of the three
collapsed gene tree topologies equals 1.

For a trifurcation (that is, 7, = 0), (5) simplifies con-
siderably. It no longer makes sense to describe a topo-
logical concordance probability. Rather, the interpreta-
tion here is that the probability that the collapsed gene
tree has topology ((4B) C) s

trt(r s, 4, Tg’ E)_ Z Z Z grm(]—;)gsn(n)gql(]—;)

m=1 n=1 I=1

x F48(m, n, 1), ©)

Similar equations result for the probabilities of the other
two topologies, ((AC) B) and ((BC) A). Of course, if all
sample sizes are equal, each topology has probability 1/3.

3.5. Monophyletic Concordance Probability

Unlike the topological concordance probability, the
monophyletic concordance probability is not simply equal
to 1 if only two species are considered. For the present,
consider species 4 and B only. Because both species must
be monophyletic for the gene tree and species tree to be
M-concordant, the only interspecific coalescence must
join a lineage ancestral to all lineages of species 4 and a
lineage ancestral to all lineages of species B. In other
words, the m and » lineages ancestral to species 4 and B
at the divergence time must coalesce to two lineages
without experiencing any interspecific coalescences. The
probability that this happens is 1 — F3-%(m, n, 0). There-
fore, for two species, the M-concordance probability is

r

PMZ(r’ s, T;)= Z Z grm(n)gsn(];)

m=1 n=1

x [1—F%2(m, n, 0)]. (10)
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Special cases of (10) were obtained by Tajima (1983) and
Takahata and Nei (1985). Using the values of g;(T')
from (2), it is straightforward to show that (10) reduces
to Tajima’s (1983, Fig. 5a) solution for r=s5s=2, or
(1—%e7™)% Equation (10) recovers the formula that
describes simulations of M-concordance performed by
Neigel and Avise (1986).

For the three species 4, B, and C, the calculation of M-
concordance probability can be separated into two parts,
based on the value of k, the total number of lineages
ancestral to species 4 and Battime 7; + 7.

If k£ = 1, then monophyletic concordance occurs if and
only if (a) only one interspecific coalescence happens
during the two-species phase, and this coalescence is the
most ancient coalescence in that phase, and (b) the /
ancestral lineages to species C in the ancestral phase
coalesce to one lineage without coalescing with the one
lineage ancestral to species 4 and B. The probability of
(@) is 1—F4#2(m, n,0). The probability of (b) equals
1-F#¢(1,0,1), or equivalently, 1 —FZ%<(0, 1, ). This
probability equals ,(,%1) (Property 5 in the Appendix).

If k>1, then M-concordance requires all of the
following: (a) no interspecific coalescences occur during
the two-species phase; (b) no interspecific coalescences
occur during the one-species phase until all lineages have
coalesced to three lineages; and (c) the last three lineages
coalesce in the order given by the species tree. The prob-
ability of (a) is 1—F%(m,n, 0); (b) has probability
1-F#2(x, k—x,)—F$# (x, k—x,)—F%°(x, k—x, ]);
and the probability of (c) is simply 1/3. Thus, the prob-
ability of M-concordance is

PMB(ra s, 4, ]—'39 ]12)

Sl PRCOPHC PRI

2
xgu(T+T,) [51(,1[1—17'24’3(7”, n, 0)] 0+D

+(1 _5k1)[1 _F;:’B(m’ n, 0)]

k—1
X Z |:I/I/(m,n),(x,k—x)(];)[l_Fg’B(x’k_xa l)
x=1

1
—F%°(x, k—x,)—F%°(x,k—x,1)] 3} H )
(11
The probability that all species are monophyletic (but

not necessarily that M-concordance is achieved) is
obtained from (11) simply by removing the factor of 1/3:
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Pmonophyly(r’ s, 4, T;, ];)
m+n g

= i—l Zi:l Z Z [grm(];)gsn(]—;) gm+n,k(Té)

k=1 I=1

2
< gu(Ts 1) | 3y, (1= FE . m, 0] s

+(1=6, [1=Fi"(m, n,0)]
k-1

X Z [I/I/(m,n),(x,k—x)(];) [I_FI;’B(xak_x’ l)
x=1
—F;"C(x,k—x,1)—F§’C(x,k—x,z)]]” (12)

In case of a trifurcation (7, =0), monophyly is
obtained if no interspecific coalescences occur until three
lineages remain. Thus, the probability of monophyly in
this case is

PMtri(ra s, qa T:"n 0)

1M1=

. Z Z grm(n)gsn(n)gql(jg)

1 /=1
x[1=F3"(m,n,1)
—F3“(m,n,1)=F3“(m,n,D)]. (13)

3.6. Comparison of Three Types of Concordance

A comparison of analytically calculated probabilities
of different types of concordance is given in Table II. As
can be observed from the table, topological concordance
probability can be substantially larger than Takahata-
concordance probability when 7, is small, and when
either the numbers of sampled lineages are small or 7; is
large. Under these conditions, it is unlikely that an
interspecific coalescence occurs during the two-species
phase, so that the most recent interspecific coalescence
frequently takes place in the one-species phase. If the
coalescence occurs in accord with the species tree topol-
ogy, this occurrence can be counted towards the topo-
logical concordance probability but not towards the
Takahata-concordance probability. The discrepancy
between the two probabilities is smaller at large values of
the internodal time 7;. If 7; and 7, are held constant, this
discrepancy decreases with increasing sample size. Ana-
lytically computed values in Table II agree with closely
with Takahata’s (1989, Table 3) work, in which
Takahata-concordance and topological concordance
probabilities were simulated at many of the same values
of (r, s, q, T, T,) shown in Table II.
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TABLE 11

Probabilities of Concordance in the Three-Species Divergence Model

Monophyly Monophyletic Monophyletic
Topological probability concordance concordance
Takahata-concordance concordance (all three probability probability
(r,s,9) T, T, probability probability species) (all three species) (species 4 and B)
(1,1,1) Any 0 0 0.333 1 0.333 1
value 0.05 0.049 0.366 1 0.366
0.5 0.393 0.596 1 0.596
5 0.993 0.996 1 0.996
(2,2,1) 0.05 0 0 0.469 0.048 0.016 0.134
0.05 0.169 0.551 0.056 0.019
0.5 0.762 0.855 0.109 0.049
5 0.998 0.9990 0.134 0.133
0.5 0 0 0413 0.247 0.082 0.355
0.05 0.118 0.476 0.260 0.092
0.5 0.628 0.763 0.329 0.175
5 0.997 0.998 0.355 0.353
5 0 0 0.334 0.989 0.330 0.991
0.05 0.049 0.367 0.989 0.362
0.5 0.396 0.598 0.991 0.590
5 0.993 0.996 0.991 0.987
2,2,2) 0.05 0 0 0.333 0.011 0.004 0.134
0.05 0.169 0.445 0.015 0.005
0.5 0.762 0.837 0.059 0.028
5 0.998 0.9990 0.133 0.132
0.5 0 0 0.333 0.124 0.041 0.355
0.05 0.118 0.410 0.137 0.049
0.5 0.628 0.746 0.234 0.127
5 0.997 0.998 0.354 0.352
5 0 0 0.333 0.983 0.328 0.991
0.05 0.049 0.366 0.984 0.360
0.5 0.396 0.597 0.987 0.589
5 0.993 0.996 0.991 0.987
(5,5,1) 0.05 0 0 0.674 0.0002 0.00007 0.002
0.05 0.604 0.859 0.0003 0.0001
0.5 0.989 0.994 0.001 0.0005
5 0.99996 0.99997 0.002 0.002
0.5 0 0 0.519 0.031 0.010 0.082
0.05 0.261 0.630 0.035 0.012
0.5 0.846 0.907 0.066 0.030
5 0.9990 0.9994 0.082 0.081
5 0 0 0.335 0.978 0.326 0.982
0.05 0.050 0.368 0.978 0.358
0.5 0.399 0.599 0.981 0.584
5 0.993 0.996 0.982 0.978
(5,5,5) 0.05 0 0 0.333 0.000002 0.0000005 0.002
0.05 0.604 0.734 0.000005 0.000002
0.5 0.989 0.992 0.0003 0.0001
5 0.99996 0.99997 0.002 0.002
0.5 0 0 0.333 0.006 0.002 0.082
0.05 0.261 0.502 0.007 0.003
0.5 0.846 0.892 0.030 0.014
5 0.9990 0.999 0.081 0.081
5 0 0 0.333 0.967 0.322 0.982
0.05 0.050 0.367 0.968 0.354
0.5 0.399 0.599 0.975 0.580
5 0.993 0.996 0.982 0.978

Note. Notation is defined in Fig. 4. Note that “monophyletic concordance’ and “both species monophyletic”’ are equivalent for two species.
Takahata-concordance probability depends only on r, s, T}, and 7,; monophyletic concordance probability for species 4 and B depends only on r, s,
and T;. Takahata-concordance, topological concordance, three-species monophyly, three-species monophyletic concordance, and two-species
monophyletic concordance probabilities are computed using (3), (5), (12), (11), and (10), respectively.
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FIG. 5. Probability of topological concordance as a function of 7;, the time between divergences in the three-species model. Each point is based on
100,000 simulated instances of the model. Sample sizes in species 4, B, and C were r, s, and g respectively, and the time since the divergence of sister

species was T5.

Like Takahata-concordance, M-concordance is a
stricter condition than topological concordance. Thus,
analytically computed probabilities of three-species
M-concordance are at most equal to corresponding
probabilities of topological concordance (Table II). For
samples of size one, M-concordance and topological
concordance have the same meaning. Unlike the
Takahata-concordance and topological concordance
probabilities, the three-species M-concordance proba-
bilities decrease with increasing sample size; thus, values
of (r,s,q,T;, T,) can be chosen for which the M-con-
cordance probability is either greater or less than the
Takahata-concordance probability. The decrease in
M-concordance probability with sample size, which
occurs rapidly at small 73, results from the fact that the
number of lineages in the two-species phase increases
with sample size. Consequently, the chances of an
interspecific coalescence more recently than when two
ancestral lineages are reached are increased.

As T, increases, the three-species M-concordance
probability increases because monophyly is not pre-
vented by interspecific coalescences that involve species

C. For large T,, the three-species M-concordance prob-
ability increases towards the probability that all three
species are monophyletic, which in turn increases
towards the two-species M-concordance probability. For
small 7;, because the probability of events during the two-
species phase is small, the collapsed gene tree is usually
determined in the one-species phase, so that the proba-
bility of M-concordance is about 1/3 of the probability
of monophyly. The assertion that if all species are
monophyletic then gene trees and species trees are likely
to be topologically concordant (e.g., Takahata and
Slatkin, 1990) does not hold for small 7,.

For small 7;, both two-species and three-species
M-concordance probabilities are small, especially with
large sample size. As 7y increases, the probability of
monophyly of each species increases, so that M-concor-
dance is determined by whether or not the single ances-
tral lineages for each of the species produce a topology
congruent to the species tree topology. Thus, for large 7,
the M-concordance probability is approximated by (1).

The remainder of this article focuses on the topological
concordance probability. Of the senses discussed, only



Gene Trees and Species Trees

the topological definition of concordance allows gene
trees to be partitioned into the three topological classes.
As we will see in Section 5, this property is useful for
phylogenetic applications.

4. SIMULATIONS

4.1. Procedure

To explore the topological concordance probability in
large samples, I used a standard coalescent simulation
(e.g., Hudson, 1990). Although for small samples, the
exact formula (5) is easy to compute, for large samples,
recursive computations of Fi*® can be more time-con-
suming than simulations. The simulations were analo-
gous to those of Takahata (1989).

In each species, an exponential random variable of
mean ](Jz—ﬂvl) was simulated (where j was the number of
sampled lineages in the species and N was the total
number of individuals in the species) for the time of the
most recent coalescence. If this time was more recent
than any species divergence, two random numbers were
chosen to decide which two of the j lineages coalesced,
and the extant number of lineages was updated by sub-
tracting one. This process of coalescence was continued
until the divergence time of species 4 and B. If a
divergence occurred between species that had j, and j,
lineages at the divergence time, the simulation proceeded
in the ancestral species using j, + j, lineages. I continued
the simulation as above, taking into account each species
divergence, until the most recent interspecific coales-
cence. If the most recent interspecific coalescence joined
lineages from the sister species, the simulation was
counted as having produced topological concordance.

In cases tested, when 100,000 simulations were per-
formed with each set of parameter values, the topological
concordance probability determined by simulation was
usually within 0.001 of the analytically computed value
(not shown). At parameter values for which Takahata
(1989) performed similar simulations, the simulations
here gave nearly identical results.

4.2. Properties of the Topological Concordance
Probability

The probability of topological concordance is a rather
complicated function of r, s, ¢, T;, and 7, (Eq. (5)). The
key determinants of the topological concordance prob-
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ability are the numbers of ancestral lineages to the
samples of species 4 and B at time 75, and the amount of
time that these ancestral lineages have to coalesce (that is,
T,). The behavior of the topological concordance prob-
ability can be determined by considering several cases.

Large Values of T,

When 7, is sufficiently large, lineages from species A
and B almost always have time to coalesce during the two-
species phase. This is true regardless of the values of r, s,
q,and T; (Fig. 5).

To understand this behavior, suppose that only one
lineage from each of the sister species 4 and B enters the two-
species phase at time 7;. The probability that these two
lineages coalesce in this phase is gy, (73), or 1 —e . For large
values of 7,, this probability is close to 1, and topological
concordance is nearly always obtained (Fig. 5). Increasing
the sample sizes r and s can only increase the topological
concordance probability: if more lineages are present during
the two-species phase, the chances of an interspecific coales-
cence during that phase are greater. Increasing 7; causes
lineages to coalesce within species, so that few lineages are
represented in the two-species phase. Thus, increasing this
parameter counteracts increases in sample sizes. In any case,
however, at least one lineage will be represented from each
species in the two-species phase, so that the topological con-
cordance probability is at least 1 —e 2.

Lastly, the sample size of species C has little effect at
large values of 7, because with large 7, the collapsed gene
tree topology is usually determined in the two-species
phase. Thus, if 7, is believed to be large, a gene tree inferred
for any values of r, s, g, and Tj is likely to reflect the species
tree. Increasing the sample size is not necessary in this case.

Small Values of T, and Large Values of T,

If 7, is small, other parameters can significantly affect
the topological concordance probability (Fig. 5). At large
values of T;, regardless of sample size, only one lineage is
likely represented from each of the sister species during
the two-species phase. This is attributable to the fact that
the waiting time until coalescence of a large number of
lineages has a mean of 2 coalescent units (e.g., Nordborg,
2001). Thus, if 7; > 2, a large sample from a species in
the present usually reflects a sample of only one ancestral
lineage 7; time units in the past. In this situation,
increasing the sample size cannot increase the topological
concordance probability (Fig. 6).

Because this part of the parameter space behaves as if
samples of size 1 have been taken from all species, the
topological concordance probability can be computed
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FIG. 6. Probability of topological concordance as a function of 7;, the time since the most recent divergence in the three-species model. Each
point is based on 100,000 simulated instances of the model. Sample sizes in species 4, B, and C were r, s, and ¢ respectively, and the time between the

sister-species divergence and the ancestral divergence was 7.

from (1). In this circumstance, it is very likely that a large
fraction of genes will produce topologies incompatible
with the species tree. Here, considering topologies from
many genes is more useful than increasing sample sizes
within species.

Small Values of T, and Small Values of T,

Limiting Behavior. If both T, and T; are small, then
the sample sizes r, s, and ¢ can significantly affect the
topological concordance probability (Fig. 7). It is clear
that increasing r and s while holding ¢ constant can
increase the topological concordance probability, and
that increasing ¢ while holding r and s constant can
decrease it. In contrast to what might be expected,
however, increasing only r or only r and s without bound
does not lead to a topological concordance probability of
1; similarly, increasing ¢ without bound does not lead to
an eventual topological concordance probability of 0. At

fixed nonzero T; and T7,, the large-sample limit of the
topological concordance probability is a value that lies
strictly between 0 and 1.

These observations are a consequence of two facts.
First, as mentioned earlier, the topological concordance
probability depends largely on the numbers of ancestral
lineages of species 4 and B that are present in the two-
species phase. As these numbers increase and the length
of this phase increases, it becomes more likely that an
interspecific coalescence will happen during the phase.

Second, regardless of the sample sizes used in the
present, the numbers of ancestral lineages (m and » in the
notation of Fig. 4) cannot be increased beyond a certain
limit. For a very large sample size, most coalescences
take place quickly, and few ancestral lineages are repre-
sented. Increasing the sample size in the present increases
the sample size in the past by a comparatively small
amount.

Formally, Tavaré (1984, Eq. (6.5)) showed that if r
lineages are sampled from species A4, and if m is the
random number of ancestral lineages present at time 7; in
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the past, then the probability that m is at least ¢ (where
1 < ¢ < r)satisfies

e VB2 < Prim > ¢] < min {

(2c—1)! —c(c—l)T;/Z}
(e '
(14)

Note that the bounds on Pr[m > ¢] are uniform; that is,
they do not depend on the number of sampled lineages, r.
In other words, no matter how many lineages r are
sampled, the probability that at least ¢ ancestral lineages
are represented at time 7; cannot be increased above
(ZC—;)' e~«~DB/2" or if the Stirling approximation for

1argec1s used, (4°/[2¢ /mc]) e~ DB/,

Maximal Useful Sample Sizes. Because the distribu-
tion of the number of ancestral lineages cannot be
increased above the upper bounds in (14) through use of
a large sample size, it is useful to determine sample sizes
larger than which topological concordance probability is
only trivially affected.

To compute these sample sizes, I assume that the
number of ancestral lineages at time 7; directly impacts
the topological concordance probability. Thus, I assume
that if the number of ancestral lineages at time 7} cannot
be increased by an increase in sample size, then the topo-
logical concordance probability cannot be substantially
increased either. The idea of the computation is to choose
r large enough so that by an appropriate criterion of
deviation, the distribution of A4, given 4, =r deviates
from the large sample limiting distribution of 4, given
A, = oo by less than a prespecified tolerance (where A is
the random number of ancestral lineages to the sample at
time T coalescent units in the past).

To measure the deviation of the cumulative distribu-
tion of the number of lineages at time 7; given a sample
size of r, that is, Pr(A;, <al|A,=r) or G,(a), from the
large-sample limiting distribution G, (a), it is ideal to use
the total variation norm. That is, for a given ¢, a maximal
sample size might be the minimal r such that the follow-
ing criterion holds for all values of a:

|G, (a) = G (a)] <e. (15)

However, for ease of computation, it is convenient to
measure deviations using a less cumbersome criterion. In
general, 7; is not known precisely, and the sample size
chosen in a study will need to reflect this uncertainty.
Thus, the reason for identifying bounds is more to
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develop practical rules than for rigorous mathematical
precision.

For these distributions, the absolute difference
between the mean of G, and the mean of G, is appropri-
ate. Although it is in general unwise to use this norm to
measure convergence (for example, consider a family of
normal distributions with mean zero in which the jth
distribution has variance 1+ 1/j), the properties of the
distributions G, have been well studied (e.g., Griffiths,
1984; Tavaré, 1984), and the distributions do not exhibit
behavior that would make the mean difference a prob-
lematic criterion. Conveniently, the means of the distri-
butions are fairly easy to calculate (Griffiths, 1981;
Tavaré, 1984).

Let ¢ > 0. Define the recommended sample size by R
the minimal r that satisfies

|E[Ag, | 4y =r]—E[ A7 | Ay =0]| <¢,  (16)
where the expected number of ancestral lineages at time
T; is given by

r

2k—1
Elr, | 4,=r] = Y, ee-vnn G Dl
k=1 (0)

(17)

for finite r (Griffiths, 1981; Tavaré, 1984, Eq. (6.7)) and
by

E[Ag | Ay =c0]= Y, e ¢ DB202k—1) (18)
k=1

in the limiting case (Griffiths, 1981). Recall that r, and
T are defined in Section 3.1.

Values of R computed from (16)—(18) are shown in
Table III, along with deviations of large-sample limiting
topological concordance probabilities from those
computed at the recommended sample sizes. As is clear
from Table IIT and from Fig. 7, unless the sister species
diverged recently (small 73), only a small sample size is
needed in order to obtain a topological concordance
probability close to the large-sample limit.

4.3. Properties of the Speciodendricity Probability

The large-sample limiting topological concordance
probability, or speciodendricity probability (Eq. (6)), is
shown in Fig. 8. Along 7, =0, the speciodendricity
probability is 1/3. For large values of T, the specio-
dendricity probability approaches 1 —(2/3) e, and for
large values of 7, this probability is nearly 1.
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FIG. 7. Probability of topological concordance as a function of sample sizes. The independent variable differs across the four curves in each
graph. For example, in the top curve, both r and s vary according to the values on the x-axis, while ¢ is constant at 1. Each point is based on 100,000
simulated instances of the model.
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TABLE III

Minimal Sample Size for Which the Mean Number of Ancestral Lineages
Is Close to the Large-Sample Limit

Large-sample Mean number of

limiting mean Lower ancestral lineages

number of ancestral bound attime 7; with a

T, lineages at time 7;  log,(¢) R sample size of R

5 1.020 -3 1 1
2 1.418 -1 1 1
-2 3 1.204
-3 6 1.294
1 2.370 1 1 1
0 3 1.577
-1 6 1.879
-2 14 2.126
-3 30 2.248
0.5 4.351 2 1 1
1 5 2.557
0 12 3.352
-1 28 3.853
-2 60 4.102
-3 124 4.226
0.2 10.340 4 1 1
3 3 2.503
2 16 6.479
1 41 8.379
0 90 9.341
-1 190 9.840
-2 390 10.090
-3 790 10.215
0.1 20.337 4 6 4.803
3 31 12.476
2 81 16.375
1 180 18.337
0 380 19.337
-1 780 19.837
-2 1580 20.087
-3 3180 20.212
0.05 40.335 4 61 24.474
3 161 32.373
2 361 36.345
1 760 38.335
0 1560 39.335
-1 3160 39.835
-2 6360 40.085
-3 12759 40.210

Note. See Section 4.2 for descriptions of ¢ and R.

As discussed above in the context of sample sizes, the
most complex behavior is in the region where both 7; and
T, are small. For small 7, the speciodendricity probabil-
ity decays quickly as 7T; increases. For small 7;, slight
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FIG. 8. Probability of speciodendricity as a function of 7; and 7,.
Each point is based on 100,000 simulated coalescent trees. The specio-
dendricity probability was approximated by using a large sample size
for the simulations, namely 400 lineages in each species. Because the
smallest nonzero value of 7; used was 0.2, and because sample sizes of
400 give topological concordance probabilities very close to the large-
sample limit if 73 > 0.2 (see Table I1I), the graph shown is a very good
approximation of the speciodendricity probability (except for
0 < T; < 0.2 and 7, small, where no points are plotted).

increases in 7, are sufficient to increase the probability of
speciodendricity near 1. Along 73 = 0, Ps equals 1, with
the exception that at T, =7, =0, Py=1/3: (0,0) is a
point of discontinuity of Pg. This result is easily
explained: it is intuitive that Pg(0,0) =1/3. With 7, =0
and T, > 0, however, if the sample sizes are infinite, then
interspecific coalescences in the two-species phase are
guaranteed.

5. DISCUSSION

In this article, I have computed the likelihood function
of an observed gene tree conditioned on a proposed
species tree topology (together with its branch lengths).
This calculation enables the use of likelihood-based
inference of three-species phylogenies based on sample
sizes larger than 1.

In agreement with Takahata (1989), I have found that
conditions on 7; and 7} exist under which sample sizes can
increase the topological concordance probability. If 7; and
T, are both small, topological concordance probability can
be increased (to a point) by enlarging samples. The
increase in sample size needed for achieving a desired
topological concordance probability depends on 7; and
T,, and maximal useful sample sizes can be obtained in
Table III. If 7, is large, topological concordance is nearly
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guaranteed. If 7, is small and 7; is large, topological
concordance is not likely; this result is little affected by
sample size.

These results are relevant to a variety of problems.

5.1. Inference of Species Trees

Maddison (1997) suggested that species trees could be
inferred from gene trees by searching for species trees
that maximize the likelihood function

fLI Y Pr(D|G) Pr(G|S), (19)

=1 Ge¥%

where L is the number of unlinked loci genotyped, D is a
collection of individual multilocus genotypes, % is the set
of possible gene trees, and S is a proposed species tree
(including branch lengths). A model of sequence evolu-
tion gives the function Pr(D|G) and a model of the
shape of gene genealogies gives Pr(G | S). By allowing for
large sample sizes, the present work has expanded the set
of situations for which Pr(G|S) can be calculated (at
least, if G includes only the genealogical shape). Addi-
tional advances in the likelihood computation—such as
for more species and for different demographic models—
together with sequence evolution models and Markov
chain Monte Carlo techniques for maximizing (19)
will expand the class of situations for which tests of
phylogenetic hypotheses can be performed using gene
trees.

From a more philosophical perspective, the incorpo-
ration of samples larger than one into likelihood cal-
culations enables within-species variation to be accom-
modated in molecular phylogenetic inference. Most
phylogenetic algorithms are typological in nature rather
than populational (see Dobzhansky, 1967) and they do
not easily accommodate within-species polymorphisms
or polymorphisms shared across species (Wiens, 1999).
To infer relationships of closely related and recently
diverged groups, only an approach that takes into
account the range of variation within each group should
be fully satisfying. Incorporating larger samples, that is,
within-species variation, into phylogenetic likelihood
computations is both more realistic given the extent of
within-species variability, and, as shown by Takahata
(1989) and here, it is often more likely to produce
topologies concordant with the species tree.

5.2. Sample Sizes for Human Evolution Problems

The effect of sample size is that increasing the sample
size increases the topological concordance probability,
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but that increasing the size of large samples is only
minimally helpful. This result also holds if many lineages
are taken from one or two of three species, but only one
lineage is taken from the remaining species. The results
given in Section 4.2 enable speculation on maximal
useful sample sizes for various problems of interest.

A loose estimate places 7; between 1.6 and 93.3 for
humans and chimpanzees (Rosenberg and Feldman,
2002). At the low end of this range, several lineages are
sufficient to reach the limiting number of ancestral
lineages, and at the high end of the range, it is unneces-
sary to use more than one lineage. Thus, depending on
T;, it may be possible to improve upon previous attempts
to resolve relationships of humans, chimpanzees, and
gorillas, by adding as many as 5-10 lineages from each
species. If geographic structure is taken into account, this
suggested sample size will increase. It seems, however,
that the divergence is sufficiently ancient that increasing
the number of genes is more useful than increasing the
sample sizes.

For the divergence of humans and Neanderthals, 75 is
likely between 0.5 and 10 (Rosenberg and Feldman,
2002). Again, at the high end of the range, samples of size
one will reach the limiting concordance probability. At
the low end, it is valuable to examine as many as, say,
20-40 Neanderthal sequences in order to study their
relationship to modern humans (see Table III). As in
other cases, it is useful to look at gene trees taken from
many genes.

For pairs of modern human groups, values of 7; may
be as small as 0.05 (Rosenberg and Feldman, 2002). To
achieve maximal accuracy, sample sizes as large as
80-200 from each group are needed (see Table III and
Fig. 7). Of course, geographic structure will increase the
required sample sizes further, and as above, many genes
will need to be studied.

5.3. Estimationof T;, T,, or N

If the species phylogeny is “known,” equations given
here allow estimation of 7; and 7, from a set of individual
genotypes at multiple independent loci. Suppose that the
species phylogeny is ((4B) C) and that r, s, and ¢
lineages are sampled from species 4, B, and C, respec-
tively. If L genes are typed and if trees for x, y, and z
genes support topologies ((4AB)C), ((AC) B), and
((BC) A), respectively, then the likelihood of the data is

le(Tés Té) oC PC(r’ S, 4, Té’ T'Z)x Q((AC)B)(r’ s, 4, ]-'39 ]-’Z)y
X Quacy (1> 8, 4, T3, T, )" (20)
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Maximizing (20) should provide estimates of both 7; and
T,. In practice, it is hoped that it will be possible to
separate the impacts of 7, and 7,. However, in some
situations, independent knowledge may exist about one
of these two variables, in which case (20) can enable
estimation of the other. Another application of (20) is the
extension of multiple-locus likelihood-ratio tests of
species phylogenies (Wu, 1991; Hudson, 1992; Ruvolo,
1997) to include sample sizes larger than one.

It is noted that by employing the probabilities of the
alternate topologies, the precision of an estimate should
be improved beyond that obtained by dividing gene trees
into those that are concordant and those that are dis-
cordant with the species tree. Because the derivatives of
Pc, Qucyn and Q) 4) are unwieldy, the likelihood is
best maximized numerically.

Equation (20) also provides the potential to estimate
ancestral population sizes, as has been done with samples
of size 1 (e.g., Chen and Li, 2001). If 7, and 7; can be
estimated, and if independent information is available
about 7, and #, (measured in generations), then ¢,/7}
estimates the population size for the most recent
common ancestral species for 4 and B.

5.4. Speciation Genes

All calculations to date on concordance of gene trees
and species trees, including those presented here, have
treated random genes, that is, genes whose functions are
assumed to have played no role in causing ancestral
species to diverge. It stands to reason, however, that
genes in which mutations or changes in expression con-
tributed to species divergence will produce concordant
trees much more often than will random genes: specia-
tion genes are more likely to be speciodendric. This pre-
diction has been confirmed for Odysseus, a gene thought
to have been involved in the divergence of Drosophila
species (Ting et al., 2000).

To study this phenomenon, the reasoning employed in
Section 5.1 may be inverted: instead of using gene trees to
infer species phylogenies, species phylogenies can be used
to make inferences about specific genes. For example, a
species phylogeny can be assumed to be known. If a gene
is found to be speciodendric with respect to that set of
species, and if the probability of speciodendricity is low
(as computed by Eq. (6) for a set of three species), then it
might be inferred that the gene was causally linked to the
divergences of the species under consideration (or gene-
tically linked to such a “speciation gene”). This observa-
tion suggests a genomic approach: with complete genome
data for a set of closely related species, genes can be
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tested for speciodendricity. Genes found to be specio-
dendric can be targeted for further study of their poten-
tial roles in speciation.

5.5. Extensions: Four or More Species

If four or more species are considered (Fig. 9), even
with samples of size 1, alternate gene tree topologies do
not have the same probabilities (Tables IV and V). For
samples of size 1 from each species, the four-species
probabilities of topological concordance agree with
those found by Pamilo and Nei (1988); for larger sample
sizes the probabilities can be obtained using calculations
similar to those in Section 3.

In general, to deduce the probability that a gene tree is
topologically concordant with a given species tree of any
size, it is best to proceed backwards in time, conditioning
on all possible lineage configurations and for each
lineage configuration, computing the probability that if

W1 //> /\

. /(\<\\

FIG. 9. The two bifurcating tree topologies that can be generated by
four species. (i) Balanced tree topology. (ii) Unbalanced tree topology.
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TABLE 1V

Probabilities of the 15 Gene Tree Topologies When the Species Tree
Topology Is ((4B)(CD))

Noah A. Rosenberg

TABLE V

Probabilities of the 15 Gene Tree Topologies When the Species Tree
Topology Is (4B) C) D)

Gene tree Probability Gene tree Probability
topology Probability at,=T,=1 topology Probability at,=T,=1
((4B)(CD)) ea (T + 1) gn(T) ((4B)(CD))  gu(Ty) g2(T2) %“'gzz(Ts)

+gu(T+T,) 822(7})% X[gzz(n)%%'f'gas(n)%%] 0.0991

+8n(T+Th) gzl(Tz)% ((4C)(BD)) gzz(n)[gsz(n)%%"‘gn(Tz)%%J 0.0215

+8un (T +T5) g2(T) %% 0.6867 ((AD)(BC))  gn(T3)[gx(T3) %%"‘gaa(Tz) % %] 0.0215
((AC)(BD)) gn(T+Th) g»(Th) %% 0.0055 (((4B) C) D)  gu(T3)[g21(T3) +8»(T>) %] +82(T3)
((4D)(BC)) en(T+ 1) gxu(T, %% 0.0055 x[g(T3) %"’gsz(Tz) %%“'gaa(Tz) %%] 0.5556
(((4B) C) D) (G +T) gn(T) 5 ((4B)D)C)  gu(T3) gn(T2) 3+ 80 (T3)

+8u(L+T;) gzz(Tz)%% 0.1088 X[gaz(Tz)%%‘*'gss(Tz)%é] 0.0980
(((4B) D) C) (G +T) gn(D) 5 (((AC) B) D) gn(T)[gs(T2) 3+80(T:) 53+86(T) §3] 00785

+&n(T+Th) 822(7})%% 0.1088 (((4C) D) B) gzz(n)[gsz(n)%%"‘gss(Tz)%%] 0.0205
(((4C) B) D) 2(T+T) gn(h) 63 0.0028 (((4D) B) C)  gn(T3) g:5(T2) 3 0.0010
(((4C) D) B) gn(T+Th) g»(Th) %% 0.0028 (((4D) C) B) gn(T) g:5(T3) %% 0.0010
(((4D) B) ©) gn(T+T) g(T5) %% 0.0028 ((BC) A) D)  gxn(Ty)[g1(T2) %“'gsz(Tz) %%‘*’gss(Tz) %%] 0.0785
(((4D) C) B) (G +T) gn(D) ¢3 0.0028 ((BC)D) A)  g»(Ty)[gn(Tr) 35+8u(Th) 3] 0.0205
(((BC) 4) D) 22+ 1) gx(T) §3 0.0028 ((BD)A)C)  gn(T3) g5(T2) ¢ 0.0010
(((BC) D) 4) 2(T+T) gn(T) 63 0.0028 ((BD)C) 4) gn(Ty) g:5(T2) 63 0.0010
((BD) 4) C) (G +T) gx(T) ¢35 0.0028 (((CD)A) B) g»n(T;) gu(T2) ¢35 0.0010
(((BD) C) 4) 2(G+T) gn(h) ¢ 0.0028 ((CD)B) 4) gn(T3) g55(T2) 63 0.0010
(((CD) 4) B) a(G+T) gu(D) 5

+8n(T+T) g,(T3) 13 0.0313 Note. Notation is as in Fig. 9ii. Values of g;;(T") are given by (2).
(((C€D) B) 4) (G +T) gu(h) 5

+en(TG+T) gn(D) ¢ 0.0313 however, is true only if branch lengths are very short.

Note. Notation is as in Fig. 9i. Values of g;;(T") are given by (2).

an interspecific coalescence occurs during a given inter-
val, then the coalescence violates the proposed topology.
The probability of topological concordance is then equal
to one minus the probability that the proposed topology
is not obtained.

If the true species tree is balanced, the probability that
a gene tree is topologically concordant with the species
tree is larger than if it is unbalanced. Informally, the
more symmetry the tree topology has, the greater the
number of sequences of coalescences that produce gene
trees topologically concordant with the species tree. For
example, with samples of size 1 and eight species, only 1
out of 1,587,600 random sequences of coalescences can
produce a topology concordant with the species tree
((((AB)C) D) E) F) G) H). In contrast, the species
tree (((AB)(CD))((EF)(GH))) can be achieved in any
of 80 different sequences.

This effect, that balanced species tree topologies are
more likely to have concordant gene trees, increases in
magnitude with the number of species. Contrast the case
of eight species with the fact that for four species
(((AB) C) D) is achieved in 1 of 18 sequences, and
((AB)(CD)) is achieved in only 2 of 18. The claim that
balanced trees more often have speciodendric genes,

With short branch lengths, interspecific coalescences
only take place in the ancestral phase, during which the
order of coalescence is random and the above reasoning
holds.

5.6. Extensions: Expanding the Model

I have made simplifying assumptions about equality
and stability of population sizes and absence of popula-
tion structure. A concordance probability calculation in
a model with many demes per species is given by Wakeley
(2000), and Takahata and Slatkin (1990) numerically
computed M-concordance probability in a two-species
migration model. Future work might expand these cal-
culations to include larger sample sizes or other forms of
population structure. In general, the effect of geographic
structure within species is to decrease the topological
concordance probability (e.g., Fig. 6 in Wakeley, 2000).

Another limitation of this work is that I ignore gene
exchange between species, mistaken orthology, and
mutational stochasticity. Including these factors will
allow for the main determinants of discordance to be
considered simultaneously. By studying a general model
that includes all factors, it may be possible to determine
relative probabilities for each of the different causes of an
observed discordance. It may also be possible to use the



Gene Trees and Species Trees

observed amount of concordance to estimate gene
exchange rates and other parameters.

APPENDIX

Fi%(a, b, c) is the probability that in coalescing from
a, b, and ¢ lineages from species 4, B, and C, respectively,
to k total lineages, (i) an interspecific coalescence occurs
and (ii) the most recent interspecific coalescence links
lineages of species 4 and species B. Similarly, we have
F{€ or FZC, if the most recent interspecific coalescence
joins species 4 and species C, or species B and species C,
respectively.

Define Fi%(a, b, ¢) =0 if any of {a, b, ¢} is negative,
or if a+b+c < k. We restrict attention to a, b, ¢ = 0 and
k> 1. The expression Fi2(a, b, ¢) only describes a sen-
sible quantity if a+b+c > k. The following recurrence
relation holds:

a
(5)

a+b+c
2

FI/:,B(a,ba c): +F;:’B([l—1,b, C)

b
(2)
a+b+c
(27
c
(2)
a+b+c\
(27
The first term arises from the fact that with probability
ab/(“*5*¢), the most recent coalescence occurs interspe-
cifically and joins species 4 and B. Each species contri-
butes a term in case the most recent coalescence is
intraspecific in that species. The recursion terminates
with base cases that have a+b+c=k and
F%(a,b,c)=0.

Values of Fi%(a, b, ¢) are shown in Table I. Results
for Fi~¢ and FZ€ can be obtained using Property 2
below. The probability of no interspecific coalescences
during the collapsing of a, b, and ¢ lineages to k lineages
equals 1 —[F{2(a,b,c)+F{“(a,b,c)+F¢ (a,b,c)].

Many properties of F;-? are easily verified and justifi-
cations of some properties are given below.

ab
a+b+c
2

+F#+2a,b—1,c¢)

+F{&3(a, b,c—1) 21
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Property 1. Fi%(a,b,c)=F%(b,a,c).

This property allows the assumption of a > b, without
loss of generality, as in Table L.

Property 2. Fi®(a,b,c) =F{“(a,c,b) = FF“(b,c,a).

Using Property 1, these three quantities also equal
Fit%(b, a, ), Fi“(c, a, b), and F¢ (¢, b, a).

Property 3. F%(0,b,c)=0.

This follows from repeated application of (21) to
F+5(0, b, ) until base cases are reached.

Property 4. Fi®(a,b,0)=H,, with H, as in
Takahata (1989, Eq. (11)),and j =a+b.

Coalescences involving species C were not considered
by Takahata (1989), so Fi%(a,b,c) generalizes
Takahata’s Hj,. See Takahata (1989, Table 1) for values
of F+%(a, b, 0).

Property 5. Ifb>=2,then F£5(1,b,0) = l—ﬁ.

For no interspecific coalescences to occur in the
collapsing of the configuration (1, b, 0) to 2 lineages, all
coalescences must be intraspecific within species B. For
b > 2, the probability of this occurrence is

1—F§#%(1,b,0) = @ x<b;1>x<b;2>
) G ()
G)

7N\ bb+1)
2)

X oo

(22)

Property 6. Fi%(a,b,c)+Fi{(a,b,c)+FF(a,b,
c¢)<1, with equality if a+b+c—k>(a—1) y(a)+
(b—1) y(b)+(c—1)(c), where y(x)=1 if x>2 and
x(x) =0 otherwise.

F{%(a,b,c)+FiC(a, b, c)+F¢C(a,b,c) is the prob-
ability that some type of interspecific coalescence occurs
as the configuration (a, b, ¢) collapses to k lineages.
Equality occurs if an interspecific coalescence must take
place. Such a coalescence is guaranteed if the total
number of coalescences, or a+b+c—k, exceeds the
maximal possible number of intraspecific coalescences,
or(a—1) y(a)+(b—1) x(b)+(c—1) x(c).

As a direct consequence of Property 6, if at least two of
{a, b, ¢} are positive, then F{*%(a, b, c)+F{ (a, b, c)+
F5C(a, b, ¢) = 1. This corollary together with Property 2
yields F£%(a,a,a)=1/3fora> 1.



246

Property 7. Fi®(a, b, c) is a nonincreasing function
of k.

From the state (a, b, ¢) with a+b+c >k, suppose a
sequence of coalescences occurs so that the most recent
interspecific coalescence in the sequence occurs between
species 4 and B and so that the total number of lineages
is left at k41 or greater. This sequence contributes to
both F{*® and F{.%. Any sequence for which the most
recent interspecific coalescence leaves the number of
lineages at k+1 or greater, and that occurs between
species 4 and C or between B and C, will not contribute
to either F® or to F;-5. However, sequences for which
no interspecific coalescence occurs in reaching k+1
lineages have some chance of having a coalescence that
joins A and B as the number of lineages hits k. Thus, the
chance of the most recent interspecific coalescence
occurring between A4 and B in declining to & lineages is at
least the chance of the same event occurring in declining
to k+ 1 lineages.

Property 8. Ifc>0,then F{*%(a, b, c)=F5%(a,b,c).

By Property 7, Fi-%(a, b, ¢) > F5%(a, b, c). Ifa=0 or
b =0, the result follows from Property 3. Otherwise, the
only way for F{%(a,b,c) to be strictly larger than
F#%(a, b, c) is if the final coalescence in a sequence links
species A and B and if it is the only interspecific coales-
cence in the sequence. However, this is not possible: to
reach a single lineage with {a, b, ¢} all positive, at least
two interspecific coalescences are needed.
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