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ABSTRACT
We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set

for which population structure was previously known. Each of 600 individuals representing 20 distinct
chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used
to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster.
The clustering success rate, measuring the fraction of individuals that were properly inferred to belong
to their correct breeds, was consistently �98%. When markers of highest expected heterozygosity were
used, genotypes that included at least 8–10 highly variable markers from among the 27 markers genotyped
also achieved �95% clustering success. When 12–15 highly variable markers and only 15–20 of the 30
individuals per breed were used, clustering success was at least 90%. We suggest that in species for which
population structure is of interest, databases of multilocus genotypes at highly variable markers should
be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to
facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential
applications in defining the within-species genetic units that are useful in problems of conservation.

CHARACTERIZATIONS of the population struc- Population structure assessment has often relied upon
ture of species are useful in a variety of contexts. a priori groupings of individuals on the basis of pheno-

Genetic ascertainment of within-species population struc- types or sampling locations. A classification chosen by
ture has been widely applied for classifying subspecies, an investigator, however, might not accurately describe
for defining intraspecific conservation units, for under- the genetic structure of the populations. Genetically
standing events in the history of a species, for identifying similar groups of individuals might be labeled differ-
ongoing speciation events, and for testing hypotheses ently due to distinct geography, different phenotypes,
about evolutionary processes. In other situations, the or, in the case of human groups, cultural differences;
presence of population structure poses a practical nui- however, a high level of geographic, phenotypic, or
sance. For example, allele frequencies in reference cultural diversity among a collection of populations
groups are central to calculations in forensic studies, need not imply that the groups are genetically divergent.
and it is difficult to identify appropriate reference groups Conversely, geographic overlap or phenotypic similarity
in structured populations (National Research Coun- may mask underlying genetic variation. Thus, a purely
cil 1996). In case-control studies that test for statistical genetic analysis using no external information provides
associations between a genotype at a particular locus the most direct method of determining population
and a phenotype, not taking into account population structure. Only if a correspondence between genetic
structure can lead to the false detection of associations and geographic or phenotypic classifications is estab-
(e.g., Devlin and Roeder 1999). lished can these characteristics also serve as appropriate

classification tools.
The structure algorithm (Pritchard et al. 2000) con-
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commercial broilers (Broiler dam line D [50], Broiler sire line Blocations, hypothesized genetic origins of individuals,
[42]), experimental lines (Godollo Nhx [33], High-Ab line [51],phenotypic information, and the number of genetic
Sarcoma-susceptible line [3402]), and commercial layers (Brown-

clusters do not need to be specified before the algorithm egg layer line C [44], Brown-egg layer line D [45], White-egg layer
is applied. With extensive simulations, Pritchard et al. line A [37]); and a highly inbred strain of white leghorn origin

maintained at low population size (C line [32]).(2000) demonstrated that the structure genetic cluster
Markers: Genotypes were used for 27 microsatellite markersanalysis method can accurately infer individual ances-

spread across the chicken genome (listed in Table 1). Excepttries. For two data sets, one in which two genetic clusters
for ADL278, LEI94, LEI166, LEI194, LEI228, and LEI234, it

were inferred and another for which three were inferred, has previously been reported that these markers show high
they found that the inferred and expected population levels of polymorphism within and between breeds (Hillel

et al. 1999). In general, pairs of markers among these arestructures were roughly coincident.
unlinked (see Groenen et al. 2000 for a map).In this article, we consider the utility of genetic cluster

Genotyping: Genotyping was performed in the laboratoriesanalysis on a large data set for which population struc-
of T. Burke, M. A. M. Groenen, J. Hillel, and S. Weigend, with

ture is known, with the aim of making recommendations similar procedures used in all labs. The example procedure
about its future uses. We employ a collection of 27-locus that follows is from the laboratory of S. Weigend. PCR products

were obtained in a 25-�l volume using Ready-To-Go PCR Beadsgenotypes from 600 individuals representing 20 chicken
(no. 27-9555-01; Amersham Pharmacia Biotech Europe, Frei-breeds. This data set is substantially larger than previous
burg, Germany) and a thermal cycler (Mastercycler; Eppen-data sets on which structure has been applied (Pritch-
dorf, Hamburg, Germany). Two pairs of microsatellite primers

ard et al. 2000; Beaumont et al. 2001; Rosenberg et al. were run in one tube. Each PCR tube contained 20 ng of
2001) and it includes individuals from a larger number genomic DNA, 10 pmol of each forward primer labeled with

either IRD700 or IRD800 (MWG-Biotech, Ebersberg, Ger-of genetic populations. Importantly, isolation of the
many), 10 pmol of each unlabeled reverse primer, and 1 mmbreeds in different locations allows us to be sure that, in
tetramethylammoniumchloride. The amplification involvedmost cases, these breeds have been genetically separated
initial denaturation at 95� (1 min), 35 cycles of denaturation

from each other for at least 20–50 generations, so that at 95� (1 min), primer annealing at temperatures varying be-
we can test if cluster analysis successfully uncovers this tween 58� (1 min) and extension at 72� (1 min), followed
genetic structure. by final extension at 72� (10 min). Specific DNA fragments

produced by amplification were visualized as bands by 8%We first characterize the genetic differences among
PAGE, which was performed with a LI-COR automated DNAthe populations. We then demonstrate that genetic clus-
analyzer (LI-COR Biotechnology Division, Lincoln, NE 68504).ter analysis has great ability to correctly ascertain the Electrophoregram processing and allele-size scoring were per-

population structure for these data, and we compare formed with the RFLPscan package (Scanalytics, Division of
the cluster analysis to a cladogram derived from the CSP, Billerica, MA).

Missing data: The proportion of missing data was 0.8%, andneighbor-joining algorithm. To assess the success of
12 of 27 loci had missing genotypes. For no locus were �3.5%clustering as a function of the number of markers, we
of the possible genotypes missing. Missing genotypes wereconsider subsets of the loci chosen by different criteria distributed across 88 individuals from 18 breeds. For no breed

of variability. We also consider the success of clustering were �4.1% of its genotypes missing. Out of 600 individuals,
as a function of the number of individuals used per 13 individuals originating from 6 breeds did not have available

genotypes at �1 locus. These 13 individuals included 1 individ-population. Finally, we discuss recommendations on the
ual that was lacking genotypes at 9 loci and 3 individuals thatuse of genetic cluster analysis for ascertaining popula-
were missing genotypes at 10 loci.tion structure, for applications in the assignment of

Statistical analysis: Genetic differentiation: For each pair of
individuals of unknown origin to populations, and for breeds, allele frequencies were tabulated at each locus, se-
identifying genetically distinctive populations. quentially pooling the rarest alleles into one allelic class, until

the average frequency for the two breeds exceeded 0.1 for
each class. A chi-square association test statistic was computed
for each locus, with the number of degrees of freedom equal-MATERIALS AND METHODS
ing one fewer than the number of allelic classes. We counted
how many loci produced test statistics below the 0.001 level.Breeds: We genotyped 30 individuals from each of 20

Genetic distance between breeds was calculated using thebreeds. These breeds form a subset of the populations studied
negative logarithm of the proportion of shared alleles (PSA)in a survey of European chicken genetic diversity (Hillel et
in the two breeds (Bowcock et al. 1994), as implemented inal. 1999; Tixier-Boichard et al. 1999; Weigend 1999). The
microsat (Minch et al. 1998). For each locus, this measure sumsbreeds, which are designated by the same code numbers as

in other studies (Hillel et al. 1999), represent five general the lower of the corresponding allele frequencies in the two
breeds across all alleles. The sums are then averaged acrossclasses, as described by Tixier-Boichard et al. (1999): feral

(Gallus gallus gallus [102]); traditional unselected breeds of loci, yielding an overall proportion of shared alleles. Note that
this generalized PSA distance is based on allele frequenciesthe Middle East (Bedouin [5]) and Northern Europe (Icelandic

landrace [16]); traditional breeds selected for morphological rather than individual genotypes and, thus, it assumes inde-
pendence between the two alleles of an individual at a giventraits and deriving from Central Europe (Green-legged partridge

[27], Orlov [28], Transylvanian naked neck [26]), from the locus.
Clustering of breeds: Population structure was studied usingMediterranean region (Fayoumi [4], Old Scandinavian reference

population [18], Padovana [21]), from Northern Europe ( Jaer- two methods. First, we obtained an unrooted neighbor-joining
cladogram (Saitou and Nei 1987) based on the PSA genetichoens [19]), and from Western Europe (Marans [13]); lines

selected for quantitative traits or economic indices, including distance matrix between populations, using the neighbor pro-
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TABLE 1

Values of diversity statistics for each marker and rankings of markers according to the highest number
of alleles, highest expected heterozygosity, highest values of Fst, and a random ordering

Rank based Rank based on Total no. of
on expected total no. Rank Rank based on Expected alleles (no. of

Marker heterozygosity of alleles based on Fst random ordering heterozygosity private alleles) Fst

LEI228 1 1 21 21 0.924 41 (17) 0.281
LEI234 2 3 9 26 0.892 23 (9) 0.334
LEI194 3 7 14 4 0.885 15 (5) 0.314
LEI192 4 2 22 15 0.866 37 (15) 0.255
MCW34 5 5 26 6 0.859 18 (4) 0.228
LEI94 6 4 11 10 0.828 23 (9) 0.330
MCW206 7 6 7 27 0.779 16 (4) 0.341
ADL268 8 18 15 11 0.767 7 (1) 0.309
MCW183 9 11 6 18 0.739 11 (4) 0.346
MCW295 10 13 18 13 0.718 9 (1) 0.295
ADL278 11 19 3 3 0.677 7 (2) 0.376
MCW67 12 21 2 24 0.674 6 (2) 0.417
MCW37 13 23 12 17 0.673 4 (0) 0.320
MCW69 14 14 20 7 0.672 9 (1) 0.282
LEI166 15 22 8 5 0.668 5 (1) 0.337
MCW81 16 15 1 8 0.668 9 (3) 0.501
ADL112 17 17 24 20 0.628 8 (0) 0.247
MCW216 18 20 5 25 0.622 6 (1) 0.347
MCW78 19 16 25 1 0.613 8 (2) 0.228
MCW222 20 24 13 9 0.590 4 (0) 0.315
MCW14 21 10 17 19 0.576 12 (3) 0.297
MCW284 22 25 23 2 0.576 4 (0) 0.254
MCW111 23 12 16 14 0.551 11 (5) 0.303
MCW330 24 9 10 23 0.499 14 (5) 0.331
MCW98 25 26 19 12 0.476 3 (1) 0.287
MCW103 26 27 4 16 0.438 2 (0) 0.373
MCW248 27 8 27 22 0.421 14 (6) 0.189

Ties for the same number of alleles were broken by ranking the average number of alleles per population from largest to
smallest.

gram (Felsenstein 1993) to construct the cladogram. We Evaluation of cluster analysis: Each individual was assigned
to a specific breed using structure (Pritchard et al. 2000),performed 1000 bootstraps across the set of loci to obtain a

consensus cladogram. following the five-step algorithm in Figure 1. In step 1, we
chose the value of K, as described above. The aim of theThe second approach utilized the program structure, which

identifies clusters of related individuals from multilocus geno- remaining steps was to assign individuals to breeds and to
evaluate the fraction of individuals correctly assigned. In steptypes (Pritchard et al. 2000). First, we performed many runs

of various lengths with different proposals for the number of 2, we clustered individuals and associated each individual with
the cluster that corresponded to the greatest fraction of itsgenetic clusters (K) represented by the individuals genotyped,

testing all values of K from 1 to 23. Clustering solutions of genome. In step 3, we associated breed labels with each of
the inferred genetic clusters. In cases for which a cluster washighest likelihood were obtained when the vast majority of

genomic assignment was distributed over exactly 17, 18, or 19 labeled with multiple breeds, this step required additional
subclustering runs of structure. These runs used only thoseclusters. We did not observe clustering solutions in which

�19 clusters were assigned nontrivial fractions of the data. To individuals that were assigned to that cluster in step 2, and
they lasted 20,000 iterations with a burn-in period of 5000. Forchoose the best value of K, we ran structure 20 times for 50,000

steps, after a burn-in period of 5000 steps, using each of K � subclustering runs, K equaled the number of breeds associated
with the cluster.17, K � 18, and K � 19. Using the Wilcoxon two-sample test,

both K � 18 and K � 19 produced higher likelihood solutions Once the individuals were clustered to the greatest extent
possible at the conclusion of step 3, we followed step 4 to assignthan K � 17 (two-sided P � 0.03 for K � 18 vs. K � 17; two-

sided P � 0.04 for K � 19 vs. K � 17). For K � 18 and K � each individual to a single breed. The “clustering success rate”
(step 5) was then defined as the proportion of individuals19, solutions had similar likelihoods (two-sided P � 0.86).

However, since runs with K � 19 occasionally produced solu- correctly assigned to their breeds of origin.
Note that we assumed that individuals were maximally clus-tions of particularly high likelihood that distributed individuals

over all 19 clusters, 18 was insufficient for maximal clustering, tered after step 3. This assumption avoided additional subclus-
tering runs: In principle, a cluster C that was associated onlyand we used K � 19 for all subsequent analyses. Runs used

in the determination of K were not considered in further with breed B in step 3 might have been decomposable into
subclusters. However, each of the resulting subclusters wouldanalysis.
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Figure 1.—Procedure by
which cluster analysis was eval-
uated. For our data, all breeds
had the same number of indi-
viduals in the sample. We used
K � 19, P � 25, p � 60.

then be associated with either no breed or with the single minus the proportion of alleles shared by the two individuals.
Trees were obtained from distance matrices using the neighborbreed B. Thus, this subclustering would not greatly affect the

eventual assignment of individuals of cluster C to breeds. We program (Felsenstein 1993). If a tree could be partitioned
into two connected pieces, each of which contained individu-also did not decompose any subclusters obtained in step 3

into “sub-subclusters.” While it is conceivable that subclusters als from a single breed, the tree was considered “consistent
with breed affiliation” (Mountain and Cavalli-Sforza 1997).could be further divided, a single round of subclustering pro-

vided a convenient stopping point for the evaluation, allowing If a tree was consistent with breed affiliation and if the partition
of the tree was made by cutting the longest internal edge, theus to devise the precise procedure in Figure 1. Since only a

small number of individuals would have been affected by sub- tree was deemed “strongly consistent with breed affiliation.”
If the partition was not necessarily made by cutting this edge,subclustering, the impact of this assumption on the clustering

success rate was likely not very large. In the application of the tree was deemed “weakly consistent with breed affiliation.”
For each pair of breeds, we also ran the cluster analysisstructure to data of unknown population structure, however,

subclustering should be performed hierarchically, so that each using 20,000 iterations and a burn-in period of 5000, with
K � 2. The clustering success rate was measured using thecluster, subcluster, or lower-level grouping cannot be further

decomposed. algorithm in Figure 1, though the criterion for subclustering
was not met for any pair of populations.Pairwise cluster analysis: We assessed populations two at a

time with neighbor-joining tree diagrams of the individuals Clustering success as a function of the number of markers: To
determine properties of markers that make them effective inin two populations (Mountain and Cavalli-Sforza 1997).

Pairwise distance between individuals was computed using one cluster analysis, we performed cluster analysis using subsets
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of the original 27 markers according to several variability crite- usually occupied their own clusters, and breeds 18 and
ria. For each criterion, and for each value of M (M � 1, 2, 3, 37 were often found together in a single cluster.
. . . 27), we selected the M markers that exhibited the highest

In 9 of the 100 runs performed, 19 clusters werevalues of that criterion, and we performed cluster analysis
assigned nontrivial fractions of the data. The remainingusing that subset of loci. In cases where two or more criteria

produced the same subset, we only performed one analysis for runs included 43, 44, and 4 runs for which 18, 17, and 16
that subset. The criteria included the following: (1) Expected clusters were occupied, respectively. In the 8 solutions of
heterozygosity—treating the whole sample as one group, for highest likelihood, breeds 44 and 45 shared a single
each locus we computed one minus the sum of the squares

cluster and each of the other 18 breeds occupied anof the sample allele frequencies; (2) total number of alleles
exclusive cluster. The most frequent groupings (Tablein the sample—if two or more loci had the same number of

alleles, we broke ties by ranking markers in order of the mean 2), including (5, 16), (16, 18), (18, 37), (33, 44, 45),
number of alleles per breed; (3) Fst—we estimated Fst according (37, 3402), (42, 50), (44, 45), and (44, 45, 51), appeared
to Weir (1996, Equation 5.3). in high-likelihood solutions, while rare groupings were

We also considered marker subsets taken in reverse order by
obtained in low-likelihood solutions. None of the rareexpected heterozygosity, and we used a random ordering of
groupings (13, 26), (16, 33), (21, 26), (26, 42), (28,the loci: For each value of M, we selected the M markers

that were associated with the M highest random numbers. 42), or (33, 51) occurred in any of the 40 solutions of
Rankings of markers are shown in Table 1. With the exception highest likelihood. The 10 lowest-likelihood runs con-
of orderings induced by the number of alleles and expected tained the single instances that produced (21, 26) and
heterozygosity (Kendall coefficient � 0.464, P � 0.0007), we

(28, 42), as well as three of four instances in which thedid not detect evidence for rank correlation among pairs of
grouping (13, 26) was obtained.orderings (of course, the Kendall coefficient was �1 for the

orderings by highest and lowest expected heterozygosity, and Breeds that grouped into clusters generally fell close
it equaled �0.464 for the orderings by highest number of to each other in their placement on the neighbor-join-
alleles and lowest expected heterozygosity). ing cladogram (Figure 2), although frequently clustered

Clustering success as a function of the number of individuals: To
groups did not always form clades. Of the eight mostsee how cluster analysis performed with fewer individuals, for
commonly clustered sets, three did not form clades,each value of N (N � 5, 10, 15, 20, 25), we repeated the

analysis (with all markers and with marker subsets) using N namely (33, 44, 45), (16, 18), and (18, 37). Bootstrap
randomly chosen individuals from each breed. confidence values for groupings in the cladogram were

generally low.
Pairwise clustering: Although runs using all 20 breeds

RESULTS
clustered pairs or triples of populations because 20
breeds were placed into 19 clusters, cluster analysis usingGenetic differentiation: For each pair of breeds, the

null hypothesis that the two populations had equal allele only the individuals from 2 breeds separated them into
2 clusters. Of 190 pairs, 175 could be perfectly separatedfrequencies was rejected at the 0.001 significance level

for at least 6 loci (not shown). Even between the most (Table 3). For the remaining 15 pairs, at most 5 individu-
als of 60 were placed incorrectly. However, for only 5closely related pairs of breeds, extremely significant dif-

ferences were found. The only breed pairs for which of these 15 pairs were individuals assigned to the wrong
breed with high confidence ( �75%). The clustering15 or fewer loci had significantly different allele frequen-

cies at the 0.001 level were (44, 45), (5, 16), (16, 18), success rate was also high for the two triads of popula-
tions that grouped together: For both (33, 44, 45) and(18, 26), and (37, 3402). For several pairs, the null

hypothesis of equal allele frequencies was rejected for (44, 45, 51), only individual 45_1 was misplaced (with
breed 44).at least 26 of 27 loci. These pairs included (4, 28), (4,

51), (4, 50), (26, 32), (28, 32), (32, 33), (32, 50), (32, For 188 of 190 breed pairs, the neighbor-joining tree
was weakly consistent with breed affiliation (Figure 3).102), and (37, 102). Genetic distances were generally

large as well (not shown), with only 10 pairwise compari- Of these 188 trees, 170 were strongly consistent with
breed affiliation. The 2 pairs for which trees were notsons �0.5 and with the average pairwise distance equal-

ing 0.782. The lowest genetic distances were found for consistent (Figure 3), (5, 16) and (44, 45), were among
the pairs for which clustering was imperfect. The 18the following pairs: (44, 45), (5, 16), (16, 18), (18, 37),

and (45, 51). The 25 largest genetic distances involved pairs for which trees were weakly consistent but not
strongly consistent with breed affiliation were (5, 18),breeds 4, 19, 32, and 102.

Clustering of breeds: Due to the complexity of the (5, 33), (5, 50), (5, 102), (13, 26), (13, 102), (16, 18),
(16, 50), (16, 102), (18, 37), (27, 102), (28, 102), (33,relationships among the individuals in the data and

the existence of numerous likely clustering solutions, 45), (33, 102), (42, 50), (42, 102), (50, 102), and (51,
102).different runs of structure identified different potential

clusterings of the individuals (Table 2). Some features Evaluation of clustering: Using the complete set of
27 markers, cluster analysis obtained correct groupingsof the clustering were consistent across runs. Most strik-

ingly, breeds 4, 19, 27, 32, and 102 always fell into their of individuals with high accuracy (Figure 4). When only
the most polymorphic markers were selected accordingown clusters, while breeds 44 and 45 always shared the

same cluster. Breeds 5, 13, 21, 26, 28, 51, and 3402 to the greatest number of alleles or the highest expected
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Figure 2.—Number out of 100 clustering
solutions in which multiple breeds occupied
the same clusters, superimposed on a neigh-
bor-joining cladogram derived from the gen-
eralized proportion-of-shared-alleles distance
measure. Breed names at branch termini are
labeled in boldface type; bootstrap confidence
values of breed groupings are italicized next
to edges of the cladogram to which they corre-
spond; and numbers of clustering solutions
are surrounded by brackets inside rectangles
enclosing the clusters to which they corre-
spond. Bootstrap confidence values are taken
over 1000 trees. Rectangles for clustering solu-
tions are shown only for groupings that ap-
peared in at least 5 of 100 runs. Branch lengths
were chosen so that the figure could be conve-
niently represented.

heterozygosity, only �8–10 markers were needed to at- are highly correlated (in fact, the most variable marker
and the set of seven most variable markers coincidedtain 95% accurate clusterings. Once 11–12 markers were

chosen, expected heterozygosity, number of alleles, and according to these two criteria) and they produce simi-
larly accurate clusterings. However, expected heterozy-Fst performed similarly, achieving 95–98% in almost ev-

ery run. Although the random ordering achieved 90% gosity is more generally useful—for example, if single
nucleotide polymorphisms are used, it provides a natu-clustering accuracy with 10–12 markers, it required

17–20 markers to achieve 95%. The reverse ordering by ral method to rank loci that all have two alleles.
Most breeds were clustered perfectly (Table 4), andexpected heterozygosity required 14–15 loci to achieve

90% and 17–20 loci to reach 95%. When only a few although clustering solutions differed across runs, the
same individuals tended to be misclassified across runs.markers were used, the discrepancy between the two

most effective criteria and the other criteria was ex- For some breeds, including 4, 19, 27, and 32, all individ-
uals were perfectly clustered using a small number oftremely high. The marker sets chosen by reverse order of

expected heterozygosity performed particularly poorly highly heterozygous loci. Others, including 5, 13, 16,
18, 44, 45, and 102, required many loci to obtain correctcompared to the other methods. However, as the num-

ber of markers increased, all criteria produced nondis- clustering. For breeds 5, 16, 45, and 102, large numbers
of markers did not improve classification of a few spe-joint sets of markers, and when nearly all markers were

used, the accuracy of clustering was �98% for each cific individuals.
When subsets of the individuals were chosen, cluster-criterion.

For further analysis and discussion, we used expected ing accuracy declined. When 5 individuals were chosen
from each breed, 27 markers were insufficient to obtainheterozygosity. This statistic and the number of alleles
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TABLE 3 respond to breed designations. This correspondence
essentially holds, although 10–15 individuals frequentlyEvaluation of cluster analysis in separating pairs of breeds
appeared more similar to breeds from which they did
not originate. The inclusion of these individuals in breedPair of Clustering Individuals incorrectly placed

breeds success rate in pairwise analysis groupings used for the neighbor-joining tree potentially
decreases genetic distances of certain pairs and hence5 and 16 0.917 16_21, 16_22, 16_23, 16_28,
affects the cladogram. However, upon removal of all16_56
individuals that were sometimes placed incorrectly in5 and 50 0.983 5_9
pairwise clustering (Table 3), the cladogram was essen-5 and 102 0.933 102_2, 102_19, 102_20, 102_21

13 and 102 0.950 102_19, 102_20, 102_21 tially unchanged (not shown); thus, these individuals
16 and 18 0.983 16_28 cannot explain its poor reliability.
16 and 102 0.983 102_21 An alternate explanation for the performance of the
26 and 102 0.967 102_19, 102_21 neighbor-joining tree is the fact that in domesticated27 and 102 0.950 102_19, 102_20, 102_21

species such as chickens, population histories may not28 and 102 0.967 102_20, 102_21
follow a bifurcating tree model, so that tree diagrams33 and 102 0.950 102_19, 102_20, 102_21
present a misleading or inaccurate representation of44 and 45 0.983 45_1

44 and 102 0.950 102_19, 102_20, 102_21 population relationships. The considerable frequency
45 and 102 0.950 102_19, 102_20, 102_21 of gene exchange among historical chicken populations
50 and 102 0.950 102_19, 102_20, 102_21 could potentially explain the low bootstrap values on
51 and 102 0.983 102_21 internal edges of the tree and on edges that group feral

and traditional breeds.Individuals in italics had at least 75% of their genomes
assigned to the incorrect breed. Fifteen pairs for which cluster- Finally, it is likely that structure simply uses individual
ing was imperfect are shown; 175 pairs for which the clustering genotypic data more efficiently than cladograms based
success rate was 100% are not shown. Individual identifiers on genetic distance matrices (Pritchard et al. 2000;include the breed code, an underscore, and the specific indi-

Rosenberg et al. 2001). While genetic distance matricesvidual within the breed (for example, 102_20 represents indi-
compress all information about two populations into avidual 20 in breed 102).
single number, structure does not summarize the data
in a unidimensional manner.

90% accuracy (Figure 5). When 10 individuals were It has been argued that 30 markers are insufficient for
chosen, 21 markers were sufficient to achieve 90%. distinguishing related populations using phylogenetic
When 15 or more individuals were selected from each analysis (Moazami-Goudarzi et al. 1997). With high-
breed, 90% accuracy was attained using the 12 most resolution clustering analysis and with careful choices
variable loci. of markers, however, far fewer loci sufficed to separate

all breeds. The chicken generation interval is short,
�1 year for these breeds, so that considerable genetic

DISCUSSION
variation has built up within and among chicken breeds
(Dunnington et al. 1994; Crooijmans et al. 1996; Pon-Correspondence of inferred and known population

structure: When the full data set was used, inferred suksili et al. 1996, 1998, 1999; Mafeni et al. 1997; Taka-
hashi et al. 1998; Vanhala et al. 1998; Hillel et al.genetic clusters of individuals corresponded extremely

well to predefined breed categorizations. Since similar 1999; Wimmers et al. 1999, 2000; Zhou and Lamont
1999; Kaiser et al. 2000). Thus, it is possible that chickenlikelihoods of many proposed clusterings make it diffi-

cult to label a “best” clustering of the data, we suggest breeds could be easily separated partly due to high levels
of intraspecific variation. However, the success of struc-that, for large data sets, cluster analysis should be per-

formed multiple times before inferences are drawn. All ture when compared to the cladogram in separating
breeds makes it likely that the method was largely re-solutions had in common that each cluster contained

all or nearly all individuals from one or a few breeds. sponsible.
In pairwise analysis of populations, clustering andUpon further analysis, all clusters that contained more

than one breed could be subdivided into a collection neighbor-joining trees performed similarly. We note
that neighbor-joining trees of individuals from twoof subclusters, each of which matched a single breed.

While structure easily separated individuals into clus- breeds are more useful if the strong criterion of separa-
tion is used. If genetic origins of individuals in twoters that corresponded almost exactly to phenotypic

labels, the bootstrap neighbor-joining cladogram was populations are known, the weak criterion of consis-
tency for separating populations is applicable—two pop-less capable of grouping subsets of the data with great

regularity. Several possibilities can explain this discrep- ulations are separated if there exists a decomposition
of the tree into two components, each corresponding toancy. First, while structure constructs genetic clusters

from individual genotypes without reference to breed a population. However, if genetic origins are unknown
beforehand, an objective method must be used to sepa-affiliation, cladograms assume that genetic clusters cor-
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Figure 3.—Neighbor-joining trees of individuals taken from two breeds at a time. (A) One of 170 pairwise neighbor-joining
trees that was strongly consistent with breed affiliations of individuals. (B) One of 18 neighbor-joining trees that was weakly
consistent with breed affiliations but not strongly consistent. The arrow points to the longest internal edge of the tree. (C and
D) The only two trees among 190 two-breed trees that were not consistent with breed affiliations of individuals. For all trees,
individuals are labeled by their breed codes. The thick line is drawn on the edge that minimizes the number of individuals that
do not group with other members of the same breed. Individuals in boldface type fall on the side of the thick line that does
not include most members of their breeds.
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Figure 4.—Clustering suc-
cess rate as a function of the
number of markers used. Sets
of markers were chosen in or-
der of five criteria: highest num-
ber of alleles, highest expected
heterozygosity, lowest expect-
ed heterozygosity, highest Fst,
and a random ordering.

rate the tree into components; under these circum- private alleles, two or more copies were observed, and,
thus, these alleles are unlikely to result from genotypingstances, the strong criterion of consistency must be ap-

plied. When this criterion is used, cluster analysis errors. Since so many alleles in this study were breed
specific and since many more were found only in twoperforms slightly better than neighbor-joining trees in

separating populations. Clustering also offers the oppor- or three breeds, it is possible that these alleles had a
substantial effect on clustering success. However, thetunity for significance testing using R � C tests of asso-

ciation (Rosenberg et al. 2001). Permutation tests for number of private alleles in a sample decreases as the
sample size from a breed increases. A large number ofsignificance of neighbor-joining clusterings are more

cumbersome. private alleles is not a property of most data sets, and,
thus, the highest number of private alleles cannot beStrategies for successful clustering: Highest expected

heterozygosity and highest number of alleles provided recommended as a criterion method for choosing the
best markers to use. In closely related populations, pri-the best ways to select loci for clustering and were better

than highest Fst. This result was surprising: The most vate alleles may be uncommon: for example, using data
from a study of 11 human populations (Jin et al. 2000),useful genetic marker for clustering populations and

assigning individuals is one that varies greatly across only 137 of 792 alleles were private to 1 population (and
two or more copies were only observed for 41 of thesepopulations but little within them. A perfect locus for

these purposes would be monomorphic within any given 137), even though sample sizes were much smaller than
those used here.breed but polymorphic across breeds (Reed 1973). In

the absence of such loci, it seems that Fst, which quanti- The successful performances of all other criteria com-
pared to the reverse ordering by expected heterozygos-fies the between-breed component of genetic variation,

should be an appropriate criterion on which to rank ity demonstrate that a careful choice of markers in-
creases the power to achieve accurate clustering. Thisthe clustering potential of loci.

Several highly variable markers, the tetranucleotide idea that a careful choice of markers can improve statisti-
cal power has been employed in the estimation of popu-loci LEI192 and LEI228 most dramatically, had many

alleles that were specific to at most a few populations lation of origin for admixed individuals (Reed 1973;
Shriver et al. 1997). For admixture inference in popula-and frequent in those populations. These markers also

had generally low Fst values, since more common alleles tions that result from the combination of two ancestral
groups, Shriver et al. (1997) suggested that markersdid not greatly differ in frequency across breeds. It

seems likely that these “diagnostic” alleles were partly for assignment should be those with maximal allele fre-
quency differentials in the ancestral populations. In theresponsible for the extremely successful clustering with

the number of alleles and expected heterozygosity statis- more general situation of a large collection of popula-
tions, we suggest that expected heterozygosity, numbertics. For 27 markers, we observed 101 alleles private to

a single breed out of 326 total alleles. For 62 of the of alleles, and, to a lesser extent, Fst, are suitable for



709Genetic Clustering of Chickens

T
A

B
L

E
4

B
re

ed
-s

pe
ci

fi
c

nu
m

be
rs

of
co

rr
ec

tl
y

as
si

gn
ed

in
di

vi
du

al
s

ou
t

of
30

in
di

vi
du

al
s

pe
r

br
ee

d

B
re

ed
n

o.

N
o.

of
lo

ci
4

5
13

16
18

19
21

26
27

28
32

33
37

42
44

45
50

51
10

2
34

02
T

ot
al

0
1

0
1

1
0

2
4

1
1

2
2

0
1

2
3

0
0

3
2

5
31

1
1

0
1

1
1

5
0

0
0

1
30

2
0

3
1

1
1

1
2

1
52

2
27

0
1

0
6

29
15

27
23

1
30

1
14

27
11

6
0

13
0

30
26

1
3

28
0

15
1

8
29

14
28

28
18

30
28

16
29

18
16

20
7

21
30

38
4

4
30

16
21

0
20

30
11

29
29

30
30

27
20

30
16

11
22

16
26

9
42

3
5

30
18

27
18

20
30

30
30

29
30

30
29

29
30

12
19

25
8

26
30

50
0

6
30

23
28

20
26

30
30

30
29

30
30

30
28

30
12

15
26

26
26

30
52

9
7

30
26

30
22

26
30

30
30

29
30

30
30

28
30

30
28

28
26

26
30

56
9

8
30

25
29

21
27

30
30

30
30

30
30

30
29

30
30

28
28

28
26

30
57

1
9

30
26

28
20

29
30

30
30

30
30

30
30

29
30

30
28

28
28

27
30

57
3

10
30

25
29

26
29

30
30

30
30

30
30

30
30

30
30

28
29

26
27

30
57

9
11

30
25

29
26

29
30

30
30

30
30

30
25

30
30

30
30

29
27

27
30

57
7

12
30

27
30

23
30

30
30

30
30

30
30

30
30

30
30

30
28

27
26

30
58

1
13

30
26

30
26

30
30

30
30

30
30

30
30

30
30

30
28

28
28

27
30

58
3

14
30

26
30

26
29

30
30

30
30

30
30

30
30

30
29

28
28

29
25

30
58

0
15

30
25

30
27

30
30

30
30

30
30

30
30

30
30

30
29

28
29

26
30

58
3

16
30

11
30

29
30

30
30

30
30

30
30

30
30

30
30

29
29

29
25

30
57

2
17

30
29

30
27

30
30

30
30

30
30

30
30

30
30

30
29

29
29

25
30

58
8

18
30

29
30

26
30

30
30

30
30

30
30

30
30

30
30

29
30

29
27

30
59

0
19

30
28

30
28

30
30

30
30

30
30

30
30

30
30

30
29

30
29

28
30

59
2

20
30

29
30

29
30

30
30

30
30

30
30

30
30

30
30

29
30

30
25

30
59

2
21

30
29

30
27

30
30

30
30

30
30

30
30

30
30

30
29

30
30

27
30

59
2

22
30

29
30

27
30

30
30

30
30

30
30

30
30

30
30

29
30

30
27

30
59

2
23

30
29

30
27

30
27

30
30

30
30

30
30

30
30

30
29

30
30

26
30

59
1

24
30

29
30

27
30

30
30

30
30

30
30

30
30

30
30

29
30

30
26

30
59

1
25

30
29

30
25

30
30

30
30

30
30

30
30

30
30

30
29

30
30

26
30

58
9

26
30

29
30

25
30

30
30

30
30

30
30

30
30

30
30

29
30

30
26

30
58

9
27

30
29

30
25

30
30

30
30

30
30

30
30

30
30

30
29

30
30

26
30

58
9

Se
ts

of
m

ar
ke

rs
in

cl
ud

e
th

e
m

os
t

va
ri

ab
le

m
ar

ke
rs

ac
co

rd
in

g
to

th
e

h
ig

h
es

t
ex

pe
ct

ed
h

et
er

oz
yg

os
it

y.



710 N. A. Rosenberg et al.

Figure 5.—Clustering suc-
cess rate as a function of the
number of markers and the
number of individuals used. The
most variable markers were
chosen according to the high-
est expected heterozygosity in
the full data set. Random sets
of 5, 10, 15, 20, and 25 individu-
als per breed were chosen from
among the 30 individuals geno-
typed in each breed.

choosing markers for cluster analysis and individual as- done sequentially: A small number of individuals can be
genotyped for many markers. The most variable markerssignment. All three criteria are applicable to microsatel-

lite data; however, expected heterozygosity is the most can then be selected for future study and then geno-
typed in a large sample.practical general criterion. For some types of markers,

such as single nucleotide polymorphisms, the number While using the most variable markers allows re-
searchers to minimize genotyping effort, we cautionof alleles is often the same for all markers. The calcula-

tion of Fst presumes knowledge of population structure, against using this type of marker set with statistical meth-
ods that assume a random set of loci and that makeso that for initial cluster analysis of a collection of indi-

viduals of unknown origin, the statistic cannot be calcu- inferences based on mean variabilities across loci. A
marker set selected for maximal variability will inflatelated. This recommendation of the expected heterozy-

gosity criterion is empirical and potentially of limited estimates of divergence times estimated using the ge-
netic distance (��)2 (Goldstein et al. 1995) and it willgenerality; the true property of a marker that causes it

to produce successful clusterings is unlikely to be any of bias population growth statistics (e.g., Zhivotovsky et
al. 2000).the properties mentioned here. A detailed simulation-

based approach will be needed for understanding this We note that the 20 breeds genotyped here were
chosen from among many breeds used in an earliertrue property.

Depending on the species under consideration, the study (Hillel et al. 1999) to maximize diversity within
the larger collection of breeds. Thus, it is possible thatrelative cost of genotyping more individuals and geno-

typing more markers will vary. We did not achieve 90% the populations we used are generally more divergent
than populations in other species of interest and evensuccess in clustering when only 5 individuals were used

per breed, but with 10 or more individuals per breed, more divergent than most chicken groups. This is evi-
denced by a high Fst value of 0.313 for these breeds. Inclustering was highly successful when enough markers

were used. Similarly, we did not achieve 90% success less diverged populations, including human groups, the
number of markers necessary for maximal clusteringwhen fewer than 6–7 markers were used, even when all

individuals were included. Thus, as a minimum, for will certainly be �12–15. A more comprehensive analysis
of structure, using simulated data sets of different Fstsimilarly diverged populations to those in our study, at

least 12–15 highly variable markers should be genotyped values and different numbers of populations, will be
needed to determine the generality of our results.in at least 15–20 individuals per hypothesized popula-

tion to achieve accurate clustering. In species for which Rather than attempting such an analysis here, we chose
to use a single large data set for developing recommen-genetic research is still preliminary, genotyping can be
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dations. This has allowed us to explore issues that will be used in a training sample for assignment of future
be of interest in future applications of genetic cluster unknowns. This training sample can be utilized differ-
analysis to data sets of unknown structure, such as the ently by various assignment algorithms. For example,
variation of clustering solutions across runs, the differ- the method of Paetkau et al. (1995) estimates allele
ence in ease of clustering across populations, and the frequencies from a training sample and assigns each
placement of problematic individuals. unknown individual to the population in which its geno-

Problematic individuals: In most runs, the clustering type is most likely, assuming Hardy-Weinberg and link-
success rate remained � �98%, though this level could age equilibrium. The method of Cornuet et al. (1999)
be obtained when 15–20 highly variable markers were also estimates population allele frequencies from a train-
used. Given this observation, it is surprising that the full ing sample and uses the smallest genetic distance of
set of 27 markers did not achieve 100% accuracy. Errors the unknown individual to the various populations for
in the clustering algorithm seem to be an unlikely expla- assignment. With the structure algorithm of Pritchard
nation, since roughly the same sets of individuals were et al. (2000), a genetic clustering solution is obtained
placed in the wrong clusters in runs that used different that includes the training sample and the unknowns.
sets of loci or that produced different clustering solu- Next, each unknown is assigned to a cluster. Finally,
tions. Since all breeds were sampled from populations depending on which individuals from the training sam-
maintained in different locations, it is unlikely that re- ple are also assigned to that cluster, the unknown is
cent admixture or labeling errors explain the improper eventually assigned to a breed. During this process, prior
placements. We suspect that the inability to achieve knowledge about individuals in the training sample can
perfect clustering results from the fact that some individ- be incorporated—individuals in the training sample can
uals were genetically atypical of their breeds, and the be flexibly treated as being of known, unknown, or
algorithm could not recognize breeds of origin for these probabilistically known origin.
individuals. The frequently misplaced individuals 102_19, The importance of training samples for population
102_20, and 102_21 derived from a flock of zoo animals assignment suggests a strategy by which future assign-
that may have undergone considerable genetic drift. ment studies can be optimized. For any species of inter-
Individuals 16_21, 16_22, and 16_23 came from a single est, the most variable markers according to expected
flock, one of many that was incorporated into the breed heterozygosity, number of alleles, or Fst should be geno-
16 sample; this flock may have been managed differently typed on a large scale. New markers could be tested by
from the others. Interestingly, only one individual was the criterion, and highly variable new markers could
misplaced from the closely related breeds 44 and 45: potentially be included in the set of most variable mark-
This suggests that structure may be useful for distinguish-

ers, reducing the number of markers needed for cluster-
ing lines from different breeding companies, in spite

ing studies below the current recommendation of 12–of common origin and similar selection objectives.
15. A database of individual genotypes at these mostCluster analysis and population assignment: Place-
variable loci could then be made publicly available. Newment of individuals into clusters is related, but not iden-
individuals could be genotyped for the most variabletical, to assignment of unknown individuals to popula-
markers and could then be added to the database. Indi-tions. Assignment tests assume the existence of distinct
viduals in the database who are known to representpopulations and use properties of those groups, such
certain breeds could be used as a training sample foras allele frequencies, to infer the source populations of
assignment tests. Individuals who were misassigned orunknown individuals (Buchanan et al. 1994; Paetkau
who were difficult to assign correctly could be excludedet al. 1995; Rannala and Mountain 1997; Cornuet et
from the database, so that only the individuals who canal. 1999; Davies et al. 1999; Ciampolini et al. 2000;
confidently be assigned to the correct breeds would bePritchard et al. 2000). Properties of the potential
included.source populations are ideally known, but in practice

Such a database might be extremely useful to re-they are generally inferred in such a way that any specific
searchers who may only have one or a few unknown indi-individual is not assigned using information that derived
viduals that they wish to identify (e.g., Primmer et al.from knowledge of its genotype. In our evaluation pro-
2000). This type of database could also serve as a reposi-cedure, individuals are first used to create clusters, and
tory of individuals with known origin for testing newthe same individuals are assigned to clusters and then
statistical algorithms. Using such a database, geneticto breeds. While this approach allows us to precisely
variation quantified in different studies can be madedefine the clustering success rate, the fact that informa-
commensurable, and large numbers of individual multilo-tion from any given individual is used in inferring its
cus genotypes can be combined into a single framework.origin prevents us from interpreting its inferred popula-
The importance of training samples to assignmenttion of origin as a proper assignment.
makes it necessary that the same microsatellite alleleOur results are best interpreted as verification that
sizes be used by different laboratories. DNA from severalthese individuals indeed form genetic clusters that cor-

respond to their breed designations and that they can individuals in our study is available from M. Tixier-
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Boichard to calibrate allele size measurements, and ge- ulations (42 and 50), as well as other collections of
populations that were of the same general category. Thenotypes are available at http://charles.stanford.edu.

Cluster analysis and genetic distinctiveness: We ob- combinations (33, 44, 45), (37, 3402), and (44, 45, 51)
all included selected populations. The grouping (18,served that some breeds were easier to separate into

clusters than others, in the sense that all individuals in 37) may reflect the fact that breeds 18 and 37 are unse-
lected and selected descendants, respectively, of ances-some breeds were correctly placed with only a small

number of markers. This likely derives from the pres- tral white leghorn populations. Groupings of traditional
breeds, such as (5, 16) and (16, 18), are more surprising.ence of distinctive multilocus genetic combinations in

the breeds that were easiest to separate. Thus, we suggest It seems particularly strange that the Icelandic landrace
(16), probably isolated for several hundred years, wouldthat the relative number of loci required for the correct

clustering of several breeds can be used as a way of sometimes group with the Middle Eastern Bedouin
breed (5). One hypothesis is that populations 5, 16,identifying populations that are genetically distinctive

with respect to a collection. and 18 represent unselected groups similar to ancestral
Mediterranean chickens, which may have colonizedIn addition to resolving questions about population

histories (Rosenberg et al. 2001), the characterization many European countries along maritime trading
routes. A more detailed historical analysis of chickenof genetically distinctive populations can assist in conser-

vation of within-species diversity (Moritz 1994; Paet- breeds will be required to explain such surprising rela-
tionships.kau 1999). For species in which relative conservation

value of different populations is of interest, the ease Conclusions:We have discussed the application of gene-
tic cluster analysis to 600 individuals from 20 chickenwith which a population can be separated from other

groups by cluster analysis can be incorporated into as- breeds, demonstrating that the technique has great po-
tential to correctly identify population structure. Wesessments of its conservation potential, along with rele-

vant ecological, economic, and evolutionary criteria. have argued that individual clustering provides a more
appropriate characterization of population structure inMore generally, cluster analysis has great potential to

help identify populations with different allele frequen- these groups than does a neighbor-joining tree. Last,
we have proposed recommendations on future uses ofcies and different multilocus genetic combinations. Al-

though genetical divergence among populations may genetic cluster analysis and individual assignment tests
in similarly diverged collections of populations: (1) Atnot reflect adaptive diversity (Crandall et al. 2000),

conservation programs that wish to maintain genetic least 12–15 highly variable loci should be genotyped in
at least 15–20 individuals per hypothesized population;diversity of endangered species could benefit from a

purely genetical method by which individuals can be (2) markers with the highest expected heterozygosity,
number of alleles, and Fst can be used in genetic clusterclustered without regard to their sampling location. For

agricultural species, although the preservation of spe- analysis to minimize genotyping costs; (3) databases of
multilocus genotypes obtained at highly variable mark-cific phenotypes is perhaps of primary interest, conser-

vation of genetic diversity is of great importance toward ers in individuals of known origins can be established
to provide training samples for assignment algorithms;ensuring that future breeding programs will have a large

base on which to perform artificial selection (Notter (4) genetically distinctive populations can be identified
on the basis of how difficult it is to separate them from1999).

Relationships of chicken breeds: Considerable atten- other breeds when cluster analysis is used; and (5) clus-
ter analysis can provide an additional tool for identifica-tion has been devoted to the study of genetic diversity

and relationships of chickens. Some studies focused on tion of population relationships, history, and within-
species genetic units for conservation.commercial breeds (Dunnington et al. 1994; Crooij-

mans et al. 1996; Kaiser et al. 2000), others mainly con- The authors thank Nina Dudnik and Jonathan Pritchard for helpful
sidered local breeds (Mafeni et al. 1997; Takahashi et comments. This study arose during a visit by N.A.R. to the laboratory of

J.H. N.A.R. is supported by a Program in Mathematics and Molecularal. 1998; Wimmers et al. 1999, 2000), and some studied
Biology graduate fellowship. This research was supported by the Euro-mixed collections (Ponsuksili et al. 1996, 1998, 1999;
pean Community-funded project AVIANDIV (Development of Strat-Vanhala et al. 1998; Hillel et al. 1999; Zhou and
egy and Application of Molecular Tools to Assess Biodiversity in

Lamont 1999). We suggest here that the frequent clus- Chicken Genetic Resources, BIO4CT980342) and by National Insti-
tering of pairs of breeds into the same clusters illumi- tutes of Health grant GM28428 to M.W.F.
nates a new approach toward determining genetic simi-
larity. Populations can be considered similar if they are
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