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Informativeness of Genetic Markers for Inference of Ancestry*

Noah A. Rosenberg,1 Lei M. Li,1 Ryk Ward,2 and Jonathan K. Pritchard3
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Inference of individual ancestry is useful in various applications, such as admixture mapping and structured-
association mapping. Using information-theoretic principles, we introduce a general measure, the informativeness
for assignment (In), applicable to any number of potential source populations, for determining the amount of
information that multiallelic markers provide about individual ancestry. In a worldwide human microsatellite data
set, we identify markers of highest informativeness for inference of regional ancestry and for inference of population
ancestry within regions; these markers, which are listed in online-only tables in our article, can be useful both in
testing for and in controlling the influence of ancestry on case-control genetic association studies. Markers that are
informative in one collection of source populations are generally informative in others. Informativeness of random
dinucleotides, the most informative class of microsatellites, is five to eight times that of random single-nucleotide
polymorphisms (SNPs), but 2%–12% of SNPs have higher informativeness than the median for dinucleotides. Our
results can aid in decisions about the type, quantity, and specific choice of markers for use in studies of ancestry.

Introduction

Inference of individual ancestry from genetic markers is
helpful in diverse situations, including admixture and
association mapping, forensics, prediction of medical
risks, wildlife management, and studies of dispersal, gene
flow, and evolutionary history (Shriver et al. 1997; Da-
vies et al. 1999; Primmer et al. 2000; Manel et al. 2002;
Bamshad et al. 2003; Campbell et al. 2003; Ziv and
Burchard 2003). Statistical methods for ancestry infer-
ence use multilocus genotypes and population allele fre-
quencies, either specified in advance or estimated during
the inference process, to assign populations of origin to
individuals (Smouse et al. 1982; Paetkau et al. 1995;
Rannala and Mountain 1997; Cornuet et al. 1999; Prit-
chard et al. 2000; Guinand et al. 2002).

Because use of highly informative markers can reduce
the amount of genotyping required for ancestry infer-
ence, it is desirable to measure the extent to which spe-
cific markers contribute to this inference. Several ap-
proaches have previously been used for measuring these
locus contributions (table 1). However, despite their var-
ious features in specific scenarios, all of these measures
are either difficult to compute, not designed specifically
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for estimating marker information content, or not ap-
plicable to sets with many potential source populations.

Here, using information-theoretic and decision-theo-
retic approaches, we introduce new criteria: the inform-
ativeness for assignment, the optimal rate of correct
assignment, and the informativeness for ancestry coeffi-
cients. The choice of statistic for use in identifying mark-
ers for ancestry inference depends on the inference al-
gorithm that is being used (table 1). The new statistics,
as convenient and statistically motivated general mea-
sures applicable to any number of alleles and popula-
tions, may be useful both in admixed and in multisource
human groups, such as those that have formed in the
Western Hemisphere by the intermixing of Africans, Na-
tive Americans, and Europeans. We first define the sta-
tistics, consider their relationships with d and (twoFst

criteria that are often used to measure marker informa-
tion content), and study the number of markers needed
for inference. We demonstrate that the criteria are highly
correlated and proceed using only the informativeness
for assignment, or, simply, the informativeness. Inform-
ativeness rankings of loci in human microsatellite data
are found to be robust, and use of markers of highest
informativeness is observed to reduce the number of
markers needed for inference of population structure. We
consider the relationships of informativeness values in
different subsets of the human population, and the rel-
ative informativeness of microsatellites and SNPs. Tables
A, B, C, D, and E (online only) provide lists of inform-
ativeness ranks for various sets of source populations.

Theory

Consider populations and locii p 1,2, … ,K l p
, with and . Locus l has alleles1,2, … ,L K � 2 L � 1



Table 1

Measures of Marker Information Content

Criterion Description Features Limitations

Absolute allele frequency difference (d) Fp � p F11 21 Is related to amount of linkage disequilibrium in an
admixture model (Chakraborty and Weiss 1988); is
related to probability of correct assignment in a
multilocus no-admixture model (Risch et al. 2002); is
related to Fisher information curvature criterion for

(eq. [18]); is related to ORCA for (eq.K p 2 K p 2
[11])

Requires that only two populations be possible sources;
does not take into account all available information
about allele frequencies (Stephens et al. 1999; Campbell
et al. 2003); statistical features do not apply to the
Shriver et al. (1997) multiallelic extension of d

Fst Excess in probability of identity of alleles
from the same population compared
with randomly chosen alleles (Excoffier
2001, for example)

Is related, for biallelic markers, to the quotient of
expected posterior and prior variance of ancestry in a
population equally admixed from two sourcesa

(McKeigue 1998; Molokhia et al. 2003)

Performs only slightly better than random markers
(Rosenberg et al. 2001)

Expected heterozygosityb (bias correction can be appliedN 21 �� pjjp1

in estimation from data)
Performs better than random markers (Rosenberg et al.

(2001) and fig. 3)
Measures the amount of variation but not the differences

across populations
Number of allelesb N Performs better than random markers (Rosenberg et al.

2001)
Measures the amount of variation but not the differences

across populations; is useful only for multiallelic
markers that have variation in number of alleles

Fisher information curvature criterion Reciprocal of the largest eigenvalue of
the information matrix for maximum-
likelihood estimation of ancestry
coefficients (Gomulkiewicz et al. 1990;
Millar 1991)

Enables predictions about approximate variances of
ancestry estimates (see “Number of Markers”
subsection of the “Theory” section); information matrix
is additive across loci that are independent within
populations

Depends on unknown ancestry coefficients and requires
computation for many possible parameter values; largest
eigenvalue gives an upper bound that might not be
generally applicable across the parameter space

Pairwise Kullback-Leibler divergencec (Brenner 1998;
p p1j 2jN� p log � p log1j 2jjp1 p p2j 1j

Smith et al. 2001; Anderson and
Thompson 2002)

Provides a natural measure, for , of averageK p 2
potential for assignment of an allele to one population
compared with the other; has a natural multilocus
extension; enables measurement of contributions of
specific alleles

Requires that only two populations be possible sources;
has upwardly biased estimates in small samples

Informativeness for assignment ( )In Equation (4) Provides a natural measure of potential for assignment of
an allele to one population compared with the
“average” population; has a natural multilocus
extension; enables measurement of contributions of
specific alleles or populations; performs better than
random or highly heterozygous markers (fig. 3)

Has upwardly biased estimates in small samples

Informativeness for ancestry coefficients ( )Ia Equation (14) Provides a natural measure of potential for assignment of
an allele to a point on the set of all possible ancestry
coefficient vectors; has a natural multilocus extension;
enables measurement of contributions of specific alleles

Has upwardly biased estimates in small samples; is
difficult to compute in samples with populations of
equal sample size

Optimal rate of correct assignment (ORCA) Equation (10) Gives the probability of correct assignment of an allele
using the decision rule with lowest risk; has a natural
multilocus extension (eq. [12]); enables measurement of
contributions of specific alleles

Has upwardly biased estimates in small samples

NOTE.—Notation is defined in the “Theory” section. All criteria apply to multiallelic loci in any number of populations, except where specified.
a A multiallelic statistic related to this ratio was suggested by Molokhia et al. (2003).
b Can also be calculated by using average values of the statistic across populations rather than by using values for the whole collection of populations.
c A similar statistic based on genotype frequencies was suggested by Shriver et al. (1997). Some authors multiply by a factor of in the formula for this statistic.1/2
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. The relative frequency for allele j of lo-(l)j p 1,2, … ,N
cus l in population i is ; this quantity represents a(l)pij

parametric rather than a sample frequency. The (para-
metric) average frequency of allele j at locus l is defined
as

K (l)pij(l)p p . (1)�j Kip1

We use “ ” to denote the natural logarithm, withlog
.0 log 0 p 0

Informativeness for Assignment: the No-Admixture
Model

In the no-admixture model, individuals are each as-
sumed to originate from one of K populations. Suppose
we are given a random individual, whose (random) pop-
ulation assignment is Q, with . TheQ � {1,2, … ,K}
probability that the individual belongs to population i
is ; we assume that each population has the�(Q p i)
same initial probability of being the source of an un-
known individual, so that for all i. The�(Q p i) p 1/K
(random) genotype of one of the individual’s two alleles
at locus l is .(l)J

Our aim is to measure the amount of “information”
gained about Q from knowledge of and to compare(l)J
this quantity across different values of l. This measure-
ment can be performed in a natural way, through use of
an information-theoretic framework. If the value of is(l)J
unknown, there is uncertainty, or entropy, regarding the
value of the random variable Q. Once the value of is(l)J
known, the entropy of Q decreases. The reduction in un-
certainty about Q due to knowledge of is the mu-(l)J
tual information, , where(l) (l)I (Q; J ) p H (Q) � H (QFJ )n n n

is the initial entropy of Q, and is the(l)H (Q) H (QFJ )n n

conditional entropy of Q given knowledge of (the sub-(l)J
script “n” refers to the no-admixture model). Using stan-
dard definitions (Cover and Thomas 1991, chapter 2),
and leaving off superscripts for convenience, we have

K

H (Q) p � �(Q p i) log �(Q p i)�n
ip1

p log K , (2)

N K

H (QFJ) p � �(Q p i,J p j) log �(Q p iFJ p j)��n
jp1 ip1

N K

p � �(J p jFQ p i)�(Q p i)��
jp1 ip1

�(J p jFQ p i)�(Q p i)
# log

�(J p j)
N K p pij ijp � log , (3)��

K p Kjp1 ip1 j

and

N K pijI (Q; J) p �p log p � log p . (4)� �n j j ij( )Kjp1 ip1

We refer to as the informativeness for assign-I (Q; J)n

ment. For a given set of populations, the minimal ofIn

0 occurs when all alleles have equal frequencies in all
populations. The maximal value, , occurs whenlog K

and no allele is found in more than oneN � K
population.

This measure of the amount of “information” about
the ancestry Q contained in the genotype J also
arises from a likelihood approach. The quantity

can be viewed as the expected log-N K� � (p /K) log pij ijjp1 ip1

likelihood associated with drawing an allele randomly
from the set of populations . The term{1,2, … ,K}

is the expected log-likelihood associated withN� p log pj jjp1

drawing an allele from a hypothetical “average” popu-
lation whose allele frequencies equal the mean across the
K populations. Thus, equation (4) gives the expected log-
arithm of the likelihood ratio whose numerator is the
likelihood that an allele is assigned to one of the popu-
lations and whose denominator is the likelihood that an
allele is assigned to the “average” population. When the
minimum description length principle (Barron et al. 1998)
is used, up to a constant, also equals the expected re-In

duction, upon observation of J, in the length of the op-
timal coding of the random variable Q. It gives the
average (taken across populations) Kullback-Leibler in-
formation (Kullback 1959, p. 6) for distinguishing pop-
ulation-specific allele frequency distributions from the dis-
tribution for the “average population.” For , isK p 2 In

similar to a previously proposed statistic based on Kull-
back-Leibler information (table 1).

The expression for also has a close corre-I (Q; J)n

spondence with the G statistic obtained from a contin-
gency table, each of whose N columns of K elements
gives the relative frequencies of an allele in the K pop-
ulations. This G statistic is given by (Sokal and Rohlf
1995, p. 737)

N K

G (Q; J) p 2 p log p��n ij ij
jp1 ip1

N K K

� p log p� � �ij ij( ) ( )
jp1 ip1 ip1

K N N

� p log p� � �ij ij( ) ( )
ip1 jp1 jp1

N K N K

� p log p .�� ��ij ij( ) ( )
jp1 ip1 jp1 ip1
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Figure 1 Relationship of informativeness for assignment ( ) toIn

d (A), and (B). The plots are based on two alleles and two sourceFst

populations, and they use equations (7) and (8).

Using equation (1) and , we can simplify toN� p p 1ijjp1

G (Q; J) p 2KI (Q; J) .n n

Thus, for any number of populations and alleles, iden-
tifying loci of high informativeness for assignment is
equivalent to identifying loci with large values of .Gn

Note that is a sum over alleles. The contri-I (Q; J)n

bution of allele j to informativeness for assignment is

K pijI (Q; J p j) p �p log p � log p . (5)�n j j ijKip1

For fixed , the minimal allelic informativeness of 0pj

occurs when for all i. For fixed , thep p p p � 1/Kij j j

maximum, , occurs when for exactlyp log K p p Kpj ij j

one value of i and for all other values.p p 0ij

Similarly, it is possible to write as a sum overI (Q; J)n

populations, with the contribution of population i to the
informativeness for assignment equaling

N p pij ijI (Q p i; J) p log . (6)�n K pjp1 j

Equations (5) and (6) enable calculation of the specific
contribution of an allele or population to . These com-In

putations are useful, since alleles at a locus might differ
in their importance for assignment of individuals to pop-
ulations. Populations might also differ in their degree of
difference from the “average” population, so that as-
signment to some populations is easier than assignment
to others. Henceforth, we use “informativeness” only in
relation to the statistic (and the statistic, to be de-I In a

fined later), although we use “informative” and “infor-
mation” more generally, to describe “ability to infer an-
cestry.” Note that, if the prior assignment of individuals
is not uniformly distributed, general priors, �(Q p

, can be accommodated by replacingi) p q �(Q p i)i

with in the derivations of equations (2) and (3) andqi

with in equations (1), (4), (5), and (6).1/K qi

can also be extended for use in assignment to pop-In

ulations of multilocus diploid genotypes rather than of
single alleles. For convenience, we treat diploid genotypes
as being ordered so that differs from (an unor-(j ,j ) (j ,j )1 2 2 1

dered genotype is assigned randomly to one of the possible
ordered genotypes). If we assume both Hardy-Weinberg
proportions and independence of loci within populations,
equation (4) applies with in place of ,

L� p p p(l) (l)ij ij ijlp1 1 2

in place of , and with the sumK L� (1/K)� p p p(l) (l)ij ij jip1 lp1 1 2

taken over all possible multilocus genotypes,L (l) 2� [N ]lp1

. Although this sum is diffi-(1) (1) (2) (2) (L) (L){(j ,j ),(j ,j ), … ,(j ,j )}1 2 1 2 1 2

cult to evaluate if the number of possible multilocus ge-
notypes is large, it can, in principle, predict the inform-
ativeness of multilocus sets; note that informativeness is
not additive over loci, since loci that are independent

within populations may still contribute to ancestry infer-
ence in a correlated manner.

Relationship of to d andI Fn st

For the simplest case in which informativeness is of
interest—namely, for —it is possible to re-K p N p 2
late to d and to . In the mathematical development,I Fn st

we let d equal the signed difference between the fre-
quencies of allele 1 in two populations, , and,p � p11 21

without loss of generality, we assume that , sop � p11 21

that ; when applied to data, it is implicit thatd � [0,1]
d refers to the absolute difference, . DenotingFp � p F11 21

, we must have . Simplifyingj p p � p j � [d,2 � d]11 21

equation (4) in terms of d and j, we obtain (fig. 1A)

1
j 2�jI (Q; J) p � log [j (2 � j) ]n 2

1
j�d 2�j�d� log [(j � d) (2 � j � d)

4
j�d 2�j�d#(j � d) (2 � j � d) ] . (7)
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As it should be, is invariant with respect to a trans-In

position of alleles ( and ), of popula-d r �d j r 2 � j

tions ( ), or of both alleles and populations (d r �d j r
).2 � j

For and , for a locus (henceforth usedK p 2 N p 2 Fst

interchangeably with F), can be written as (modified
from p. 167 of Weir 1996)

2d
F p . (8)

j(2 � j)

Solving equation (8) for d and using equation (7), we
can express in terms of F and j (fig. 1B).In

For a fixed value of d or F, a biallelic marker is best
able to infer ancestry if one of its alleles is absent in one
of the populations: if the random genotype J equals this
allele, there is no uncertainty about the origin of an
individual. In other words, for a fixed d (Campbell et
al. 2003) or F, the markers with the greatest ability to
infer ancestry have a value of j near one of the extremes.
The statistic captures this aspect of ancestry inferenceIn

ability (fig. 1; table 2): for a fixed d, informativeness
declines from its maximum at to its minimum atj p d

and then climbs to a second maximum atj p 1 j p
; for a fixed F, the minimal informativeness is at2 � d

, and the maxima are at and atj p 1 j p 2F/(1 � F)
.j p 2/(1 � F)

A comparison of figure 1A and 1B demonstrates that
informativeness varies less across values of j for a fixed
F than for a fixed d; thus, is more closely related toIn

F than to d. By considering the difference between the
maximal and minimal informativeness over values of j

(table 2), it can be shown that the value of F predicts
the value of to within 0.0417, whereas d predictsI In n

only to within 0.0849. The mean difference between the
upper and lower bounds on , given the value of F, isIn

0.0282; the corresponding mean difference between the
upper and lower bounds on , given d, is more thanIn

twice as large, equaling 0.0569 (fig. 2A and 2B).
An additional consequence of equation (8) and the

requirement that is that d can be used toj � [d,2 � d]
predict F fairly accurately, and vice versa (fig. 2C). This
is useful in cases in which only one of these two measures
has been reported. Given d and allowing j to vary over

, F ranges from a minimum of , when2[d,2 � d] d j p
, to a maximum of , when or1 d/(2 � d) j p d j p 2 �
. Thus, either or can be regarded as a2d d d/(2 � d)

substitute for F; for any values of d and j, it can be
shown that . The2d/(2 � d) � 0.0902 � F � d � 0.0902
maximal discrepancy between the two approximations,
0.0902, is attained when (table 2). The meand ≈ 0.3820
of the two bounds, or , is always2 3(d � 2d � d )/(4 � 2d)
within 0.0451 of F. The accuracy of such simple ap-
proximations as and is perhaps2F ≈ d F ≈ d/(2 � d)
somewhat surprising.

Predictions of d from F are slightly less accurate
than the reverse predictions. Given F, as j ranges over

, d ranges from a minimum of[2F/(1 � F),2/(1 � F)]
at to a maximum of at�2F/(1 � F) j p 1 F j p

or . The maximal width of this2F/(1 � F) j p 2/(1 � F)
range of d, given F, is 0.1349, and it is attained at F ≈

.0.0874

Optimal Rate of Correct Assignment

If we use the no-admixture model, another way to
measure marker information content is to pursue a de-
cision-theoretic approach. We adopt an assignment rule
in which observing that one of the two alleles of a ran-
dom individual is j leads to assignment to population i
with probability , where for each j. WeK

d � d p 1ij ijip1

also choose a cost function , which gives the penaltyc ′ii

for assignment to population when the correct pop-′i
ulation is i. Under the assumption of a uniform prior
on the population of origin, or for all�(Q p i) p 1/K
i, the aim is to choose an assignment rule, or a set of
values of , that minimizes the expected value of thedij

loss (Weiss 1961, p. 69), or

K N Kpijr(d) p d c . (9)′ ′�� � i j ii( )′Kip1 jp1 i p1

If is taken to equal 0 when and 1 otherwise,′c i p i′ii

minimizing equation (9) is equivalent to maximizing the
probability of correct assignment, or .N K� � (p /K)dij ijjp1 ip1

The optimal rate of correct assignment (ORCA) is the
probability of correct assignment when the optimal rule
is used. To determine this rule, note that, for allele j, the
maximum of the linear function over theK� (p /K)dij ijip1

set must occur atK{d ,d , … ,d :d � 0,� d p 1}1j 2j Kj ij ijip1

one of the vertices of the set. Consequently, this maxi-
mum occurs when each allele is always assigned to the
population in which it is most frequent, and it equals

. Adding across alleles, we obtainmax p /Ki�{1,2,…,K} ij

N pijORCA p max . (10)�
Kjp1 i�{1,2,…,K}

Similarly to , the minimal value of ORCA, , oc-I 1/Kn

curs when all alleles have equal frequencies in all
populations, and the maximal value, 1, occurs when

and no allele is found in more than one pop-N � K
ulation. Also similarly to , general prior assignmentIn

probabilities, , can be accommodated�(Q p i) p qi

by replacing with in equations (9) and (10).1/K qi



Table 2

Relationship of informativeness for assignment ( ), d, andI Fn st

Quantity (A)

Expression
in Terms
of j and

Other
Quantity

(B)

Allowable
Values of j

in Terms of
A

Allowable
Values of

A in
Terms of

B
Maximal Width of the Range

of A Given the Value of B
Minimal Informativeness for

Assignment in Terms of j and A
Maximal Informativeness for

Assignment in Terms of j and A

Maximal Width of the
Range of Informativeness

Given the Value of A

d �j(2 � j)F [d,2 � d] 2F �, F[ ]1 � F

.1349 at F ≈ .0874
at

1
1�d 1�dlog (1� d) (1 � d) j p 1[ ]

2

1�d1 4(1� d)
log

2�d[ ]2 (2 � d)
at orj p d j p 2 � d

at
�4 6

log ≈ .0849 d p 1/2( )9

F
2d

j(2 � j)

2F 2
,[ ]1 � F 1 � F

d
2d ,[ ]2 � d

at5f � 8 ≈ .0902 d p 2 � f ≈ .3820 at
1 � �1� F 1� F� �log[(1� F) (1 � F) ] j p 1
2

1
F/(1�F) (1�F)/(1�F)log 4 (1� F) (1 � F)[ ]

2

at or
2F 2

j p j p
1 � F 1 � F

.0417 at F ≈ .4772

NOTE.—In the upper row of the table, and . In the lower row, and . .�A p d B p F A p F B p d f p (1 � 5)/2
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Figure 2 Informativeness for assignment ( ), d, and for 8,714I Fn st

SNPs, based on allele frequency estimates in African Americans and
European Americans. A, vs. d. B, vs. . C, vs. d. Upper andI I F Fn n st st

lower bounds for the dependent variable, given the independent var-
iable, are taken from table 2. A red vertical line marks the point of
greatest difference between the upper and lower curves. Mean differ-
ences between upper and lower curves are (A),3/4 � log 2 ≈ 0.0569

(B), and2 2[16 log 2 � 2 � 6(log 2) � p ]/12 ≈ 0.0282 2 log 2 � 4/3 ≈
(C). Spearman rank correlation coefficients between the var-0.0530

iables are 0.921, 0.998, and 0.943 in A, B, and C, respectively.

Note that, for with , we obtainK p N p 2 p � p11 21

for ORCA, or(p � p )/211 22

1 � d
ORCA p . (11)

2

Similarly to , ORCA can be extended for evaluationIn

of sets of many loci. Because the maximal correct as-
signment probability when (Hardy-Weinberg) diploid
genotypes rather than individual alleles are assigned to
populations equals ,N N� � max (1/K)p pi�{1,2,…,K} ij ijj p1 j p1 1 21 2

when multilocus diploid genotypes (at loci that are in-
dependent within populations) are assigned, the corre-
sponding probability is

(1) (1) (2) (2) (L) (L) LN N N N N N 1 (l) (l)ORCA p … max p p .(l) (l)� � � � � � � ij ij1 2(1) (1) (2) (2) (L) (L) K lp1j j j j j j i�{1,2,…,K}p1 p1 p1 p1 p1 p11 2 1 2 1 2

(12)

Equation (12) can, in principle, predict the probabilities
of correct assignment of sets of one or more loci in pro-
cedures (Buchanan et al. 1994; Paetkau et al. 1995;
Banks et al. 2003) that assign multilocus genotypes to
their most likely source populations.

Informativeness for Ancestry Coefficients: the
Admixture Model

We have introduced two new measures that can facil-
itate assignment of individuals to populations. Often,
however, a goal of ancestry inference is to estimate “an-
cestry coefficients” for an individual whose ancestry is
from two or more populations (Rannala and Mountain
1997; Pritchard et al. 2000; Anderson and Thompson
2002). Such an individual has a vector of K ancestry co-
efficients that sum to 1, where the coefficient for popu-
lation i gives the fraction of the individual’s genome that
derives from population i. Ancestry is now a random
vector rather than a discrete random variable. The mu-Q
tual information that quantifies the amount ofI (Q; J)a

information about provided by knowledge of J is ofQ
interest. With , where is the (ran-Q p (Q ,Q , … ,Q ) Q1 2 K i

dom) ancestry coefficient for the ith population and
, we haveK� Q p 1iip1

K

Pr (J p jFQ p q) p p q . (13)� ij i
ip1

Similarly to the no-admixture case, any assumptions
could be made for the initial probability distribution
of . That is, any distribution defined on the setQ

is suitable. For simplicity, weK{Q:Q � 0,� Q p 1}i iip1

assume that this distribution is uniform: all collections
of ancestry coefficients that sum to 1 are a priori equally
likely.
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Table 3

Number of Biallelic Markers Required
for Achieving a Specified Standard
Deviation in Ancestry Coefficient
Estimates for a Two-Population Model
(eq. [19])

d

NO. OF MARKERS REQUIRED

FOR AN SD OF

.2 .1 .05 .01

.9 4 16 62 1,544

.8 5 20 79 1,954

.7 7 26 103 2,552

.6 9 35 139 3,473

.5 13 50 200 5,000

.4 20 79 313 7,813

.3 35 139 556 13,889

.2 79 313 1,250 31,250

.1 313 1,250 5,000 125,000

Using the definition of mutual information for con-
tinuous random variables (Cover and Thomas 1991,
chapter 9), equals (see the appendix)I (Q; J)a

N (2)FS FK�1I (Q; J) p p � log p � 1 ��a j j[ ( )K!jp1

K Kp log pij ij� , (14)� K( )]
ip1 K (p � p )′� ij i j′i p1

′i (i

where is a Stirling number of the first kind (Abra-(2)SK�1

mowitz and Stegun 1965, p. 833) (the first six values of
, starting at , are 3, 11, 50, 274, 1,764, and(2)FS F K p 2K�1

13,068). The quantity is termed the “informativenessIa

for ancestry coefficients.” has a similar multilocus ex-Ia

tension to that of , and, for , relationshipsI K p N p 2n

of to d and F are qualitatively similar to the corre-Ia

sponding relationships of to d and F (not shown). ForIn

example, for fixed d, the maxima of over j occur atIa

and , and the minimum is at .j p d j p 2 � d j p 1

Number of Markers

The statistic suggests a way to prioritize markersIa

for use in inference of ancestry coefficients, but it does
not have a simple relationship with the number of mark-
ers needed for this inference. However, using a maxi-
mum-likelihood approach, it is possible to approximate
this number of markers. Equation (13) gives the likeli-
hood of ancestry coefficients in a haploid(q ,q , … ,q )1 2 K�1

one-locus model, with . The ex-q p 1 � q � … � qK 1 K�1

pected Fisher information matrix, , for the likelihoodU
function has dimensions and, for each(K � 1) # (K � 1)
i and , the th element equals (Millar 1991, eq. [A.3])′ ′i (i,i )

N (p � p )(p � p )′ij Kj i j KjU (q ,q , … ,q ) p . (15)′ � K�1ii 1 2 K�1
jp1 p � � (p � p )qKj mj Kj m

mp1

Multiplying equation (15) by 2, we can obtain the cor-
responding value for (Hardy-Weinberg) diploids. When
standard maximum-likelihood theory is used (Elandt-
Johnson 1971), the variance-covariance matrix of the
ancestry coefficient maximum-likelihood estimates is ap-
proximated by . For , a straightforward trans-�1U K � 3
formation of can enable inclusion of in the ma-U qK

trix (Millar 1991); for , the maximum-likelihoodK p 2
estimates and have equal variances.ˆ ˆq q1 2

Using equation (15), in the (diploid) case of ,K p 2
we obtain

�1
N 22(p � p )1j 2jˆVar (q ) p . (16)�1 [ ]p � q (p � p )jp1 2j 1 1j 2j

For biallelic markers ( ), equation (16) reduces toN p 2

(p � q d)(1 � p � q d)21 1 21 1ˆVar (q ) p . (17)1 22d

If we consider all possible values of and assume thatq1

, the largest value of equation (17) occurs atp � p11 21

, producing an upper bound for theq p (1 � 2p )/(2d)1 21

approximate variance equal to

1
ˆVar (q ) p . (18)1 28d

Because the information matrix for a set of loci that are
independent within populations is the sum of the ma-
trices for the individual loci, the number of independent
markers, all with the same value d, that are required to
achieve , isˆVar (q ) p V1

1
L p . (19)28d V

Using equation (19), 35 biallelic markers with d p 0.6
are necessary for achieving an SD of 0.1, in agreement
with a previous suggestion of ∼40 such markers (Hog-
gart et al. 2003).

The number of independent biallelic markers required
for accurate estimation of ancestry coefficients in the
two-population admixture model (table 3) is consider-
ably larger than the number required for assignment in
corresponding no-admixture models (Risch et al. 2002;
Campbell et al. 2003). However, our computations as-
sume that estimation of ancestry coefficients occurs by
maximum likelihood; other estimation procedures or use
of dependencies between markers might reduce the num-
ber of markers needed. In addition, since it is based on
an upper bound for the variance and not on the general
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Table 4

Data Sets and Spearman Rank Correlation Coefficients of , ORCA, andI In a

DATA SET DESCRIPTION OF GROUPS

CORRELATION COEFFICIENT

and ORCAIn andI In a ORCA and Ia

World-52 52 populations representing seven regions .920 … …
World-5 5 regional groups (Africa, Eurasia, East Asia, Oceania,

America)
.956 .994 .956

World-7 7 regional groups (Africa, Europe, Middle East,
Central/South Asia, East Asia, Oceania, America)

.953 .990 .947

Africa 6 populations (Bantu [Kenya], Mandenka, Yoruba, San,
Mbuti Pygmy, Biaka Pygmy)

.945 .986 .937

Europe 8 populations (Orcadian, Adygei, Russian, Basque,
French, Italian, Sardinian, Tuscan)

.878 .973 .867

Middle East 4 populations (Mozabite, Bedouin, Druze, Palestinian) .873 .994 .891
Central/South Asia 9 populations (Balochi, Brahui, Makrani, Sindhi,

Pathan, Burusho, Hazara, Uygur, Kalash)
.883 … …

East Asia 18 populations (Han, Han [N. China], Dai, Daur,
Hezhen, Lahu, Miao, Oroqen, She, Tujia, Tu, Xibo, Yi,
Mongola, Naxi, Cambodian, Japanese, Yakut)

.915 … …

Oceania 2 populations (Melanesian, Papuan) .921 .998 .940
America 5 populations (Karitiana, Surui, Colombian, Maya, Pima) .934 .989 .945

expression, equation (19) might further overestimate the
number of markers needed. Note that, because only the
upper bound and not the general expression is directly
related to d, markers with high values of and ratherI In a

than of d might often produce smaller variances at values
of relevant to individuals under consideration.q1

Estimation of Informativeness

, ORCA, and have been defined parametrically,I In a

as inherent properties of a marker together with a set
of populations. In practice, however, estimates made
from data rather than parametric allele frequencies must
be used. For a given locus, let the number of copies of
allele j observed at the locus in population i equal ,nij

and let the total number of observations in population
i equal . A simple estimator of informativeness statisticsni

is the count estimate, in which is estimated by ,p n /nij ij i

and the estimated values are inserted in place of thep̂ij

parametric values.
This estimator can produce biased estimates; consider,

for example, two samples taken from the same popu-
lation. Since allele counts in the two samples are likely
to differ by chance, markers will have positive estimated

for distinguishing the two samples and estimatedIn

ORCA 11/2 when parametric informativeness equals 0
and parametric ORCA is 1/2. This bias is not of major
concern when the goal is to compare informativeness
estimates for different loci through use of the same sam-
ple (Brenner 1998), since a systematic bias affects all loci
in a similar manner. In addition, in comparisons of locus
informativeness across different samples, sample-specific
biases should affect all loci similarly, and the relationship

between informativeness estimates of a locus in two sam-
ples is preserved even if the estimates are biased.

, ORCA, and have been defined using frequenciesI In a

of alleles rather than of diploid genotypes. If alleles
within individuals are not independent, so that within-
population genotype frequencies do not correspond to
Hardy-Weinberg proportions, the definitions can be ap-
plied treating J as a random diploid genotype, and the
count estimates of genotype frequencies can be used in
estimation. We do not consider this issue further.

Data

We consider various subsets (table 4) of a data set of
377 microsatellite markers—45 dinucleotides, 58 tri-
nucleotides, and 274 tetranucleotides—genotyped in
1,056 individuals from 52 human populations (Cann et
al. 2002; Rosenberg et al. 2002; Zhivotovsky et al. 2003;
Human Diversity Panel Genotypes Web site; Human
STRP Screening Sets Web site). Names of regions and
regional affiliations of populations are the same as in
the article by Rosenberg et al. (2002). At least 50 of the
377 markers are among those reported in table 1 of the
article by Collins-Schramm et al. (2002), and at least
212 of them are included in table 1 of the article by
Smith et al. (2001).

To compare informativeness for microsatellites and
SNPs, we consider SNPs that have been studied in Af-
rican Americans, European Americans, and East Asians
and that were found to have few enough errors for use
in analysis of population divergence (Akey et al. 2002;
Joshua Akey’s Homepage). From the Akey et al. (2002)
data, we exclude several types of SNPs: (1) SNPs ge-
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notyped by the Whitehead Institute, whose European
American sample differed from that used by the other
genotyping centers; (2) SNPs with unknown sample
sizes or with sample size !40 (20 individuals) in at least
one of the three groups; (3) SNPs with unknown, non-
unique, or nonautosomal map positions; and (4) SNPs
whose frequencies were obtained by DNA pooling or
for which one or more of the reported allele frequencies
could not be expressed as a rounded quotient of an
integer and the reported sample size. The 8,714 SNPs
we use were all genotyped by Celera, Motorola, or
Orchid.

Statistical Properties of Informativeness

In this section, we demonstrate that the proposed in-
formativeness statistics are, indeed, useful measures.
First, we show that the statistics , ORCA, and pro-I In a

duce similar estimates, so that we can proceed using only
one statistic, the informativeness for assignment. Second,
we demonstrate that the statistic is robust, in thatIn

rankings of locus informativeness do not vary greatly
across resamples of the data. Third, we show that the

statistic does indeed measure ability to infer ancestry,In

in that population structure inference using markers of
high informativeness requires fewer markers than infer-
ence using markers of low informativeness.

Relationship between In, ORCA, and Ia

For each of the data sets in table 4, we computed ,In

ORCA, and for each of the loci, using the allele countIa

estimates with equations (4), (10), and (14). For each
data set, Spearman rank correlation coefficients (Gib-
bons 1985, p. 226) of locus and ORCA, and ,I I In n a

and ORCA and values were computed. Loci for whichIa

two or more populations had an identical allele fre-
quency estimate were not used in the latter two calcu-
lations, to avoid obtaining denominators of 0 in the
computation of . For the World-52, Central/SouthIa

Asia, and East Asia data sets, in which many populations
had the same sample sizes and therefore had numerous
opportunities to produce equal allele frequency estimates
in two or more populations, there were many such loci,
and the correlation coefficients involving were notIa

computed.
Rankings of loci by , ORCA, and were all highlyI In a

correlated, with the largest correlations observed be-
tween and (table 4). Thus, for convenience, in theI In a

remainder of this article we restrict attention to estimates
of , or, simply, the informativeness, and we assumeIn

that all three measures have similar properties.

Locus Informativeness Rankings

For each of the 10 data sets (table 4), markers were
ranked from highest to lowest estimated informativeness
(table A [online only]). To assess the robustness of these
rankings, or the extent to which they are affected by the
particular choice of individuals included in the data, we
performed bootstrap replicates.

Individuals were resampled with replacement within
groups, holding group sample sizes fixed. For each rep-
licate, informativeness was estimated for each locus, and
loci were ranked by estimated informativeness. In some
replicates, for at least one group and one locus, the re-
sample included only individuals who did not have ge-
notypes at the locus. This situation arose only for data
sets in which some groups had small sample sizes (�10).
In these data sets, it was possible for a resample to con-
sist solely of copies of a few individuals. Thus, if these
few individuals had no data at a locus, the resample also
had no data. For each data set, excluding these repli-
cates, which were discarded, 1,000 resamples were per-
formed. For data sets in which all groups had larger
sample sizes (110), it was not necessary to discard any
replicates.

To assess the variability of values across bootstrapIn

replicates, for each locus, we computed the ratio of the
SD of the bootstrap values of to the value estimatedIn

from the data, and we averaged this quantity across loci.
Three statistics were used to compare the locus inform-
ativeness rankings that were estimated from the data and
those that were obtained in the bootstrap replicates: (1)
the mean across replicates of , where denotesR VV ,V dd b

the vector of informativeness ranks based on the data,
denotes the vector of ranks based on the bth bootstrapVb

replicate, and R denotes the Spearman rank correlation
coefficient; (2) the Kendall coefficient of concordance of
the 1,000 bootstrap replicates (Gibbons 1985, p. 250);
(3) the mean across loci of the mean across replicates of
the absolute deviation between the rank of a locus in
the data and its rank in the replicate. This third statistic
was also computed using only the 50 loci of highest
estimated informativeness.

Although informativeness fluctuated noticeably across
replicates for individual loci, rankings in different rep-
licates were highly concordant with each other and were
highly correlated with the rankings based on the esti-
mates from the data (table 5). Similar patterns of cor-
relation across bootstrap replicates were observed for all
of the data sets. The World-52, World-5, and World-7
data sets, which contained the most data, produced the
most robust informativeness ranks and values; the least
robust were found for Oceania, the smallest data set.

The fluctuation of ranks of individual loci across rep-
licates indicates that exact ranks of loci (such as in tables
A, B, C, D, and E [online only]) should be regarded with



Table 5

Robustness of Informativeness Statistics

Data Set
No. of Replicates

Discarded

Mean Ratio of
Bootstrap SD to

Estimated ValueIn

Mean � SD Spearman
Rank Correlation

Coefficient
Kendall Coefficient of
Concordance of Ranks

Mean � SD Absolute
Deviation of Ranks

Mean � SD Absolute
Deviation of Ranks (50

Loci of Highest )In

World-52 1,460 .064 .977 � .002 .974 17.53 � 8.27 7.38 � 4.38
World-5 0 .119 .978 � .003 .959 17.24 � 5.60 8.57 � 4.42
World-7 0 .106 .980 � .003 .964 16.44 � 5.30 8.19 � 4.09

Africa 27 .215 .909 � .018 .852 34.75 � 12.57 16.13 � 9.06
Europe 514 .274 .845 � .021 .770 45.39 � 17.40 17.81 � 10.92
Middle East 0 .317 .839 � .020 .734 46.35 � 15.18 22.51 � 11.47
Central/South Asia 108 .223 .880 � .017 .818 39.71 � 15.32 16.80 � 12.27
East Asia 392 .170 .919 � .009 .883 32.47 � 13.95 13.75 � 10.13
Oceania 0 .683 .836 � .034 .723 46.45 � 15.72 21.44 � 9.74
America 0 .180 .935 � .012 .883 29.04 � 10.81 13.56 � 6.28

NOTE.—See the “Locus Informativeness Rankings” subsection of the “Statistical Properties of Informativeness” section for a description of the quantities in the table.
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caution. However, fluctuations were small enough that
the markers of highest informativeness usually had low
ranks in bootstrap replicates (rightmost column of table
5). Thus, confidence can be placed in general statements
such as a locus being “among the most informative
markers” in a data set.

Performance of Markers of High Informativeness
in Ancestry Inference

One way to test the utility of as a measurement ofIn

the ability of a marker to infer ancestry is to check
whether the population structure inferred using the
markers of highest more closely approximates the pop-In

ulation structure inferred using all of the markers than
does the population structure inferred using the markers
of lowest . Using the computer program structure (Prit-In

chard et al. 2000; available from the Pritchard Lab Web
site), with five clusters and the full data of 1,056 indi-
viduals, we previously found that the genetically inferred
population structure corresponded fairly closely to the
five regions in the World-5 data set (Rosenberg et al.
2002). Thus, if indeed measures ability to infer an-In

cestry, informativeness of a locus in the World-5 data
set should correlate well with the contribution of the
locus to population structure inference using five
clusters.

We therefore ran structure with all 1,056 individuals
in the data, using the markers of highest informativeness
for the World-5 data set. For various choices of the num-
ber of markers, M, five structure runs were performed
with the M markers of highest , and five runs wereIn

performed with the M most heterozygous markers (table
S4 of Rosenberg et al. [2002]). Expected heterozygosity
was used for comparison, because, among several sta-
tistics studied in a previous analysis (Rosenberg et al.
2001), it produced the greatest reduction in the number
of markers needed for inference. One run was performed
with each of 20 random sets of M markers; for each
value of M, random sets were chosen independently of
the sets that were selected for the other values of M.
Five runs were performed with the M markers of lowest

. All structure runs used five clusters, and, as in theIn

study by Rosenberg et al. (2002), they employed the
admixture model for individual ancestry (Pritchard et al.
2000), the F model for allele frequency correlations (Fa-
lush et al. 2003), and a burn-in period of length 20,000
followed by 10,000 iterations.

The similarity coefficient C (Rosenberg et al. 2002)
was used to compare runs with subsets of the markers
against 10 runs that employed all 377 markers and were
performed by Rosenberg et al. (2002). As in that study,
the normalization required in the computation of C was
based on the runs that used all of the markers. For each
value of M, , each of the 10 runs that used allM ! 377

377 markers was compared with each of the five runs
that used the M markers of highest informativeness, for
a total of 50 comparisons. For , the 90 pairwiseM p 377
comparisons of the 10 full-data runs were performed.
For each M, the first quartile, median, and third quartile
of the distribution of the 50 values were obtained (90
values for ). Comparisons to the full-data runsM p 377
were made in an analogous manner, using the runs based
on the least informative, most heterozygous, and ran-
dom markers. For the random markers and ,M ! 377
the similarity coefficient distribution was based on 200
comparisons.

Figure 3 indicates that, in general, fewer loci chosen
according to the highest informativeness were required
than random loci for inferring a population structure
similar to that obtained with all the loci. This pattern
was observed especially for small and intermediate val-
ues of M; although similarity coefficients at these M of-
ten varied considerably across runs, runs based on the
markers of highest generally produced greater simi-In

larity coefficients than those based on random or highly
heterozygous markers. For larger values of M, the dif-
ference in similarity coefficients across criteria was less
pronounced, partly because the sets of markers chosen
by different criteria had greater overlap than for small
values of M. However, runs that used the markers of
lowest produced similarity coefficients that were con-In

siderably smaller than those obtained by the other sets
of markers. Many more of the markers of lowest thanIn

of those of highest were required to obtain inferredIn

population structures that were visually similar to that
inferred using the full data (fig. 4). Thus, high inform-
ativeness is a useful indicator of the ability of a marker
to infer ancestry; more dramatically, low informativeness
suggests that a locus is not of great utility for inference
of ancestry.

Comparison of Rankings across Data Sets

For pairs of data sets, we computed correlation coeffi-
cients of locus informativeness (table 6). Most pairs of
rankings had correlations of at least 0.2. Markers that
had high informativeness for inference of regional an-
cestry tended to be informative for inference within sev-
eral regions. One exception was that informativeness in
the America data set was not correlated with informa-
tiveness in the World-5 and World-7 data sets.

The highest correlations for pairs of regions occurred
for regions that were geographically proximate, such as
Central/South Asia and East Asia. All correlations for
pairs of regions, among those that included two of Af-
rica, Europe, Middle East, Central/South Asia, and East
Asia, were larger than correlations that involved Oce-
ania or America. The smallest correlation for a pair of
regions was between informativeness in Africa and in-
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Figure 3 Similarity coefficients for runs based on reduced sets
of markers and runs based on the full data. Sets of markers were
chosen with each of four methods: highest informativeness, highest
expected heterozygosity, random, and lowest informativeness.

formativeness in America. Larger absolute levels of in-
formativeness in Africa, America, and Oceania (fig. 5)
are consistent with the greater observed differentiation
among populations in these regions (Rosenberg et al.
2002).

Most loci were ranked poorly in at least one data
set (table A [online only]). D11S2000, D16S3401,
D16S422, D21S2055, and D3S2427 were the only
markers to rank among the 75 most informative in all
data sets; note that D21S2055 was one of three loci
identified by Zhivotovsky et al. (2003) as unusually var-
iable. D13S285 and D7S1804 were highly informative
in all seven regional data sets (rank �75) but were less
informative in at least one of the three worldwide da-
ta sets (rank 175). Conversely, D14S1007, D1S235,
D22S683, D2S1356, D8S560, D9S1779, D9S1871,
NA-D18S-2, and NA-D5S-1 were highly informative in
the worldwide data sets (rank �25) but were less in-
formative in one or more of the regional data sets (rank
175).

Microsatellites and SNPs

Dinucleotide loci, which show the most variation among
the markers in these data (Zhivotovsky et al. 2003), were
generally more informative than tetranucleotide loci (ta-
ble 7), consistent with the generally greater differentia-
tion of dinucleotides across human populations (Ruiz
Linares 1999; Rosenberg et al. 2003). Dinucleotides
were usually also more informative than trinucleotides,
but, in many cases, trinucleotides and tetranucleotides
had similar levels of informativeness. However, for the
worldwide data sets and for Africa, tetranucleotides
were by far the least informative class of microsatellite.
For example, although 73% of the loci were tetranu-
cleotides, in the World-7 data set, the 25 loci of highest
informativeness included only 7 tetranucleotides. Of the
100 loci of lowest informativeness in this data set, 97
were tetranucleotides.

To compare informativeness of microsatellites and
SNPs, we determined the informativeness of microsat-
ellites for assignment with three source populations: Af-
ricans, Europeans, and East Asians. For these groups,
we also determined informativeness for each pairwise
combination of source populations (tables B and C [on-
line only]). Similarly, we estimated informativeness of
SNPs among African Americans, European Americans,
and East Asians. Because the individuals and popula-
tions in the microsatellite and SNP data sets were not
the same, our comparison of microsatellite and SNP
informativeness can only be regarded as approximate.
Inclusion of some extremely isolated populations in the
microsatellite data but not in the SNP data might ex-
aggerate the relative informativeness of microsatellites.
However, this effect might be counteracted by a SNP
ascertainment procedure that produced greater diver-
gence across populations than is characteristic of ran-
domly chosen SNP markers (J. Akey, personal com-
munication); the microsatellite data likely show little or



Figure 4 Inferred population structure with five clusters, based on markers of highest and lowest informativeness and plotted using distruct (available from Noah Rosenberg’s Homepage). Each
individual is represented by a thin vertical line, which is partitioned into five colored segments that represent the individual’s estimated ancestry coefficients in the five clusters. Black lines separate
individuals of different populations, which are labeled below the figure. The left-right order of individuals is the same in all plots. The bottom plot is the same as is shown in figure 1 of Rosenberg
et al. (2002); each of the other graphs is based on the highest-likelihood run among five runs with the relevant set of loci.
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Table 6

Pearson (above the Diagonal) and Spearman (below the Diagonal) Correlation Coefficients of Locus Informativeness Values for
Pairs of Data Sets

World-52 World-5 World-7 Africa Europe
Middle

East
Central/South

Asia
East
Asia Oceania America

World-52 … .835 .867 .766 .640 .635 .782 .728 .433 .319
World-5 .860 … .986 .586 .356 .411 .494 .402 .272 �.007
World-7 .887 .987 … .605 .380 .431 .526 .422 .278 .024

Africa .754 .608 .621 … .505 .521 .598 .521 .317 .180
Europe .626 .391 .415 .490 … .500 .600 .607 .310 .387
Middle East .579 .419 .434 .480 .481 … .651 .590 .324 .338
Central/South Asia .746 .508 .536 .542 .582 .570 … .733 .368 .374
East Asia .685 .397 .420 .455 .565 .492 .670 … .402 .444
Oceania .379 .242 .246 .276 .316 .298 .306 .370 … .232
America .286 �.006 .023 .151 .376 .297 .338 .413 .231 …

no such effect (Rosenberg et al. 2002). The small-sample
upward bias in informativeness might also impact rel-
ative informativeness estimates.

For each set of source populations, randomly chosen
microsatellites had greater informativeness than ran-
dom SNPs (fig. 6). The ratios of median dinucleotide
informativeness to median SNP informativeness were
7.8 (Africans vs. Europeans), 6.8 (Africans vs. East
Asians), 5.1 (Europeans vs. East Asians), and 5.3 (Af-
ricans vs. Europeans vs. East Asians). The ratios of
means were 4.3, 3.7, 2.8, and 3.8, respectively, and the
50th percentile of dinucleotide informativeness corre-
sponded to the 96th, 95th, 88th, and 98th percentiles
of SNP informativeness.

One threshold proposed for declaring a SNP to be
highly informative is (Shriver et al. 1997), ad p 0.5
value exceeded by 1.9%, 4.6%, and 2.7% of the SNPs
(among those polymorphic in the relevant pair of pop-
ulations) for African Americans and European Ameri-
cans, African Americans and East Asians, and European
Americans and East Asians, respectively. The value

corresponds to andd p 0.5 F � [0.250,0.333] I �st n

(table 2); for corresponding comparisons,[0.131,0.216]
averaging across the three classes of loci, 26.0%,
42.0%, and 12.4% of microsatellites exceed the lower
bound of , and 5.9%, 10.2%, and 1.5% exceed theIn

upper bound.

Discussion

In this article, we have introduced new statistics, ,In

ORCA, and , for measuring the information providedIa

by loci about ancestry. , which is highly correlated withIn

ORCA and (table 4), is robust, in that it gives similarIa

results in bootstrap replicates (table 5). The statistic is
effective for inference of ancestry, in that population
structure is more easily inferred using markers that have
high values of than using those that have low valuesIn

(figs. 3 and 4). Although it is closely related to d in the

case of biallelic markers in two source populations (figs.
1 and 2; table 2), unlike d, captures the dependenceIn

of information content on the position of allele fre-
quencies in the unit interval.

Use of markers of highest informativeness is desirable
for reduction of genotyping effort in such situations as
forensics (Shriver et al. 1997; Lowe et al. 2001), ad-
mixture mapping (Dean et al. 1994; McKeigue 1998),
and structured-association mapping (Pritchard and
Donnelly 2001; Hoggart et al. 2003). In these scenarios,
it is desirable to maximize information about individual
ancestry at minimal cost. For the case of admixture
mapping, the additional constraint that loci must be
located in candidate regions of the genome applies; un-
like other ancestry inference scenarios, admixture map-
ping makes use not of the ancestry of an individual as
a whole but of particular parts of an individual genome.
Thus, ideal marker sets for admixture mapping must
have representation in regions of interest as well as high
informativeness.

Highly informative markers are also useful in testing
for population stratification in case-control genetic as-
sociation studies (Pritchard and Rosenberg 1999), al-
though the test does not use individual ancestry estimates.
The goal is to determine whether cases and controls differ
in ancestry to such an extent that an excess number of
random markers will, by chance, be associated with dis-
ease status. Because they have the greatest potential to
differentiate among ancestry groups, the most informa-
tive markers offer the greatest power to reject the null
hypothesis of no genomewide allele-frequency differences
between cases and controls; thus, their use offers a cau-
tious approach in dealing with population stratification.
If allele-frequency differences are detected, these markers
are ideal for structured-association methods that employ
individual ancestry estimates to avoid identifying the as-
sociations that result from ancestry differences rather
than from true association with disease status (Pritchard
and Donnelly 2001). The number of these markers



Figure 5 Correlations of informativeness for pairs of regional data sets
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Table 7

Informativeness and Repeat Size

DATA SET

MEAN INFORMATIVENESS RANK P VALUE (TWO-TAILED MANN-WHITNEY TEST)

Dinucleotides Trinucleotides Tetranucleotides
Dinucleotides vs.

Trinucleotides
Dinucleotides vs.
Tetranucleotides

Trinucleotides vs.
Tetranucleotides

World-52 94 151 213 !.001 !.001 !.001
World-5 86 119 221 .009 !.001 !.001
World-7 85 119 221 .011 !.001 !.001

Africa 107 161 209 !.001 !.001 .001
Europe 136 201 195 !.001 .001 .790
Middle East 140 189 197 .011 .002 .564
Central/South Asia 124 205 196 !.001 !.001 .603
East Asia 138 206 194 !.001 .002 .466
Oceania 168 189 192 .314 .176 .789
America 185 232 181 .048 .865 !.001

needed for desired precision in estimated ancestry coef-
ficients can be approximated using the maximum-like-
lihood model.

Consequently, the panels in tables A, B, C, D, and E
(online only) can provide a resource for tests of popu-
lation stratification. For example, in European Ameri-
cans, the test might use markers that are most informative
for distinguishing among various types of European an-
cestry (table A [online only]); in Hispanic Americans, it
might employ markers that are most informative for dis-
tinguishing European from Native American ancestry
(table B [online only]) or for distinguishing European,
Native American, and African ancestry (table C [online
only]). Note that panels in tables A–E utilize groups and
classifications that might not be identical to those needed
in applications: for example, if ancestry inference in Af-
rican Americans is of interest, the African and European
groups in our data do not fully represent the groups from
which African Americans have descended. However, we
observed that informativeness in one region was often
highly correlated with informativeness in another region
(table 6; fig. 5). Thus, while the most informative markers
in a data set need not be the most informative for use
with a different collection of groups, this imperfect panel
of markers is likely to be considerably more informative
than a random panel. The observed pattern, in which
informativeness correlations were highest for neighbor-
ing geographic regions, is likely to be a consequence of
the correlation of allele frequencies that results from
shared ancestry (Ramachandran et al., in press). Popu-
lations from neighboring regions typically share ancestors
more recently, so that their allele frequencies are more
strongly correlated.

Two exceptions to the general pattern of correlation
across data sets were Oceania and America, in which
informativeness was not very highly correlated with in-
formativeness in other regions. The small correlations
likely indicate that many of the markers that are ex-
tremely variable in other regions by chance must not
have been highly variable in founder groups of Oceania

and the Americas. That informativeness patterns across
di-, tri-, and tetranucleotides were different in Oceania
and America from those of the other data sets suggests
that bottlenecks were strong enough to obscure the typ-
ical patterns of variation for these three classes of
markers.

Thus, to identify a panel of markers that are generally
useful for inference of regional ancestry and for pop-
ulation ancestry inference within regions (Hoggart et al.
2003), it is most difficult to find markers that are in-
formative both within continental Eastern Hemisphere
regions and within Oceania and the Americas. We have
identified a small number of generally informative
markers; many more loci will need to be screened if
markers that are informative in every region are to be
found. Alternatively, a general panel might be assembled
by collecting markers useful for inference between spe-
cific pairs of groups. Such a procedure may be advan-
tageous, because, unlike sequential accumulation of
generally informative markers, it avoids duplication of
effort by accounting for the possibility that markers of
high informativeness can provide information about an-
cestry in different ways. A systematic procedure to iden-
tify maximally informative sets or loci that are condi-
tionally optimal, given the markers that have already
been chosen, might use multilocus , multilocus ORCAIn

(eq. [12]), or a decision tree (Guinand et al. 2002).
Although random microsatellites are considerably

more informative than random SNPs for distinguishing
among pairs of populations, and highly informative loci
constitute a greater fraction of microsatellites than of
SNPs, the right-hand tail of the distribution of SNP
informativeness crosses that of microsatellites (fig. 6),
suggesting that, if enough SNPs are screened, a set with
informativeness comparable to that of the set of the
most informative microsatellites can be found. This ob-
servation may be less applicable to the problem of dis-
tinguishing among K source populations for . ForK 1 2
a locus with N alleles, if , the informativeness ofN � K
the locus can potentially be as large as , whereas,log K
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Figure 6 Informativeness quantiles for microsatellites and SNPs. For each set of populations, curves follow the same relative order over
most of the domain (from top to bottom: dinucleotides, trinucleotides, tetranucleotides, and SNPs). SNPs were genotyped in African Americans
and European Americans rather than in Africans and Europeans.

if , the maximal informativeness is no larger thanN p 2
, regardless of the value of K. Because microsatel-log 2

lites in the data of Rosenberg et al. (2002) have an
average of 12.4 alleles, for relatively large values of K,
microsatellites have greater potential for higher infor-
mation content than SNPs, most of which are biallelic.
Thus, for large K, the relative performance of micro-
satellites compared with SNPs will likely be greater than
is seen in figure 6 for sets of two and three source
populations.

Thus, for inferring ancestry among groups such as
African Americans, European Americans, and East
Asians, for which genomewide SNP allele frequencies
have already been obtained (Akey et al. 2002), use of
the most informative known SNPs is likely to be most
efficient. However, because informativeness for distin-
guishing among populations such as different Native
American groups is not correlated with informativeness
for distinguishing among major regional groups (table
6), SNPs chosen by their informativeness in other sce-
narios will likely be considerably less useful in these

populations than randomly chosen microsatellites. Until
the most informative SNPs are identified for a set of
populations of interest, use of microsatellites, especially
dinucleotides, may lead to greater statistical efficiency
in inference of ancestry. Of course, technical problems
associated with dinucleotides (Ghebranious et al. 2003)
might outweigh the efficiency that derives from their
use, and factors such as laboratory fixed costs and dif-
ficulties in multiplexing might make the application of
less informative markers more economical. The decision
about which markers to use for inference of ancestry in
any particular context should incorporate a combina-
tion of economic, technical, and statistical concerns.
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Appendix

Informativeness for Ancestry Coefficients

Define and suppose on . The probability densityK�1 K�1
D p {(Q , … ,Q ):Q � 0,� Q � 1} Q p 1 �� DK�1 1 K�1 i i K K�1ip1 ip1

function for , which we denote by , can be regarded as a function defined on . AnQ p (Q ,Q , … ,Q ) f (q) D1 2 K Q K�1

elementary calculation shows that , and, therefore,dQ … dQ p 1/(K � 1)!∫D 1 K�1K�1

f (q) p (K � 1)! . (A1)Q

Similarly to the discrete no-admixture model, we can apply the continuous-variable analogue of mutual information
(Cover and Thomas 1991, chapter 9) to define informativeness in the admixture model, or (the subscriptI (Q; J)a

“a” refers to the admixture model). The informativeness for ancestry coefficients is the difference of entropy
and conditional entropy . By use of equation (A1) and the definition, the entropy isH (Q) H (QFJ)a a

H (Q) p � f (q) log f (q)dQ … dQ p � log (K � 1)! . (A2)a � Q Q 1 K�1
DK�1

The conditional entropy of given J is given byQ

N
�(J p jFQ p q)f (q)QH (QFJ) p � �(J p jFQ p q)f (q) log dQ … dQ . (A3)�a � Q 1 K�1

�(J p j)jp1 DK�1

By use of equations (13) and (A1), the following integral can be evaluated:

Pr (J p j) p �(J p jFQ p q)f (q)dQ … dQ p p . (A4)� Q 1 K�1 j
DK�1

Setting and substituting equations (13), (A1), and (A4) into (A3), we havea p p (K � 1)!/pij ij j

N K K

H (QFJ) p � p a q log a q dQ … dQ . (A5)� � �a j� ij i ij i 1 K�1( ) ( )
jp1 ip1 ip1DK�1

If we assume that, for all j, if , then , by applying the result of Rosenberg and Stong (2003) with′i ( i p ( p ′ij i j

in place of k to the function , it can be shown that the integral in equation (A5) evaluatesKK � 1 f(x) p x log x/K!
to

K KK (2)a log a FS F � K!ij ij K�1� a , (A6)� �K ij 2[ ] ( )( )(K!)ip1 ip1K! (a � a )′� ij i j′i p1
′i (i

where is a Stirling number of the first kind. Finally, inserting equation(2) K�1 �1 �1 �1S p (�1) K!(1 � 2 � 3 � … � K )K�1

(A6) into (A5) and simplifying gives

N K K (2)p log [p (K � 1)!/p ] FS Fij ij j K�1H (QFJ) p � � p 1 � . (A7)� � Ka j[ ( ) ( )]K!jp1 ip1 K (p � p )′� ij i j′i p1
′i (i

The expression for the mutual information (eq. [14]) is obtained by use of with equationsI (Q; J) p H (Q) � H (QFJ)a a a

(A2) and (A7). Note that the definition of is sensible only if no two populations share the same frequency forIa
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any allele. It is appropriate to assume that parametric allele frequencies are unequal in different populations; however,
when allele frequencies are estimated from samples of small and equal size, this assumption will often not be met.

Electronic-Database Information

The URLs for data presented herein are as follows:

Human Diversity Panel Genotypes, Center for Medical
Genetics, http://research.marshfieldclinic.org/genetics/Freq/
FreqInfo.htm (for microsatellite genotypes)

Human STRP Screening Sets, Center for Medical Genetics, http:
//research.marshfieldclinic.org/genetics/sets/combo.html (for
Marshfield panel 10)

Joshua Akey’s Homepage, http://cgi.uc.edu/˜jakey/ (for SNP
allele frequencies)

Noah Rosenberg’s Homepage, http://www.cmb.usc.edu/˜noahr
/distruct.html (for distruct software)

Pritchard Lab, http://pritch.bsd.uchicago.edu/ (for structure
software)
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