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Abstract

The divergence time of two populations is the amount of time that has elapsed since the
populations arose from an ancestral group, while the coalescence time of a set of copies of a
gene is the amount of time that has elapsed since the most recent common ancestor of the gene
copies lived. We briefly review the methods that have been used to infer divergence times and
coalescence times from genetic data. We then consider the relationship between divergence
times and coalescence times in a population genetic model that includes divergence followed
by migration between two descendant populations, paying particular attention to the fact
that migration can cause coalescence to occur more recently than divergence. Insights gained
from the model and its special cases are applied to four examples: the divergences of humans
and chimpanzees, modern humans and Neanderthals, Africans and non-Africans, and Native
Americans and Asians. For each example, we discuss the connection between hypothesized

divergence times and estimated coalescence times.

9.1 Introduction

Two important concepts in the study of the genetic history of organisms are the divergence
time of populations, and the coalescence time of copies of a locus in a sample of individ-
uals. Although divergence times and coalescence times have been considered extensively
in separate mathematical contexts, fewer studies have utilized a framework that includes
both concepts. Most of these unified studies have treated ancient divergences for which the
numerical difference between divergence time and coalescence time is not very pronounced.
Additionally, most approaches have not allowed migration to take place between populations
after a divergence. The purpose of this article is to examine the relationship between di-
vergence times and coalescence times, as well as to discuss the numerical difference between
them in simple models that permit migration.

A unified perspective that includes both divergence times and coalescence times is war-
ranted because divergence is a phenomenon of great evolutionary interest, while a coalescence-
based approach is of great utility in the analysis of genetic data. Gene coalescence times
can be naturally inferred from genetic data, but individually, they provide limited informa-
tion about population histories. Population divergence times are often more helpful towards
understanding evolutionary history, but the class of assumptions about demography and ge-
netic data that allow the inference of divergence times is more restrictive. Thus, if we better

understood the relationship between divergence times and coalescence times, we could more



sensibly interpret coalescence times inferred from genetic data in terms of their implications
for population histories. The distribution of inferred coalescence times across neutral loci
might even become a useful source of information for testing historical models of divergence
(Ruvolo, 1996; Takahata et al., 2001).

In Section 9.2, we introduce divergence times and coalescence times with a series of
examples. Section 9.3 reviews how divergence times and coalescence times can be estimated
from genotypic data under different demographic and mutational conditions. Section 9.4
considers the difference between divergence times and coalescence times for two-population
models with no migration and with a constant rate of migration per generation. We conclude
in Sections 9.5, 9.6, and 9.7 with a discussion of implications for the interpretation of studies
of real populations.

We note that Takahata and Satta (Chapter 5) consider a companion issue to the topics
studied here. As we will see, if no migration takes place after population divergence, then
coalescence necessarily precedes divergence, and the magnitude of the difference between
population divergence times and gene coalescence times depends on population size prior
to divergence. Indirectly, this dependence underlies the procedures used by Takahata and
Satta to estimate ancestral population size using genotypes taken from two or three related
species. Here we consider the converse dependence, that is, how knowledge of current (and
ancestral) population sizes leads to greater accuracy regarding the numerical relationship

between divergence times and coalescence times.

9.2 Definitions

9.2.1 Definition of divergence time

The divergence time (Tp) or splitting time of two populations is the time that has elapsed
since an ancestral group of individuals separated into the two descendant groups. We will
assume divergences take place instantaneously, so that the divergence time is a property
of a pair of populations. For any two populations in a collection, the divergence time is
perfectly specified from a tree of populations. Thus, in Figure 9.1, although more than two
populations are present, the divergence time for any pair of populations is uniquely deter-
mined: it equals the time since the two populations were part of the same ancestral group.
The divergence time of two descendant populations is well-defined even if the existence of
additional descendant populations is ignored. The divergence time is also well-defined if the
ancestral populations are allowed to experience multifurcation events, that is, instantaneous

separation into more than two descendant groups.



9.2.2 Definition of coalescence time

The coalescence time of a collection of copies of a locus, also known as the time to the most
recent common ancestor (Tarrea), is the time that has passed since the existence of the most
recent common ancestor (MRCA) of a collection of copies of a locus. Unlike the divergence
time, which is uniquely determined once two populations are selected, the coalescence time
is uniquely determined only when a locus and a set of individuals are chosen. Coalescence
times do vary across loci and across sets of individuals, as will become clear below.
Because the coalescence times of sets of copies of loci have some properties that are not
immediately obvious, we consider a few examples. First, we illustrate how coalescence times

can vary across loci.

Example 1: Suppose that after an extreme bottleneck, a population of mammals contains
only five living individuals (individuals 16-20), who have the genealogy and genotypes shown
in Figure 9.2. Suppose also that no mutations have occurred in this population in the last
several generations. For the living individuals, 16-20, we decide to compute the coalescence
times of four loci: the Y chromosome, the mitochondrial genome, and two autosomal loci,
aut! and aut2, which lie on different chromosomes. Locus aut! has alleles A and B, while
locus aut?2 has alleles C' and D.

In mammals, only males have Y chromosomes, which are thus uniparentally transmitted
from fathers to sons. Because the three living males (individuals 16, 17, and 19) share the
same father, the Y chromosome of that father (individual 13) is the most recent common
ancestor of all Y chromosomes in the population. The value of Thysrc4 for the Y chromosome
is one generation.

Mitochondrial DNA, however, is uniparentally transmitted through the mother and it
is present in individuals of both sexes. Because the five living individuals do not all have
the same mother but they do all have the same maternal grandmother, the mitochondrial
genome of that grandmother (individual 8) is the MRCA of all surviving mitochondrial
genomes. She lived two generations in the past, so Thyrca for the mitochondrial genome is
two generations.

All copies of the autosomal locus aut! can be traced back two generations to individual
8, but all copies of autosomal locus aut2 must be traced back three generations to individual
3 in order to reach a common ancestor. Due to the stochastic nature of allelic transmission
from parent to offspring, the two autosomal loci have different coalescence times in the

population.



Example 2: In Example 1, we were able to observe the genotypes of all individuals in the
population. Because complete observation of all individuals is rarely possible for most popu-
lations, a more typical situation uses a sample of individuals from a population. Consider the
genealogy of the eight members of a haploid species in Figure 9.3. In haploid species, unless
“horizontal transfer” of genetic material takes place between individuals, every locus has the
same genealogy. For this example, assume that horizontal transfer and recombination do
not take place in the species under consideration. Suppose we selected a sample of size two
from this population of eight individuals. If our sample consisted of individuals 1 and 2,
the coalescence time would be four generations. If we instead considered individuals 1 and
4, the coalescence time would be 12 generations. If we considered individuals 1 and 8, the
coalescence time would be 20 generations. The coalescence time for a sample is at most the
coalescence time for the whole population, and as more individuals are added to a sample,
the sample coalescence time approaches the population coalescence time. For this example,
a sample of size five is sufficient to guarantee that the sample coalescence time equals the

population coalescence time.

In Example 1, coalescence times varied across loci, but because we genotyped the entire
population, variation among samples was not an issue. In Example 2, coalescence times
for a given locus varied across samples. Because we considered a haploid species with no
recombination, however, for any sample, all loci had the same coalescence times.

More typical of realistic studies of diploid populations, the coalescence time varies across
both loci and samples considered. Suppose that for Figure 9.2, we had only taken a sample
of size two rather than the whole population. Had we sampled individuals 19 and 20,
we would have inferred the coalescence times for the Y chromosome, the mitochondrial
genome, autl and aut? to be 0, 1, 2, and 2 generations, respectively. Had we sampled only
individuals 16 and 17, we would have inferred the Y-chromosomal, mitochondrial, aut!, and
aut? coalescence times to be 1, 1, 2, and 3 generations. Recall that the correct coalescence
times are 1, 2, 2, and 3 generations.

We note, however, that the variation of coalescence time across loci is of much greater
magnitude than the variation across samples. The variance of the coalescence time across
a large number of independent loci in a sexual population of constant haploid size N is
approximately 1.16N? (e.g. Tavaré et al., 1997). In contrast, for the same population, the
probability that the coalescence time for a sample of size n equals the coalescence time for
the whole population is approximately (n — 1)/(n + 1) (Saunders et al., 1984). Thus, many

loci are needed in order to accurately obtain the values of statistics of the coalescence time



distribution for a population. For any given locus, however, a small sample is sufficient in
principle to obtain the true population coalescence time at the locus.

One final complication with coalescence times is that when considered with respect to a
population, Thrrca for a particular locus need not change linearly as time progresses (recall
that divergences are treated as fixed events, so that divergence times only increase linearly
with time as soon as the divergence takes place). Consider again Figure 9.2 as an example.
Suppose that our observations of the population were taken one day after the death of
individual 15. Had we taken our measurements of the entire population on the previous
day, we would have found the coalescence times for the Y chromosome, the mitochondrial
genome, autl, and aut2 to be 4, 3, 4, and 4 respectively - for all four genes the coalescence
times are different from the situation in which only individuals 16-20 were considered. In
a large population, however, there is little need to be concerned with the possibility that
Trrea for a given gene will change nonlinearly over short periods of time. Considering
Figure 1 and Table 1 of Underhill et @l.(2000), in which 1062 human Y chromosomes from
around the world are partitioned into 116 haplotypes, the most recent common ancestor of
human Y chromosomes could only be changed by a catastrophic demographic event affecting
millions of dispersed possessors of haplotypes 1-8, or by a similar event affecting the even
more numerous carriers of haplotypes 9-116. For a sample of moderate size from a population
of constant haploid size N, the probability that the MRCA ¢ generations into the future will
be different from the current population MRCA is approximately 1 — e~ (Watterson 1982;
Saunders et al., 1984).

To summarize, using the examples in Figures 9.2 and 9.3, we have discussed how (1) for
a given set of individuals, the coalescence time may vary across loci; (2) for a given locus,
the coalescence time may vary across samples; (3) the coalescence time of a particular locus
for a sample is at most equal to the coalescence time of the locus for the whole population;
(4) for a given population, the coalescence time of a locus may change nonlinearly as time
progresses. These are general properties not just for our examples, but for samples and

populations of any size.

9.2.3 Comments on terminology

It may appear inconsistent that the concepts of population divergence and gene coalescence
are labeled with directional language in opposite senses. Looking forward in time, popu-
lations diverge, and looking backward, lineages coalesce. We could just as well describe

population divergence as the joining of populations backwards in time, or gene coalescence



as the radiation of lineages forward in time.

However, the different directional senses of these two concepts are rooted in the tradi-
tions from which the concepts derive; the reasons for the apparent linguistic inconsistency
are largely historical. Population divergence is a type of event that takes place as evolution
moves forward in time. Evolution naturally occurs in the same direction as time, so that
in an evolutionary framework, populations diverge and species radiate. While population
divergences arise from evolutionary considerations, gene coalescences derive from a genealog-
ical perspective. In this framework (e.g. Hudson, 1990; Nordborg, 2001), we assume that
information is known only about the present, and we treat the past as a random process
proceeding backwards from the present. From this point of view, lineages coalesce backwards
in time.

To avoid confusion, we employ “divergence” to refer only to population-level or species-
level demographic splits and “coalescence” to describe only the ancestry of copies of a locus.

" and “before” to mean “more ancient.” We take “later”,

We also employ “earlier,” “older,’
“younger” and “after” to mean “more recent.” The directional senses of other words that
relate to time should be clear from their contexts. We use the term “migration,” although
for the purposes of this article, “horizontal gene transfer” or “lateral gene transfer” would

describe the same phenomenon just as well.

9.3 Methods of inference

9.3.1 Inference of divergence time

The need to calculate population divergence times arises in many situations. For example, to
understand the history of a species, one might wish to know how long populations have been
separated from each other. Estimated population divergence times can serve to confirm the
influence of geologic or climatic processes on evolution. Knowing the values of population
divergence times can help to date migrations or adaptive innovations. In addition to their
uses in identifying biogeographic patterns, divergence times also assist in framing the phy-
logenetic infrastructure upon which hypotheses about evolutionary processes can be tested.
Methods of estimating divergence times have been reviewed recently (Nielsen et al., 1998;
Edwards and Beerli, 2000; see also Watterson, 1985). Here we only comment on assumptions
about mutation and demography that have been made in the development of the various
estimation tools.

The first methods of estimating divergence times assumed that no mutation occurred

after divergence, that descendant populations had equal and constant size, and that the



genetic differences between populations were solely due to genetic drift. The divergence time
was then estimated using theoretical results relating expected divergence times to summary
statistics computed from allele frequency distributions at many loci in two populations (e.g.
Watterson, 1985; Nei, 1987). For this type of allele frequency data, advances have included
maximum likelihood estimation of divergence times (Nielsen et al., 1998; Nielsen and Slatkin,
2000), incorporation of loci evolving by a stepwise mutation process (Goldstein et al., 1995;
Feldman et al., 1999; Zhivotovsky, 2001), relaxed assumptions about the relative sizes of
the two populations (Gaggiotti and Excoffier, 2000), and permission of gene flow after the
divergence (Nielsen and Slatkin, 2000; Nielsen and Wakeley, 2001; Zhivotovsky, 2001).

A second class of methods has been designed for use with completely linked genetic
markers. These methods can accommodate a variety of mutational models, including the
infinitely many sites model for DNA sequence data (Wakeley and Hey, 1997; Nielsen, 1998),
the stepwise mutation model for microsatellite evolution (Wilson et al., 2001), and finitely
many allele models (Takahata and Satta, 1997). Some of these methods assume deep diver-
gences (Takahata and Satta, 1997; Edwards and Beerli, 2000), but they generally make no
assumptions about how long ago divergence took place.

Most approaches have in common a demographic model in which a single ancestral pop-
ulation of constant size separates into two descendant populations of constant (and possibly
different) size. A few recent methods have attempted to accommodate change in population
sizes through time: for example, in a method applicable to completely linked haplotypes at
unique event polymorphism and microsatellite loci, Wilson et al.(2001) allowed for the two
descendant populations to be growing at the same exponential rate. They also studied a
model in which populations are constant in size until a particular moment at which they
begin to grow exponentially.

A more difficult issue is the estimation of divergence time when gene flow occurs between
the descendant populations after the divergence. Gene flow after a divergence slows the
rate at which two populations become genetically distinctive. Thus, because lineages are
exchanged between populations, methods that assume no gene flow after divergence will
underestimate the divergence time. Using a maximum likelihood method based on allele
frequency data at many unlinked biallelic loci, Nielsen and Slatkin (2000) developed a joint
estimator of divergence time and the symmetric migration rate for two populations. For
DNA sequence data evolving under the infinitely many sites model, Nielsen and Wakeley
(2001) developed a similar joint estimation procedure. Both methods rely on algorithms
that allow the likelihood function for migration and divergence parameters, conditional on

observed sample configurations, to be approximated through simulation.



The newest methods of estimating divergence times that have begun to incorporate more
complex demography than constant size models are encouraging, in that estimation of pop-
ulation divergence times can now be performed with species for which a model of constant
size 1s not tenable. Nevertheless, satisfactory inference of divergence times under complex
demographic models will require considerable advances. Summary statistics often take on
the same or similar values under drastically different demographic conditions (e.g. Wakeley,
1996a), so that new genetic distance statistics are unlikely to accurately estimate divergence
time when migration is permitted. These statistics will likely be most helpful when a spe-
cific idealized demography can be assumed. Methods that jointly infer divergence times
and migration rates seem to be more promising, though these approaches can be extremely

computationally intensive (Nielsen and Slatkin, 2000; Nielsen and Wakeley, 2001).

9.3.2 Inference of coalescence time

Concurrent with the recent improvements in the estimation of divergence times, inference
tools for coalescence times have also been developed using a variety of demographic models
that are suitable for different kinds of genetic data. In general, methods for inferring coales-
cence times numerically compute posterior distributions of Thsrca given prior distributions
of various mutational and demographic parameters and either a full set of individual geno-
types (reviewed by Stephens and Donnelly, 2000; Stephens, 2001) or a collection of summary
statistics (e.g. Fu and Li, 1997; Tavaré et al., 1997; Fu and Li, 1999; Pritchard et al., 1999;
Stumpf and Goldstein, 2001). Methods of inferring Tasrc 4 from summary statistics, such
as the mean number of pairwise differences between sequences or the number of segregating
sites in a sample, are potentially less accurate due to inefficient use of data. As a trade-off,
the gain in speed of computation due to the summarizing of data can increase the complex-
ity of demographic and mutational models under which Tasrca can be inferred (Tavaré et
al., 1997; Pritchard et al., 1999). As is true for divergence times, a mutational model and
a demographic model are currently necessary for the estimation procedure, and the choice
of model can have a large impact on the eventual estimates (e.g. Pritchard et al., 1999;
Thomson et al., 2000; Tang et al., 2001).

The coalescence time for a locus is usually inferred from completely linked haplotypes.
Although methods based on summary statistics often directly estimate Thrca, most ap-
proaches do not treat Thsrca as a model parameter, and they instead infer Th;rca as a
byproduct of a procedure that estimates demographic and mutational parameters. Models

under which Tyrrca can be inferred for appropriate data include the infinitely many sites



model for DNA sequence data (e.g. Griffiths and Tavaré, 1994a, Tavaré el al., 1997) and
stepwise mutation models for microsatellite evolution (Wilson and Balding, 1998; Pritchard
et al., 1999; Wilson et al., 2001). An additional computational strategy for inferring demo-
graphic parameters (Kuhner et al., 1995, 1997, 1998) can be modified to infer Tysrc4 under
a finitely many allele model (Tang et al., 2001).

As with divergence times, the inference of Thsrc 4 is most advanced for panmictic models
of constant-sized populations (e.g. Griffiths and Tavaré, 1994a; Fu and Li, 1997; Tavaré et
al., 1997). However, Thsrca has also been studied under models of continuous exponential
growth (Griffiths and Tavaré, 1994b; Thomson et al., 2000; Tang et al., 2001), constant
population size followed by continuous exponential growth (Pritchard et al., 1999; Wilson et
al., 2001), and a single instantaneous burst of population growth (e.g. Stumpfand Goldstein,
2001).

Inference of Thrrca using models of population structure has proven more challenging.
Schemes have been developed that allow inference of demographic parameters in island
migration models (Beerli and Felsenstein, 1999; Bahlo and Griffiths, 2000), but greater
computational efficiency is required for use with reasonably sized data sets. The method of
Wilson et al.(2001) can infer Thrrc4 in a model of population divergence with no migration
after the divergence.

In principle, the inference of Thrc 4 with a minimum of demographic assumptions would
be desirable, because choosing an appropriate demographic model to describe data is diffi-
cult. For example, the observed mean number of pairwise site differences between two DNA
sequences could be taken as a simple estimator of Thrca (when normalized by twice the
mutation rate). This crude estimator can be calculated from any DNA sequence data set (the
analog for microsatellite loci evolving under the simple stepwise mutation model is the mean
number of mutational step differences between haplotypes divided by twice the mutation
rate), and it is computationally simple. Unless the sample has size two (see Walsh [2001] for
estimation of Thrca in this case), the pairwise difference estimator is problematic, however:
even if pairwise coalescence times were known for all pairs of gene copies in a sample, this
method would still underestimate the coalescence time. In Figure 9.3 the average pairwise
coalescence time over all 28 pairs would produce an estimate of 14.4 generations, rather than
the correct value of 20 generations.

Although the bias of the pairwise difference estimator may cause gross underestimation
in the case of a population that has remained constant in size, the bias is less severe for
an exponentially growing population. The effect of exponential growth on the shape of

coalescent trees is to shrink the lengths of older tree branches compared to the lengths of
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younger branches (Slatkin and Hudson, 1991; Donnelly and Tavaré, 1995). Thus, pairwise
coalescence times in exponentially growing populations tend to be closer to the coalescence
time of a sample than in constant size populations (consider Donnelly [1996, figures 1-3]).
Consequently, the use of pairwise differences to estimate a sample coalescence time might
be more acceptable in populations that are known to be exponentially growing (Stumpf and
Goldstein, 2001).

In order to use this type of nonparametric estimator, the bias of pairwise difference
methods must be understood under different demographic models. For a constant size model,
the bias of the pairwise difference estimator is severe: on average only a third of all pairs
of sequences have the same coalescence time as the whole population (using the result of
Saunders et al.[1984] that was mentioned in Section 9.2.2). On the other hand, in the limiting
case of a population that experienced a recent extremely rapid burst in size and that derived
from a small ancestral population, most pairwise coalescence times are approximately equal
to the sample coalescence time, and the bias of the pairwise difference estimator will be
relatively small. With intermediate values, the dependence of the bias on the growth rate
must be computed. An additional problem is that except in the idealized case in which all
pairwise coalescence times equal the sample coalescence time, the calculation of confidence
intervals of a pairwise difference estimate may be misleading. The variance of the estimator
depends on generally unknown demographic parameters such as growth rates. Thus, because
the bias and variance of the mean number of pairwise differences are difficult to determine
unless a highly-idealized demography is assumed, the pairwise difference method does not
offer a general escape from assuming a demographic model in order to estimate coalescence
times.

At present, methods that compute posterior distributions of Thsrc 4 using a set of individ-
ual genotypes and a particular model offer the most rigorous approaches to the inference of
Trirca. Because these approaches generally infer Thyre 4 as a result of a more complex anal-
ysis, they also offer the additional benefit of producing estimates of demographic parameters,
such as growth rates, migration rates, and population sizes, which are generally more use-
ful than Ty rca for interpreting population histories. Additional work on efficient inference
of coalescence times has focused on generalizing the genetic and demographic models that
provide a framework for inference of population parameters. As these models expand to fur-
ther incorporate phenomena such as ascertainment bias, asymmetric migration, inbreeding,
mutational biases, population divergences, recombination, samples that derive from different
points in time (by including both recent and ancient DNA), and selection, and as computa-

tional schemes become more efficent, the estimation of Thsrc 4 using real data sets will be
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much improved.

9.4 Relationship between coalescence times and divergence times

As we have described in Section 9.3, separate explorations of the properties of divergence
times and coalescence times have usually been made. For the remainder of this article, we
turn to the less well-studied relationship between divergence times and coalescence times.
We consider a model in which two populations derive from an ancestral population and in
which constant migration takes place between descendant populations after the divergence.
The size of the ancestral population is the sum of the sizes of the descendant populations.
The model is the same one that has been considered in a number of recent studies (e.g.
Wakeley, 1996b). In special cases of the migration model considered here, the distribution
of the random variable Thysrca — T'p has been previously studied, as discussed below.

This particular model is of interest because complete isolation between descendant pop-
ulations is characteristic mainly of species-level divergences. After divergence, however,
migration between descendant groups is a frequent occurrence for populations of the same
species. Migration models may also be more appropriate in studies of bacteria for which
occasional horizontal transfer of genes takes place between species after divergence events.
Our approach is similar to other studies of Tarrea (e.g. Harding, 1996; Marjoram and Don-
nelly, 1997), in which certain genetic models are chosen, and the distribution of Tarrca (in

our case, Tayypea — Tp) is obtained numerically under the models.

9.4.1 A diverging population model

In principle, the relationship between divergence times and coalescence times can be studied
with any model of population history that includes population divergences and in which the
coalescence times of samples can be simulated. The simplest of such histories allows a single
population to split at a specific point in time into two populations. We consider two haploid
populations that have constant sizes N7 and N in the present. In population ¢ (v = 1,2), the
number of offspring produced by an arbitrary individual has variance o?. Migration occurs
between the two populations at a constant rate, so that in each generation, a fraction mj;
of the individuals in population ¢ are migrants from population j. At the divergence time,
Tp generations in the past, the two populations arose instantaneously from an ancestral
population of size Ny 4+ N,, in which the variance of the offspring distribution was o7 ,.
We refer to the “two-population” and “one-population” phases of the model to describe the

periods that contain descendant and ancestral populations, respectively. We also use the
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terms “descendant phase” and “ancestral phase.”

For convenience, we make several assumptions that simplify the presentation. First, we
assume that the variance of the offspring distribution is 1 in both the ancestral population
and the two descendant populations. If these three variances were not all equal to 1, then all
results that follow could be corrected by replacing population sizes with ratios of population
sizes to the corresponding offspring distribution variances (e.g. Nordborg, 2001a).

We also assume that the duration of a generation is the same in both the ancestral and the
two descendant populations, equal to GG years. If this assumption were violated, as might be
true when considering species divergences or human populations with different reproductive
behavior, then the two descendant populations would have experienced different numbers of
generations between the divergence event and the present day. Under these circumstances,
it would be appropriate to measure time in absolute units such as years, rather than in
generations.

Lastly, we assume Ny = Ny = N. Because the amount of coalescence of lineages that
takes place scales with the population size, if the two populations were of vastly different
sizes, the numerical values of the results would be quite different from those presented here.
In general, the behavior of the larger population would dominate, so that coalescence times
would be determined by the size of the larger population. However, a smaller difference
between population sizes would not seriously affect the qualitative nature of the results.
Thus, we ignore this complication of unequal population size.

We wish to study the random variable Th;rca — Tp, the difference between the random
time to the most recent common ancestor of the sample and the fixed divergence time. In
the case of two constant populations with no migration, we can compute the distribution
of this random variable exactly. For more complex demographies, we can often obtain
asymptotic results regarding Tyrrca — Tp. In any case, backwards simulations of genealogies
of samples taken from diverged populations are straightforward to execute (e.g. Takahata,
1989; Takahata and Slatkin, 1990); as described in the next section, we have taken advantage
of this fact.

9.4.2 The two-population divergence model: simulations

To explore the relationship between divergence times and coalescence times in our model,
we performed simulations in two steps. First, for the descendant phase, we simulated the
coalescence times of ny sampled lineages from population 1 and n, sampled lineages from

population 2 using a two-population model with constant population size and constant mi-
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gration. Because a large amount of migration increases the simulation time dramatically
(e.g. Nordborg, 2001a), we did not use very large migration rates. All simulations assumed
constant population size.

We implemented this step using methods similar to those of Hudson (1990). Looking
backwards in time, one of four types of events can occur: (a) a coalescence of two lineages
in population 1; (b) a coalescence of two lineages in population 2; (¢) the migration of a
lineage in population 1 from population 2; (d) the migration of a lineage in population 2
from population 1. The distribution of the waiting time W; to the occurence of an event of

type (a) can be simulated according to

—2N;
W= gy ) (9.1)

where U is a uniform(0,1) random variable and n} is the current number of lineages in
population 1. The waiting time until an event of type (b) is analogous.

The distribution of the waiting time W until an event of type (c¢) is simulated according
to

W, = In(U) (9.2)

*
n1m21

where U is a uniform(0,1) random variable, n} is the current number of lineages in population
1, and my; is the fraction of population 1 that derives from population 2 in every generation
(Hudson, 1990). The waiting time until an event of type (d) is analogous.

To determine which event took place, we simulated values of W,, W, W,., and W;. The
event corresponding to the smallest waiting time was then allowed to occur. After updating
the values of the total elapsed time and the numbers of lineages in the two populations (n}
and n3) we simulated new values for the four waiting times and we allowed the event of
smallest waiting time to occur. This process was repeated until either all lineages coalesced
or until the pre-specified divergence time Tp was reached, whichever happened first. This
implementation is similar to the standard simulation strategy (Hudson, 1990), in which the
total rate of events of all types is computed, a random number is chosen to determine the time
of an event, and a second random number is chosen to determine the type of the event. It
is straightforward to show that our procedure and the usual one are equivalent, though ours
requires more random numbers to be simulated. With our method, the distribution of the
waiting time to the most recent event is the minimum of four exponential random variables
specifying the waiting times to the four types of events: this waiting time is exponentially
distributed with rate equal to the sum of the rates of occurrence of the four types of events (as

in the standard method). Additionally, the distribution of the type of the event determined
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by the minimum of four exponential random variables is given as in the standard simulation
method: the probability that the event is, say, of type (a), equals the ratio of the rate of
occurence events of type (a) and the total rate of occurrence of all events.

In the second step, which we performed only if all lineages had not coalesced during
the first step, we counted the number of ancestral lineages ny,, that were present at the
divergence time Tp. Treating all lineages as part of a single panmictic population, we
then simulated coalescence times in the ancestral phase similarly to above (all events were

coalescences), until all lineages coalesced to a single lineage.

9.4.3 Constant population size with no migration

We return to the case of no migration, for which a combination of analytical results and
simulations are used to understand the properties of Tyrrca — Tp. For this case, the theory
derives largely from Takahata and Nei (1985), who considered very similar problems. The
main theoretical result is that the distribution of Thyrca — Tp can be represented as

ny n2

Tvroa —Tp =Y Pr(ry = i|Ny, Tp) Pr(ry = j|Ny, Tp) Tiy (N1 4 Ny), (9.3)

i=1j=1
where r; and ry represent the number of ancestral lineages in populations 1 and 2 at the time
of divergence. The conditional probability Pr(r = j|N,T) that a sample of size n taken from
a population of size N has j distinct ancestors at time 7' generations has been calculated
by Tavaré (1984, equations 6.1 and 6.2); in Tavaré’s (1984) notation, Pr(r = j|N,T') would
be represented as g,;(T/N). The expression T;y;(N; + N3) is the coalescence time for a
sample of size 1 + 7 from a population of size N; + N,, and properties of its distribution are

well-known (e.g. Hudson, 1990; Tavaré et al., 1997):

TH(N) = S Wi(N) (9.4)

2N
-1

Because the time it takes for coalescence to occur within a population is proportional

where W;(N) is exponentially distributed with mean

to population size (see equation 9.1), scaling population sizes and divergence times by the
same constant will leave the random variable Ty rc4 — T'p unchanged relative to population
size. If Ny and N, are say, doubled, and if T is correspondingly doubled, then the same
amount of coalescence takes place in the two-population phase as with the original values of
N7 and N,, although this phase lasts twice as long due to the doubling of Tp. Because the

population size in the ancestral phase is twice as large, the length of the ancestral phase is

15



also doubled. Thus, with two populations of equal size N and equal samples of size n, the
parameter T /N and the value of n determine the time to coalescence.

The distribution of Thyrrca — Tp is somewhat unwieldy, and we have explored its prop-
erties using the simulations previously described. A discussion of special cases, as well as
calculations of the mean and certain quantiles, suffice to describe the main properties of the
distribution. Because the distribution of Thrca — T is influenced by the sample size n and
the scaled divergence time Th /N, the special cases to consider are (1) very small values of

Tp/N; (2) very large values of Tp/N; (3) samples of size 1 in each population.

Small values of T /N: When Tp is small compared to the total population size Ny + N,
our model approximates a one-population model with population size N; + N, and sample
size ny + ng. At the time of divergence, most lineages have not coalesced, so that most
coalescences take place in the ancestral phase (Figure 9.4A). Consider Tp approaching 0 for
fixed sample sizes. Then Tyvrea — Tp = Thirca, and we can obtain (Tavaré et al., 1997,

equations 2 and 3):

E|T —Tpl=2(1— N N. 9.5

[Trrca D] < o —I-n2>( 1+ Ng), (9.5)
N n1+mn2 1 1 2 )

Var[Tymoa — Tp) ~ |8 ; FIRE (1 - — m) (N) + Ny)?. (9.6)

If we then consider the large-sample limit after letting Tp become small, E[Tyrca — Th] is
near 2( Ny +Ny) and Var[Tyrea—Tp] is near 1.16( Ny + N, )?. Note that in the one-population
model that is approximated for small values of Tp/N, sample size has only a small effect
on K[Tyrca] and an even smaller effect on Var[Tapea]. As sample size increases to 10
per population, the expected coalescence time is 95% of the large-sample limiting expected
coalescence time. With samples of size 50 per population, the corresponding fraction is 99%.
In our simulations we use samples of size 50 per population. This sample size is similar
to reasonable values for applications, and the simulated values of Tasrca — Tp are then

extremely close to the large-sample limit.

Large values of Th/N: For values of T that are very large compared to Ny + N, all
lineages in each population usually coalesce to a single lineage during the two-population
phase. Thus, at the time of divergence, each population will almost always be represented
by only a single lineage (Figure 9.4B). Thus, Tavirea — Tp & Ty, where T is the time to the
coalescence of two lineages in a single population of size Ny + N,. Because T) has expectation

Ni+ Ny, the difference between Th;rca and Tp will be very small compared to the divergence
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time.

Samples of size 1: If samples have size 1 in both populations, then at the time of divergence
each sample necessarily has a single ancestral lineage. Thus, the time to coalescence is Tp plus
the exponentially distributed time to the coalescence of two sequences, and the distribution
of Tyvirca — Tp is independent of the value of Tp/N. The mean value of Threa — Tp is
therefore Ny + N, and the variance is (N; + N3)?. This case has often been studied from
a different point of view: because the expected number of pairwise site differences between
two DNA sequences sampled one from each of two populations is proportional to Thsrc 4 for
the sequences, results about coalescence times of two sequences are often hidden in results

on mean numbers of pairwise sequence differences.

General case: For intermediate values of Th/N, more than one lineage may be represented
in each population at the time of divergence. Because the mean coalescence time of a
sample increases (slowly) with the number of ancestral lineages at the time of divergence,
and because this number of ancestral lineages decreases with time, the value of Tasrca — T
decreases with increasing Tp/N (Figure 9.5). The initial and final values of this monotonic
are 4N and 2N respectively, consistent with our discussion of the special cases of small and
large values of Tp/N (recall that Ny = Ny = N in the simulations).

Similarly, because the variability of the coalescence time increases (also slowly) with the
number of lineages, the range of the inner 95% of the distribution of Thrrca — Tp decreases
slowly as Tp/N increases. This range eventually reaches the asymptotic interval given by
the quantiles of the exponential distribution with mean 2N. These asymptotic values are
(—2N1n0.975, —2N In 0.025), or (0.051 N, 7.38N). Had we used samples of size 1 for the plots
instead of 50, the 2.5th percentile, mean, and 97.5th percentile would have been 0.051/V,
2N, and 7.38N, respectively, for all values of the scaled divergence time Tp/N.

Note that because we performed only 10,000 simulations at each value of T /N, the
upper 97.5th percentile did not actually decline monotonically. Although the theory predicts
a monotonic decline, this choppiness showcases the fact that the Thyrca — Tp distribution
has a long right-hand tail. The difference between the 97.5th percentile and the mean is
considerably higher than the corresponding difference of the 2.5th percentile and the mean.

When the ratio of Thysrea—Tp to divergence time T'p is considered, the excess Thyirea—1Tp
dwarfs the divergence time for small values of T /N, eventually declining to a negligible frac-
tion of Tp (Figure 9.6 and see also Figure 2 of Edwards and Beerli, 2000). This observation

has important consequences for the interpretation of inferred Thsrc4 values. Consider diver-
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gence times typical of ancient species divergences. For ancient divergences, the divergence
time likely exceeds the effective population size by a large amount. Under these conditions,
the relative value of Thirca — Th to Tp is very small, and numerical values of the coalescence
time can be used as good surrogates for the divergence time. On the other hand, for very
recent divergences, Thyrrca — Tp is quite large, and coalescence happens much longer ago
in the past than population divergence. In this case, divergence times are very different
from coalescence times. Thus, for any inference about population history from coalescence
times, it is essential to know whether the data fall into the regime of large, intermediate, or
small divergence time compared to population size. We will return to this point further using

examples in Section 9.5.

9.4.4 Constant population size with migration

The behavior of Thysrca—Tp 1s more complex when migration takes place after the population
divergence, because it is possible for Tyrca — Tp to be negative, as we will see. The
distribution of Thrca — Tp is difficult to determine in models with migration; however, a
slight adaptation of the calculations of Wakeley (1996b) gives the distribution for the case
in which samples have size 1 in both populations. Wakeley (1996b) describes a three-state
Markov chain for this situation, in which the three states describe the positions of the two
lineages ancestral to the sampled lineages. At any given time in the past, the two ancestral
lineages can be in the same population, in opposite populations, or they can have coalesced
at a common ancestor. The probabililty that coalescence has occurred more recently than a
given point in time, that is, the probability that the Markov chain has been absorbed more
recently than that time point, can be computed by inserting the quantities in the appendix
of Wakeley (1996b) into his equation 3 and simplifying considerably. If —Tp < ¢ < 0 is
measured in generations and v = Nm, then

1+4’y

Pr(Typea—Tp <t) = 1-— 10 —— [\/1—|—16fy COSh< \/1—|—1672)—|—
Tp +1
(1 + 4v)sinh < ; 1+ 1672)] ) (9.7)

When ¢ = 0, equation 9.7 gives the probability that coalescence occurs in the two-population

phase. For ¢t > 0, the time to coalescence is simply the familiar time to coalescence of two
lineages in the one-population phase. If coalescence occurs in the one-population phase,
recall that the time to coalescence during this phase is exponentially distributed with mean

2N. Therefore, for t > 0, we obtain:

Pr(Typea —Tp <t) = Pr(Tvrea —Tp <0) +
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[1 — PT(TMROA — TD § 0)][1 — e_t/(ZN)]. (98)

It is clear that in the case of ¥ = 0, equations 9.7 and 9.8 reduce to the familiar exponential
distribution of waiting time to coalescence characteristic of the model with no migration.
A generalization of Wakeley’s (1996b) solution to include larger sample sizes appears
to involve rather tedious calculations (because the number of states in the Markov chain
grows with the square of the number of sampled lineages), so we rely exclusively on special
cases and a series of simulations to explore the properties of Thyrca — Tp. For this more
general model including migration, the parameters that influence Tyyrca — Tp are the scaled
divergence time (Tp/N), the total amount of migration in each direction per generation
(Nm, where m is the fraction of each population that migrates to the other population in
each generation: mjs = mgy; = m), and the sample size in each population (n). Using these

three independent variables, we again consider special cases.

Small values of Tp/N: When T = 0, the model simplifies to the classical one-population
model with constant size, discussed in Section 9.4.3 and by many authors (e.g. Tajima, 1983;
Hudson, 1990; Tavaré et al., 1997; Nordborg, 2001a). The expected value of Thrca — T is
then 2(1 — nlinz) J(Ny + N3), as in equation 9.5. For small but nonzero values of Tp/N, this
result holds approximately.

Large values of Tp/N for a fixed nonzero value of Nm: If we hold Nm constant
and nonzero and we let T /N increase without bound, the model approaches the classical
island migration model (e.g. Nath and Griffiths, 1993; Wakeley, 1998). In this limit, two
populations have been separated for all time but they exchange migrants in each generation
(Figure 9.7A). The behavior of Tarrca — T is very different in this case from the behavior
in the case with no migration. Because Tp/N is extremely large, it is almost certain that
coalescence happens in the two-population phase. Thus, the fact that the two populations
derive from an ancestral population is irrelevant to the coalescence of sampled lineages.
Although it is difficult to compute the distribution of Tasrca (and hence Tarrea — Th)
in the island model for a general sample size, the computation of E[Tyrca — Tp] is feasible
for small samples (e.g. Notohara, 1990; Nath and Griffiths, 1993; Wakeley, 1998). For
two lineages sampled from the same population, the result is independent of the (nonzero)
migration rate: FK(Tayrca) = 2N. If one lineage is sampled from each population, then
E(Tyvrea) = (2 4 ﬁ)N Note that a discontinuity occurs at Nm = 0, where the mean
waiting time to coalescence is N for two lineages in the same population and oo for two

lineages in opposite populations (e.g. Nath and Griffiths, 1993).
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Small values of Nm for a fixed value of Tp/N: Of course, when Nm = 0 this reduces
to the no-migration model of divergence previously discussed in Section 9.4.3. For nonzero
but small Nm, the no-migration model is essentially accurate unless Tp/N is exceedingly

large (then the previous case applies).

Large values of Nm for a fixed value of TH/N: As is true in the case of extremely
large Tp/N for fixed nonzero Nm, for large amounts of total migration (Nm), coalescence
generally occurs in the two-population phase, after the divergence (Figure 9.7B). The classical

island model applies, except if Tp/N is very small (see the case of small Tp/N).

General case - mean value of Tyrca — Tn: The mean value of Thrpca — T'p decreases
monotonically as migration rate increases and as Tp/N increases (Figure 9.8; see also Figure
2 of Wakeley [1996b]). This contrasts with the model with no migration, in which this
expectation approaches the constant 2/V.

The reasons for this behavior are clear. First, with samples of size 1 and a migration rate
of 0, E[Tvirca—Tp] = 2N (the analogous result is 4NV for large samples), as in Section 9.4.3.
As migration increases for a fixed divergence time, more and more coalescences take place in
the two-population phase, so that Thyrca < Tp in more and more cases. Asymptotically, in
the extreme case of complete panmixia, K[Tyrea — Tp] = 2N — Tp (analogously, 4N — Tp
for large samples).

Now as Tp increases, there is more time for all lineages to migrate into the same pop-
ulation and for coalescence to take place during the two-population phase. Eventually, for
large values of T, the results from the classical island model are applicable because coales-
cence always takes place in the two-population phase. Thus, we have (for samples of size 1)
ElTvrca — Tpl = (24 ﬁ)N — Tp at large values of the divergence time. For sufficiently
large migration rates, the mean is the same order of magnitude as the divergence time itself,
but negative, so that the coalescence time is a horrible estimator of Th. Of course, with
a very large amount of migration, the descendant populations cannot really be considered
“diverged” and it may not make sense to discuss divergence times at all.

Thus, with two exceptions, traveling along any trajectory of increasing Nm or Tp/N,
the distribution of Thrca — Tp shifts downward. The exceptions are the case of Nm = 0,
for which E[Tyrea — Tp] asymptotically equals 2N with increasing Tp/N (it always equals
2N if sample sizes are 1), and the line Tp/N = 0, along which the mean is 4N(1 — 5-)
independent of the value of Nm.

The downward shift in the mean of Tyyrca — Tp reflects the increasing probability that
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coalescence takes place more recently than divergence (Figure 9.9). With the same exceptions
of the Nm = 0 and Tp/N = 0 curves, Pr(Tyrca — Tp < 0) increases on any trajectory
of increasing Nm or Tp. For the six trajectories of increasing Tp with Nm > 0 (Figure
9.9), all graphs eventually reach a probability of 1. We note that this probability can help
determine if the asymptotic results from the classical island model are appropriate. If Nm
and Tp/N are sufficiently large that all coalescences happen in the two-population phase
(so that Pr(Tyrca — Tp < 0) is near one), then it is irrelevant that the populations had
an ancestral population. The expected time to coalescence for a sample of size 1 from each
population is then (24 7=)N.

We note that the effect of sample size on the mean Thrca — Tp 1s largely unimportant,
but not negligible. Looking backwards in time, small samples require only a single migration
event followed by a coalescence in order to reach the common ancestor. However, loosely
speaking, large samples need an initial period for all the lineages to coalesce separately in
each population (possibly including some migrations), and an eventual migration followed
by coalescence of the last two lineages. Thus, the initial mean Thyyrca — Tp is higher for
the large sample (consider corresponding curves in Figures 9.8A and 9.8B) and the initial

Pr(Tvrea < Tp) is smaller (Figures 9.9A and 9.9B).

General case - shape of the Ty/grc4 — T distribution: So far we have found one major
difference from the model with no migration: instead of reaching a constant value of 2N (for
samples of size 1) as the scaled divergence time increases, the mean value of Thrca — T
declines to be comparable with —Tp. We now turn to a second major difference in the shape
of the distribution of Tayirca — Th.

Suppose Tp/N is fairly large (to some extent, the effect we are about to describe still
happens for smaller Tp/N). We have already considered the cases of a small amount of
migration and a large amount of migration. In the case of little migration, the ancestral lin-
eages almost always coalesce in the one-population phase, with most coalescences happening
very quickly as soon as the ancestral phase is entered. In the case of a lot of migration,
coalescences happen quickly in the two-population phase. Thus, there must be an interme-
diate amount of migration for which sizeable fractions of the coalescences happen in each of
the two phases. In this situation, the distribution of coalescence times is bimodal, with the
smaller mode being the modal time of the two-population phase coalescences, and the larger
mode equaling the modal time for one-population phase coalescences.

In fact, this qualitative shift in the distribution of Thyrca — Tp was observed in our sim-

ulations (Figure 9.10). For Figures 9.10A-C, which used samples of size 1, the fractions of
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coalescences that happened in the two-population phase were 2%, 77%, and 99%, respec-
tively; for Figures 9.10D-F, which used samples of size 50, the corresponding values were
1%, 68%, and 98%. Figures 9.10B and 9.10E showcase the bimodalilty of the distribution:
some coalescences take place in each phase; if coalescence is not complete by the end of
the two-population phase, it usually happens quickly as soon as the one-population phase
begins.

Interestingly, for larger samples, the effect is not as pronounced: all other parameters
being equal, the difference between the two modes of the bimodal Ty rc s — Tp distribution
is smaller with a large sample. This is again due to the fact that while coalescence can
happen in a small sample very quickly, it takes more time for coalescence to occur in a large
sample. Thus, the descendant phase mode in the larger sample is closer to the divergence
time. The cases of small migration (Nm = 0.001) are essentially identical for small and large
samples, because the large sample has coalesced to a small number of lineages by the time of
divergence. The cases of intermediate migration (Nm = 0.1) and large migration (Nm = 10)
are affected by sample size due to the sizeable waiting time to coalescence required by the
large sample but not by the small sample.

Because corresponding bimodal distributions of Tysrc 4 —Tp are more spread out for small
samples than for large samples, it makes sense that the variance of Thyrca — Tp achieves
higher values for a sample of size 1 than for a sample of size 50 (Figure 9.11 and see also
Figure 2 of Wakeley [1996b]). This contrasts with the model with no migration, in which the
variance of Tyrrca — Tp increases (slowly) with sample size (recall equation 9.6). However,
because the distribution of Thrca — T'p does have the unusual bimodality for some values
of Nm, we suggest that the variance of the distribution is perhaps not the most appropriate
summary statistic for this random variable.

To summarize, the new phenomena introduced by permitting migration after the di-
vergence include: (1) coalescence happens later than divergence some of the time, and for
sufficiently large migration rates and divergence times, coalescence nearly always happens
after divergence; (2) for extreme values of the migration rate and scaled divergence time,
the distribution of Tysrca — Tp is the same as in the classical island model, the divergence
model with no migration of Section 9.4.3, or the classical one-population model; (3) for
certain intermediate values of the migration rate, the distribution of Tysrca — Tp exhibits
an emergent bimodality due to a combination of behaviors from the classical island model
and the two-population divergence model with no migration; (4) this bimodality is more
pronounced with smaller samples. With these added phenomena, relating empirically ob-

tained coalescence times to divergence times involves an additional level of complexity when
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migration is allowed.

9.5 Studies of human populations

Of course, a main goal of this work is to understand the relationship between Th;rc4 and
Tp not only in abstract population genetic models, but also in real populations. Thus, if we
select a demographic model and a specific population divergence, and if we have some limited
knowledge about the parameters of the model, then we should be able to approximate the
degree to which Ty rca differs from Tp. We should also be able to decide if this excess is too
great for Thyrca of a gene to be a useful quantity in describing particular past demographic
events.

We now consider some examples from human populations. Because coalescence times for
many human genes have been studied, and because many divergences have been reasonably
well-characterized, these examples provide the best demonstration of the utility of a joint
consideration of Tyrca and Tp. In each case, the model considered is clearly a crude
oversimplification of the actual population histories, especially because genetic substructure
within each member of a population pair would certainly affect Thyrca — Tp. However,
because we are mainly interested in a qualitative understanding of Thyrca — Tp rather than

careful statistical inference, this crude model is still appropriate.

9.5.1 The divergence of humans and chimpanzees

There is considerable uncertainty about the specific time of the human-chimpanzee diver-
gence, the ancestral population size, and the appropriate population models that describe
both species since the time of divergence (e.g. Ruvolo, 1997; Satta et al., 2000; Chen and Li,
2001). Because the event was a speciation, a divergence model with no migration accurately
represents the human-chimpanzee split. Here we make the simplifying assumption that both
species have been constant in size since the separation. Suppose that the divergence took
place about 4 to 7 million years ago, and that an effective population size of 5,000 to 100,000
in each species describes most human and chimpanzee genes. Assuming a generation time
of 15 to 25 years, we obtain a value between 1.6 and 93.3 for Tp/N. Using Figures 9.5 and
9.6 and these values, we expect 95% of values of Ty rca — Tp to be between about 0.05NV
and 8N. Plugging in the lower bounds for the population size and generation times, we get
a range of 3,750 to 20,000,000 years for the value of Thyyrca — Tp. Using values of 20,000 for
the population size, 20 for the generation time, and 2N for the mean of Tyrcsa — Th, we

should expect the mode of the distribution to be around 800,000 years: for comparisons of
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humans and chimpanzees, most coalescence dates should be near 800,000 years earlier than
the time of divergence.

Thus, most genes should coalesce to a common ancestor not long before the human-
chimpanzee split. However, it should not be surprising that some small number of genes
will have ancient coalescence times well before the separation. A substantial fraction of
genes, about 40%, have such deep coalescences that either chimpanzee or human sequences
coalesce with gorilla sequences more recently than the coalescences of human and chimpanzee
sequences coalesce together (e.g. Satta et al., 2000; Chen and Li, 2001). Although orangutan
sequences are generally treated as outgroups in genetic comparisons of humans, chimpanzees,
and gorillas, for 7 of 53 genomic segments, at least one of three pairwise distances involving
orangutans was smaller than the three distances not involving orangutans (Table 1 of Chen
and Li [2001]). Because the separation of the orangutan lineage likely occurred only 5 to
12 million years before the human-chimpanzee split (using the estimate of 12-16 million
years for the divergence time of orangutans and the human-chimpanzee-gorilla clade, as was
done by Chen and Li [2001]), and because these values are well within our rough range for
Trvirca — Tp, it seems likely that many genes will eventually be discovered for which human
and orangutan sequences or chimpanzee and orangutan sequences coalesce more recently

than do human and chimpanzee sequences.

9.5.2 The divergence of modern humans and Neanderthals

For this example, we also employ a divergence model with no migration after the divergence
of modern human and Neanderthal populations. This model is certainly debatable, and
others might easily be considered (Wall, 2000; Nordborg, 2001b). We postulate a divergence
time of 250,000 to 1,000,000 years, equal effective population sizes for modern humans and
Neanderthals of 5,000 to 20,000, and a generation time of 20 to 25 years. Note that this
approach treats Neanderthals as still in existence; this assumption is acceptable because
the time since their extinction (assume for now that modern humans have no Neanderthal
ancestry) is small compared to the divergence time of Neanderthals and modern humans.
With these values, we then obtain for Tp /N a value of 0.5 to 10. Figure 9.5 suggests a value
of Trvirca — T between 0.05N and about 9N, corresponding to a range of 5,000 to 4,500,000
for the value of Thyrrca — Tp. A guess for the center of the range might be about 2.5N for
Trvirca — Tp, a generation time of 20 years, and an effective population size of 10,000. These
values suggest that coalescence times of autosomal loci should be about 500,000 years more

than the divergence time for humans and Neanderthals.
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Unlike the case of the human-chimpanzee split, for which most values of Tyrrca — Th
should be fairly small compared to the divergence time of about 4 to 7 million years, the
calculations suggest that most values of Neanderthal-modern human Ty rc4 — Tp should be
comparable to the divergence time of Neanderthals and modern humans. Although great
effort has been expended to obtain coalescence times for modern human and Neanderthal
mitochondrial DNA, this coalescence time alone, estimated at 465,000 years (Krings et al.,
1999), will be unable to resolve controversies regarding the time of the divergence between
modern humans and Neanderthals. Although the mitochondrial genome has a smaller pop-
ulation size than do autosomal loci and therefore its coalescence time should be closer to
population divergence times than those of autosomal loci by a factor of four, the 465,000
figure is consistent with a recent divergence of 250,000 years ago. It could potentially be
consistent with an ancient divergence at 1,000,000 years ago if ancient admixture occurred
between humans and Neanderthals. For example, consider the results of the migration model
in Figure 9.8, and take the lower estimate of 5,000 for N. Then with a divergence time of
1,000,000 years and a generation time of 20, Tp/N equals 10. If 465,000 years is taken
as the expected value of Thrrca, then the scaled value of E[Typrea — Tp| is -5.35. With
Nm = 1, the expected value of Tayrea — Tp at Tp/N = 10 is about -5.5 (Figure 9.8B; a
smaller migration rate between Nm = 0.1 and Nm = 1 would give an analogous result for
the plot with samples of size 1 in Figure 9.8A). Thus, with the limited genetic data currently
available, it is not yet possible to rule out a situation of ancient divergence followed by some

admixture between Neanderthals and modern humans.

9.5.3 The divergence of African and non-African populations

Regardless of the degree to which ancient human populations interbred and the timing of
modern human origins, the fact that ancient hominid fossils derive from Africa make it likely
that the most ancient divergence among the ancestors of modern humans took place between
ancestors of some African populations and ancestors of all other populations (for more details,
see Cavalli-Sforza et al., 1994; Takahata, 1995; Jorde et al., 1998; Mountain, 1998). First
we consider a model of constant-sized populations without migration. Supposing a time of
divergence of 50,000 to 100,000 years ago between African and non-African populations, an
effective population size for each of 5,000 to 20,000, and a generation time of 20 to 25 years.
We obtain T /N between .1 and 1. Then Thsrca — Tp should be between about N and 9.5N,
centered near 3N (Figure 9.5). We then might guess that Thyrca — Tp would be between
100,000 and 4,750,000 years, with a mode near 600,000 years (using 10,000 and 20 for the
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central effective population size and generation time, respectively). Thus, we should expect
coalescence dates to be hundreds of thousands of years before the divergence of African
and non-African populations. For the Y chromosome and the mitochondrial genome, which
each have only a quarter the population size of an average autosomal gene, the value of
Trvirca — Tp should be about a quarter as large as for autosomal genes.

In fact, these predictions are somewhat consistent with observations. First, many esti-
mated Tarrca values are close to 650,000-700,000 years (Takahata et al., 2001), the approx-
imate predicted average value of Tyrc 4, while the coalescence times for the Y-chromosome
and the mitochondrial genome are much smaller (Tang et al., 2001). The model suggests that
for nearly all loci, all humans will have coalesced more recently than the human-chimpanzee
divergence. Thus, it is no surprise that in studies of many genes, human sequences are always
more closely related to each other than any human sequence is to a chimpanzee sequence.
However, the high end of the predicted human coalescence time distribution is very close
to the range of possible human-chimpanzee divergence times. Thus, when comprehensive
analyses of human and chimpanzee genomes have been completed, regions may be found for
which some humans coalesce with some chimpanzees more recently than all humans coalesce
together.

If we consider the model with migration, the results are similar. A recent study that
inferred migration rates between African and non-African populations using an island model
obtained Nm values between 1 and 7 for the Y chromosome and the mitochondrial genome
(Tang et al., 2001). This study used the polymorphism in approximately 5 kilobases of Y
chromosome sequence in about 100 geographically diverse males and about 1.5 kilobases of
mitochondrial DNA sequence in about 180 geographically diverse individuals, together with
the Monte Carlo likelihood procedure of Beerli and Felsenstein (1999), in order to estimate
migration rates. With the same range for Tp/N of 0.1 to 1, however, the divergence time
is too small for this level migration to seriously affect the value of Thyrrca — Tp when a
large sample is used (Figure 9.8B). With these values of T /N, it is highly unlikely that

coalescence is more recent than divergence (Figure 9.9B).

9.5.4 The divergence of Native Americans and Asian populations

Though the timing and number of distinct migration events are uncertain, most theories
about the arrival of Asian ancestors in the America place the first crossing of people into the
New World between 12,000 and 40,000 years ago (e.g. Ward et al., 1991; Horai et al., 1993;
Cavalli-Sforza et al., 1994; Crawford, 1998; Ward, 1999). If we suppose an American-Asian
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divergence time of 12,000 to 40,000 years, an effective population size of 1,000 to 10,000 for
Asians and Americans, and a generation time of 20 to 25 years, we obtain Tp/N between
0.05 and 2 and Tyrca — Tp between 0.05N and 9.5N, with mode near 3N. This suggests
a range for Thyyrca — Tp between 2000 and 2,375,000 years with mode near 120,000 years.
As in the previous case, migration has no major effect on Thyrca — Tp for scaled divergence
times less than 2 (Figure 9.8A), so the predicted coalescence times under the model without
migration are likely to be reasonable.

As in the other examples, there is no reason to expect coalescence times to be remotely
close to the divergence time. For example, ancient estimated coalescence times for Native
Americans need not imply an older divergence time than the classical estimates of around
15,000 years ago, though they are certainly consistent with older divergences. Calculations
of coalescence times at many loci will be needed in order to determine the divergence of
Americans and Asians. Because the number of migratory events that contributed to the
Native American population is not known, a model that includes a variable number of

migration pulses may be more appropriate than the constant migration model used here.

9.6 Extensions to three or more populations: gene trees and species

trees

We note that the relationship of divergence times and coalescence times has also arisen in
the context of comparing gene trees and species trees. It has long been known that genealog-
ical history of a particular unduplicated gene in diploid species need not match the history
of species divergences (e.g. Pamilo and Nei, 1988; Takahata, 1989; Maddison, 1997; Nord-
borg, 2001a). When considering three or more populations, this discordance arises because
ancestral lineages from the two most recently diverged populations coalesce so far back in
time that they have the opportunity to coalesce with lineages from additional populations
(as described by Takahata and Satta in Chapter 5, the phenomenon of discordance due to
“deep coalescence” can be harnessed to provide estimates of ancestral population sizes). Al-
ternatively, migration between two highly diverged populations may cause the coalescence
of their lineages to be more recent than coalescences of less diverged populations that have
not exchanged migrants.

Thus, the addition of more populations into the divergence framework will further com-
plicate the relationships between Thsrca and each of the pairwise values of Th. However,
simulations similar to ours could be performed with three or more populations, using any

of a variety of population models. Divergence times could be held constant as independent
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variables, and we could explore the effect of divergence times, population sizes, and other
parameters such as migration rates and population growth rates on both Thyrca —Tp and on
the probability that the gene tree is concordant with the species tree. For a three-population
model with constant-size populations and no migration among descendant populations, this
problem has been studied in detail (e.g. Pamilo and Nei, 1988; Takahata, 1989). Takahata
(1995) also considered the value of Thrca using an ancestral population that experienced a
single multifurcation event, after which migration occurred among descendant populations.

It would be interesting to consider the effect of migration on Thrcs — Tp and on the
gene tree/population tree concordance probability in a three-population model. As with
the two-population model, migration will decrease Tarrca — Tp. Depending on relative
migration rates between pairs of populations, the concordance probability will be increased
or decreased. For example, if migration has occurred only between the two most recently
diverged populations, the gene tree is more likely to be concordant to the population tree
than in a model without migration. However, if migration has occurred only between two
anciently diverged populations and not between recently diverged populations, the gene tree
and population tree are less likely to be concordant than in the case of no migration. A
simulation framework such as that used in Section 9.4, or the analytical methods of Wakeley

(1996b), could potentially explore this issue in greater detail.

9.7 Conclusions

In the four examples in Section 9.5, we observed several different qualitative regimes. For
the human-chimpanzee divergence, Tysrc a4 — T'p 1s small compared to T'p, so that coalescence
takes place just a little earlier than divergence. For the modern human-Neanderthal diver-
gence Tarrca — Tp and Tp are expected to be comparable in magnitude. For the separation
of African and non-African groups and for the American-Asian divergence, Thyrrca — Tp is
expected to be much larger in general than Tp. If one is interested in studying any of these
four example problems in greater detail, one might choose a more sophisticated model that
includes changes in population size (e.g. Marjoram and Donnelly, 1997) or different kinds of
migration and mixture after divergence (e.g. Nordborg, 2001b).

In any case, for sufficiently large divergence times compared to population sizes, if migra-
tion between populations is sufficiently small, coalescence times are useful approximations
for divergence times. Otherwise, they are not highly informative. We suggest (based on
Figures 9.5 and 9.6) that for values of Tp/N larger than 5, coalescence times and divergence

times will generally be reasonably close in constant-size models without migration. Even so,
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the variance of Tarrca — T is sufficiently large that individual genes may exhibit coalescence
times much larger than the divergence time. For smaller values of Tp /N, coalescence times
must be very carefully interpreted if they are to provide evidence regarding demographic
hypotheses.

In models with migration, coalescence times are even less informative. Coalescence can be
more ancient or more recent than divergence, so that if migration is suspected of occurring,
it is not appropriate to treat coalescence times as the upper bounds for divergence times. A
large amount of migration will even allow Thyrca — Tp to be negative with high probability.

Interestingly, migration may also cause the distribution of Tarrca — Tp to be bimodal.
Intuitively, this makes sense: by chance, for some genes, all gene copies in one population
will descend from a migrant from the other population; for others, not all copies of the
gene will be traceable to migrants, and coalescence will occur among ancestors that predate
population divergence. However, by considering many genes, we can use this bimodality to
our advantage: if we detect such a bimodal distribution of coalescence times across many
genes, we will have evidence for migration between two descendant populations. So far, too
few genes have been studied with respect to any particular population divergence in order to
test for bimodality of the Thyrca —Tp distribution. As more data become available, however,
the bimodal distribution of Thyrca — Tp across genes may offer a basis for a solution of the
problem of detecting ancient gene transfer between populations.

Finally, the distribution of Thrc4—Tp under the assumption that a gene is neutral can be
used as a null distribution in order to test specific genes for causal connections to population
or species divergences. Consider as an example the ancient human domestication of a wild
plant. Genotypes at a random gene would only have become different in wild and cultivated
varieties slowly, by genetic drift, as humans performed artificial selection. If ancient humans
selected for specific single-gene traits, then the differentiation of these causal genes across wild
and cultivated plants would have occurred rather rapidly as soon as selection began. Thus,
due to selection pressure, the coalescence times across wild and cultivated varieties for the
genes causally related to the domestication event would likely be quite close to the divergence
time of wild and cultivated populations. The coalescence times of random genes, on the
other hand, would likely be much older, because their differentiation was only due to genetic
drift. Similar reasoning applies to divergences of species (see Ting et al., 2000): since their
differentiation coincides with species divergences, “speciation genes” should have concordant
gene trees with the species tree more often than do random genes. Thus, an approach for
studying causal factors linked to speciation, domestication, or population divergences might

be based on distributions of Tyyrcsa — Tp calculated across entire genomes.
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Figure 9.1: A divergence scheme that has resulted in three descendant populations.
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Figure 9.4: Diagram of divergence and coalescence in a model with no migration after the diver-
gence. The center line separates the two descendant populations. The coalescent tree is drawn
for samples of eight lineages, four from each descendant population. (A) Recent divergence. (B)

Ancient divergence.
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(based on 10,000 simulated coalescent trees for each value of Tp/N). Samples of size 50 were used

in each population, and the descendant populations both had size N.
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Figure 9.6: % vs. Tp/N for a two-population divergence model with no migration after
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in each population, and the two descendant populations both had size N.
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Figure 9.7: Diagram of divergence and coalescence in models with migration. The center line
separates the two descendant populations. The coalescent tree is drawn for samples of eight lineages,
four from each descendant population. (A) Two populations that have always been separated -
a typical equilibrium island migration model. (B) Two populations that have had considerable
migration after a divergence. In this example, the most recent common ancestor of the sample

lived after the divergence.
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Figure 9.8: F[Tarca — Tp] vs. Tp/N for the two-population divergence model with constant
migration after the divergence. Each point is based on 10,000 simulated coalescent trees. The
descendant populations both had size N. (A) Samples of size 1 in each population. (B) Samples

of size 50 in each population.
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Figure 9.9: Probability that coalescence is more recent than divergence vs. Tp/N for the two-
population model with constant migration after the divergence. Each point is based on 10,000
simulated coalescent trees. The descendant populations both had size N. (A) Samples of size 1 in

each population. (B) Samples of size 50 in each population.



Figure 9.10: Probability distributions of Thsrc 4 — Tp for the two-population divergence model with

constant migration after a divergence 10N generations ago. Each distribution is based on 100,000
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Figure 9.11: Standard deviation of Thyrca — Tp for the two-population divergence model with

constant migration after the divergence, measured in units of N generations. Each point is based

on 10,000 simulated coalescent trees. (A) Samples of size 1 in each population. (B) Samples of size
50 in each population.



