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a b s t r a c t

Statistics for linkage disequilibrium (LD), the non-random association of alleles at two loci, depend on
the frequencies of the alleles at the loci under consideration. Here, we examine the r2 measure of LD and
its mathematical relationship to allele frequencies, quantifying the constraints on its maximum value.
Assuming independent uniform distributions for the allele frequencies of two biallelic loci, we find that
the mean maximum value of r2 is ∼0.43051, and that r2 can exceed a threshold of 4/5 in only ∼14.232%
of the allele frequency space. If one locus is assumed to have known allele frequencies – the situation
in an association study in which LD between a known marker locus and an unknown trait locus is of
interest – we find that the mean maximum value of r2 is greatest when the known locus has a minor
allele frequency of∼0.30131.We find that in 1/4 of the space of allowed values ofminor allele frequencies
and haplotype frequencies at a pair of loci, the unconstrained maximum r2 allowing for the possibility
of recombination between the loci exceeds the constrained maximum assuming that no recombination
has occurred. Finally, we use r2max to examine the connection between r2 and the D′ measure of linkage
disequilibrium, finding that r2/r2max = D′2 for ∼72.683% of the space of allowed values of (pa, pb, pab).
Our results concerning the properties of r2 have the potential to inform the interpretation of unusual LD
behavior and to assist in the design of LD-based association-mapping studies.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Linkage disequilibrium (LD) refers to a non-random association
in the occurrence of alleles at two loci (Hudson, 2001; Pritchard
and Przeworski, 2001; Slatkin, 2008). LD finds applications in
diverse contexts, including the inference of demographic events
in human evolutionary history (Tishkoff et al., 1996; Plagnol and
Wall, 2006), the fine-mapping of disease genes after localization
via linkage analysis (Devlin and Risch, 1995), and the modeling,
selection, and evaluation of sets of informative single-nucleotide
polymorphisms for use in detecting disease-susceptibility alleles
in genome-wide association studies (Kruglyak, 1999; Carlson et al.,
2004; Eberle et al., 2007). Measurements of LD are typically based
on comparisons of the observed frequencies of haplotypes to the
frequencies expected based on the frequencies of the alleles that
comprise the various haplotypes. Statistically estimated haplotype
frequencies are used in place of observed frequencies when
observed frequencies are unavailable.

One of the challenges inherent in measuring LD is that the
ranges of LD measures can depend on the frequencies of alleles
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at the loci under consideration. Hedrick (1987) showed that for
several LD statistics, holding the allele frequencies of one of the
two loci in a pair constant, the maximal values of the statistics
could occur only when the allele frequencies of the second
locus were equal to those of the first locus; further, in some
cases, the maximum itself was frequency dependent. The only
statistic considered by Hedrick (1987) whose range was frequency
independent was D′ (Lewontin, 1964), which ranges from −1 to 1
for any set of allele frequencies for a pair of polymorphic biallelic
loci. However, even D′ is not independent of allele frequencies in
most senses of the concept of ‘‘independence’’ (Lewontin, 1988).

For biallelic loci, one of the most commonly used measures for
LD is r2 (Hill and Robertson, 1968), the square of the correlation
coefficient between two indicator variables — one representing
the presence or absence of a particular allele at the first locus
and the other representing the presence or absence of a particular
allele at the second locus. In a disease association context, the r2
statistic is often used in calculations of power to detect disease-
susceptibility loci. Under some conditions, the power to detect
disease association with a marker locus when using a case-
control sample of size N is approximately equal to the power
to detect disease association with the true causal locus when
using a sample of size Nr2, where r2 here denotes the value
of the r2 statistic for the marker locus and the causal locus
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(Pritchard and Przeworski, 2001; Jorgenson and Witte, 2006;
Terwilliger and Hiekkalinna, 2006). The r2 statistic also underlies
popular methods for identifying informative markers for use in
LD-based association studies (Carlson et al., 2004; de Bakker et al.,
2005).

Likemost LD statistics, r2 has a frequency-dependent range. The
maximum value of r2 as a function of the allele frequencies of two
loci under consideration drops sharplywith the extent of theminor
allele frequency difference between the loci (Wray, 2005; Eberle
et al., 2006; Amos, 2007). Thus, in some settings, matching loci by
allele frequencies prior to measurement of LD can provide a way
to circumvent the frequency dependence of r2. Using genotypes
from 71 unrelated individuals of European, African-American, and
Chinese descent, Eberle et al. (2006) found that by restricting their
calculations to matched loci with similar allele frequencies, their
ability to identify high LD values using r2 increased considerably,
revealing excess LD in genic regions.

Although the frequency dependence of r2 has often been noted
(e.g. Devlin and Risch (1995) and Zondervan and Cardon (2004)),
relatively little is known about themathematical properties of this
dependence. Wray (2005) showed that if two loci have a value of
r2 above a specified cutoff and one of the loci has known allele
frequencies, then the frequencies at the other locus must lie in
a narrow range. Eberle et al. (2006) studied the properties of r2

in a genealogical context, examining the predictions made by a
coalescentmodel about the expected value of r2 conditional on the
allele frequencies at a pair of loci in the absence of recombination.
In this paper, we consider the mathematical relationship between
r2 and allele frequencies in detail. We investigate the maximum
possible value of r2 for a given set of allele frequencies, compute
the mean value of r2max when frequencies at one of the loci are
assumed to be known, and determine the range of possible allele
frequencies for one locuswhen r2 and the frequencies for the other
locus are known. We also use two possible genealogical histories
(a scenario similar to that of Eberle et al. (2006)) to investigate the
effect of recombination on the value of r2. Finally, we determine
the relationship between r2 and D′ using a connection to r2max, the
maximum value of r2 possible given the allele frequencies at a pair
of loci.

2. Theory

Consider two biallelic loci, locus 1 with alleles a and A and locus
2 with alleles b and B. Suppose the frequencies for alleles a and A
are respectively pa and 1−pa, and the frequencies for alleles b and B
are pb and 1−pb. Since pa and pb range from 0 to 1, the pair (pa, pb)
ranges over the (open) unit square. The set of combinations of allele
frequencies (pa, pb) can be split into eight components, which we
label S1, S2, . . . , S8 for convenience (Fig. 1). Each of the other seven
components, S2, . . . , S8, corresponds to a transformation of S1 in
which alleles are swapped at locus 1, alleles are swapped at locus
2, loci 1 and 2 are swapped, or two or more of these exchanges
are performed. We will use this symmetry to simplify some of our
calculations.

The r2 measure of linkage disequilibrium is defined as

r2(pa, pb, pab) =
(pab − papb)2

pa(1 − pa)pb(1 − pb)
, (1)

where pab is the frequency of haplotypes having allele a at locus 1
and allele b at locus 2 (Hill and Robertson, 1968). As the square of
a correlation coefficient, r2(pa, pb, pab) can range from 0 to 1 as pa,
pb and pab vary.
Fig. 1. The unit square of possible combinations of allele frequencies (pa, pb),
divided into eight components. The other seven components can all be obtained
from a transformation of S1 by switching alleles at locus 1 (reflection over the
line pa = 1/2), switching alleles at locus 2 (reflection over the line pb = 1/2),
switching loci (reflection over the line pb = pa), or some combination of these three
exchanges.

2.1. r2max(pa, pb)

Our first computation is of r2max(pa, pb), the maximum value of
r2 for given values of pa and pb, considering all possible values of
pab. Given (pa, pb), the denominator of r2 is fixed. Therefore, to
maximize r2, it suffices to choose the value for pab that maximizes
the numerator. The possible values of pab are constrained by the
fact that the frequency of a haplotype can be no more than the
frequency of the least frequent allele that it contains and no less
than 0 or the minimum overlap that can occur between two
alleles based on their frequencies. It is at one of these extremes
– the highest or lowest possible haplotype frequency – that the
numerator is maximized. Thus, the maximum value of r2 occurs
either at pab = min(pa, pb) or at pab = max(0, pa + pb − 1),
depending on the component, Si, in which the given (pa, pb) is
located. For S1 and S4, the maximum occurs at pab = pa + pb − 1,
so

r2max(pa, pb) =
(1 − pa)(1 − pb)

papb
. (2)

For S2 and S7, the maximum occurs at pab = pa:

r2max(pa, pb) =
pa(1 − pb)
(1 − pa)pb

. (3)

For S3 and S6, the maximum occurs at pab = pb:

r2max(pa, pb) =
(1 − pa)pb
pa(1 − pb)

. (4)

Finally, for S5 and S8, the maximum occurs at pab = 0:

r2max(pa, pb) =
papb

(1 − pa)(1 − pb)
. (5)

Table 1 summarizes these results. Note that r2max is continuous on
the boundaries between components. An important consequence
of Eqs. (2)–(5) is that r2max(pa, pb) = 1 if and only if pb = pa or
pb = 1 − pa.

Combining Eqs. (2)–(5), Fig. 2 shows a three-dimensional plot
of r2max for all combinations (pa, pb). The X-shape of the figure
illustrates the symmetries of r2 as a function of pa and pb, as well
as the property that r2 can only equal 1 if the two loci have the
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Table 1
r2max , D

2
max , and D2

r2max
in the eight components of the space of possible allele frequencies.

Component pa < 1
2 pb < 1

2 pa < pb pa + pb < 1 pab that produces r2max r2max D2
max D2

r2max

D < 0 D > 0

S1 Yes No Yes No pa + pb − 1 (1−pa)(1−pb)
papb

[(1 − pa)(1 − pb)]2 [pa(1 − pb)]2 [(1 − pa)(1 − pb)]2

S2 No No Yes No pa
pa(1−pb)
(1−pa)pb

[(1 − pa)(1 − pb)]2 [pa(1 − pb)]2 [pa(1 − pb)]2

S3 No No No No pb
(1−pa)pb
pa(1−pb)

[(1 − pa)(1 − pb)]2 [(1 − pa)pb]2 [(1 − pa)pb]2

S4 No Yes No No pa + pb − 1 (1−pa)(1−pb)
papb

[(1 − pa)(1 − pb)]2 [(1 − pa)pb]2 [(1 − pa)(1 − pb)]2

S5 No Yes No Yes 0 papb
(1−pa)(1−pb)

(papb)2 [(1 − pa)pb]2 (papb)2

S6 Yes Yes No Yes pb
(1−pa)pb
pa(1−pb)

(papb)2 [(1 − pa)pb]2 [(1 − pa)pb]2

S7 Yes Yes Yes Yes pa
pa(1−pb)
(1−pa)pb

(papb)2 [pa(1 − pb)]2 [pa(1 − pb)]2

S8 Yes No Yes Yes 0 papb
(1−pa)(1−pb)

(papb)2 [pa(1 − pb)]2 (papb)2

Fig. 2. r2max(pa, pb) as a three-dimensional plot, with a contour plot shown below.
same minor allele frequency. Additionally, the graph shows a very
steep decay of r2max moving away from the diagonals, indicating
that even small differences in allele frequency between the two
loci, especially if the frequencies are not near 1/2, can reduce the
range of possible values for r2 considerably.

We can quantify the effect of differences in minor allele
frequency observed in Fig. 2 by calculating the average r2max value
assuming independent Uniform(0,1) distributions for pa and pb.
This computation amounts to evaluating the volume below r2max
over the unit square. Using symmetry, the total volume can be
calculated by finding the volume over one of the eight components
in Fig. 1 andmultiplying by eight. Denoting the volume of r2max over
component S1 by V1, we have

V1 =

∫ 1
2

0

∫ 1

1−pa

(1 − pa)(1 − pb)
papb

dpbdpa

= −

∫ 1
2

0

(1 − pa)
pa

[ln(1 − pa) + pa]dpa

=
1
12

π2
−

1
2
(ln 2)2 +

1
2
ln 2 −

7
8

≈ 0.05381.
The last step uses the dilogarithm function

∫ 0
z ln(1 − t)/t dt =

Li2(z), where Li2(0) = 0 and Li2(1/2) = π2/12 − (ln 2)2/2
(Weisstein, 2003). Consequently the mean r2max given pa ∼

Uniform(0, 1), pb ∼ Uniform(0, 1), and assuming pa and pb are
independent is 8V1 = 2π2/3 − 4(ln 2)2 + 4(ln 2) − 7 ≈ 0.43051.
This result and the shape of Fig. 2 suggest that it is only possible
to achieve high values of r2 over relatively small portions of the
space of possible values of pa and pb. For a constant c , 0 ≤ c ≤ 1,
we can calculate the proportion of the allele frequency spacewhere
it is possible for r2 to exceed c , p(c). Again using symmetry, we can
restrict our attention to S6. Using Eq. (4), the portion of S6 in which
r2max(pa, pb) ≥ c , whose area we denote by A6, satisfies

pb ≥
cpa

1 − pa + cpa
.

Considering the complement of the area of interest in S6, we have

1
8

− A6 =

∫ 1
2

0

∫ cpa
1−pa+cpa

0
1dpbdpa

= −
c

2(1 − c)
−

c ln
( 1
2 +

1
2 c

)
(1 − c)2

.

Thus, the proportion of the allele frequency space where it is
possible for r2 to exceed c is 8A6, or

p(c) = 1 +
4c

1 − c
+

8c ln
( 1
2 +

1
2 c

)
(1 − c)2

. (6)

Fig. 3 shows that the proportion of the allele frequency spacewhere
it is possible for r2 to exceed c declines faster than linearly. For
example, only over ∼0.39709 of the allele frequency space is it
possible for r2 to exceed 1/2 and only over ∼0.14232 of the space
is it possible for r2 to exceed 4/5.
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Fig. 3. The proportion of the allele frequency space where it is possible for r2 to be
greater than a constant c . By ‘‘allele frequency space’’ we mean the unit square in
which pa and pb range from 0 to 1.

2.2. r2max(pa, pb) with pa fixed

In contrast to the previous computations, in which we
performed integrations over possible values of pa and pb, we now
consider the case in which pa is fixed. This computation enables
us to identify the allele frequencies for a locus that is able to have
high r2 values across the broadest range of allele frequencies for
a second locus. Assuming pb has a Uniform(0,1) distribution, we
can calculate m(pa) = E[r2max(pa, pb)|pb ∼ Uniform(0, 1)], the
mean maximum r2 value as a function of pa. We can assume that
pa ≤ 1/2 and then consider pa > 1/2 by observing that m(pa) =

m(1 − pa). For pa ≤ 1/2 we perform piecewise integration across
components S6, S7, S8, and S1 using Eqs. (2)–(5):

m(pa) =

∫ pa

0

(1 − pa)pb
pa(1 − pb)

dpb +

∫ 1
2

pa

pa(1 − pb)
(1 − pa)pb

dpb

+

∫ 1−pa

1
2

papb
(1 − pa)(1 − pb)

dpb

+

∫ 1

1−pa

(1 − pa)(1 − pb)
papb

dpb

= −
2(1 − pa)

pa
[pa + ln(1 − pa)]

+
2pa

(1 − pa)

[
ln

(
1
2

)
−

1
2

− ln pa + pa

]
.

Fig. 4 shows that the mean of r2max(pa, pb), averaging over values of
pb, has an m-shape as a function of pa. The maximum of this mean
occurs at pa ≈ 0.30131 and pa ≈ 0.69869 and equals ∼0.53091.
Notice that the largest values of m(pa) occur for intermediate
minor allele frequencies rather than for minor allele frequencies
close to 1/2. This finding can be explained by examining the
contour plot of Fig. 2, which suggests that slices through the graph
made at intermediate frequencies for pa contain more space with
higher values of r2max than do other slices.

2.3. r2max(pa, pb) with pa and pa − pb fixed

We now consider the situation in which pa and the difference
between allele frequencies |pa − pb| are known. This situation is
similar to the scenario considered byWray (2005) in which r2 was
assumed to exceed some known threshold, pa was assumed to be
known, and pb = pa + vwas investigated.
Fig. 4. The mean of r2max(pa, pb) assuming pa is constant and pb is distributed
uniformly on the unit interval, as a function of pa .

Fig. 5. r2max as a function of pa and pa − pb assuming pb ≤ pa ≤ 1/2. The domain of
the graph corresponds to the component S6 in Fig. 1.

Let pa and pb be minor allele frequencies (≤1/2) with pa ≥ pb,
so that we are considering component S6. Define d = pa − pb ≥ 0.
Treating r2max as a function of pa and d, we can rewrite Eq. (4):

r2max(pa, d) = 1 −
d

pa(1 + d − pa)
. (7)

Fig. 5 shows a three-dimensional plot of r2max as a function of
the larger minor allele frequency (pa) and the difference between
minor allele frequencies (pa − pb). The twisted surface illustrates
that for pa fixed, r2max decreases faster with the difference in minor
allele frequency when pa has smaller values. This observation
corresponds to the steeper decline from the diagonals further from
the center in Fig. 2.

Holding d constant and non-negative in Eq. (7), the maximum
of r2max for pa ≤ 1/2 occurs at pa = 1/2:

r2 ≤ 1 −
d

1
2 (1 + d −

1
2 )

. (8)

By rearranging this equation, we can calculate themaximum value
of |pa − pb| possible given a known value of r2,

d ≤
1 − r2

2(1 + r2)
. (9)



134 J.M. VanLiere, N.A. Rosenberg / Theoretical Population Biology 74 (2008) 130–137
Fig. 6. Two possible non-recombinant genealogies. In Genealogy 1, allele a arises
on a haplotype that contains allele b. In Genealogy 2, allele a arises on a haplotype
that does not contain allele b.

As Eq. (9) is based on the maximum of r2max over all possible minor
allele frequency values for pa, it represents the broadest range
possible for the difference in allele frequencies. For d to achieve
the maximum value of (1 − r2)/[2(1 + r2)], pa must equal 1/2.

The computation above assumes a known r2 and determines
the maximum for d. However, if we know pa in addition to r2, then
we can solve exactly for the set of allowable values of pb. Assuming
again that pa and pb are minor allele frequencies (that is, at most
1/2), we must consider two cases: pa ≥ pb and pa ≤ pb. For the
first case, (pa, pb) is in S6. Rearranging Eq. (4),

pb ≥
r2pa

1 + r2pa − pa
, (10)

so that r2pa/(1+ r2pa − pa) ≤ pb ≤ pa. In the second case, (pa, pb)
is in S7 so we can rearrange Eq. (3) to obtain

pb ≤
pa

r2 − r2pa + pa
. (11)

Recalling our assumption that pb ≤ 1/2 and combining Eqs. (10)
and (11), we find

r2pa
1 + r2pa − pa

≤ pb ≤ min
(
1
2
,

pa
r2 − r2pa + pa

)
.

This result accords with the values that appear in Table 2 of Wray
(2005).

2.4. r2max(pa, pb) and recombination

We have previously been examining r2 with the assumption
that it is possible for pab to take any value within its allowable
range. This amounts to an assumption that we are not constraining
the recombination history of the two loci under consideration.
In this section, we consider a different situation: how does
recombination affect r2 for two loci that have not previously
experienced recombination? This depends on the genealogical
history of the loci.

Consider two possible genealogies (Fig. 6). In Genealogy 1, a
mutation at locus 1 arises later, but on the same side of the tree, as
a mutation at locus 2. In Genealogy 2, the mutations at loci 1 and 2
arise on different sides of the tree so that no haplotypes carry both
mutations. Assuming pa ≤ pb ≤ 1/2 so that the minor alleles are
derived rather than ancestral, then without recombination, pab =

pa for Genealogy 1, and r2(pa, pb) = pa(1−pb)/[(1−pa)pb] (Eberle
et al., 2006). For Genealogy 2, without recombination pab = 0, so
r2(pa, pb) = papb/[(1 − pa)(1 − pb)] (Eberle et al., 2006).

In typical settings, recombination reduces linkage disequilib-
rium, as recombination separates new alleles from the haplotypic
Fig. 7. Example of a situation inwhich recombination canproduce an increase in r2 ,
for pa = 0.3 and pb = 0.4. Here, pab is the frequency of the recombinant haplotype
in the setting of Genealogy 2 in Fig. 6. The dashed line is the value of r2 assuming
no recombination.

background on which they arose. For Genealogy 1 in Fig. 6, the un-
constrainedmaximum r2 allowing pab to take on any possible value
is precisely r2max(pa, pb) (Eq. (3)), the value takenwhenpab = pa and
no recombination has occurred. Thus, any recombination events
that reduce pab below pa will lead to a decrease in r2. However,with
Genealogy 2 we can see that situations do exist in which recom-
bination can lead to an increase in LD. Consider Genealogy 2 and
suppose recombination occurs such that the frequency of the re-
combinant haplotype (ab) becomes pab > 0. This haplotype can
arise through recombination events between Ab haplotypes and
aB haplotypes. Is it possible for r2, with recombination events al-
lowed, to be greater than r2 in the absence of recombination? Solv-
ing the inequality

(pab − papb)2

pa(1 − pa)pb(1 − pb)
>

papb
(1 − pa)(1 − pb)

,

we obtain

pab > 2papb.

For each pa ≤ 1/2 and pb ≤ 1/2 it is possible to choose a value of
pab that satisfies pab ≥ 2papb. Recall our assumption that pa ≤ pb,
which restricts pab ≤ pa. Thus, if the fraction of recombinant
haplotypes satisfies

2papb < pab ≤ pa, (12)

then the occurrence of recombination produces an increase in r2
compared to the maximum possible value had no recombination
occurred on the genealogy. Fig. 7 shows an example of the variation
in r2 as a function of pab for pa = 0.3 and pb = 0.4.Once pab exceeds
2papb = 0.24, the value of r2 between loci increases above the
initial value in the absence of recombination.

Using inequality (12), we can determine the fraction of the
space of allowed values for (pa, pb, pab) inwhich the unconstrained
maximum r2 permitting recombination (pab not necessarily equal
to 0) exceeds the maximum under the assumption that no
recombination occurs (pab = 0). The volume of the region where
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Fig. 8. The portion of the space of values of (pa, pb) in whichD′2
= r2/r2max . The red triangle indicates the boundary of the set of values of (pa, pb) possible for a given pab . The

blue shaded space indicates regions where D′2
= r2/r2max . Each of the three plots represents a ‘‘slice’’ of the three-dimensional space for (pa, pb, pab), holding pab constant.

(A) pab = 0.1. (B) pab = 0.4. (C) pab = 0.7.
recombination inflates r2 is∫ 1
2

0

∫ pb

0

∫ pa

2papb
1dpabdpadpb =

1
192

.

The volume of the region of allowed values for (pa, pb, pab),
assuming pab ≤ pa ≤ pb ≤ 1/2, is∫ 1

2

0

∫ pb

0

∫ pa

0
1dpabdpadpb =

1
48

.

Taking the quotient of these results, the fraction of the space of
possible values in which recombination inflates r2 is 1/4. Thus,
averaging over possible values for (pa, pb) with pa ≤ pb ≤ 1/2,
on average 1/4 of possible values for pab lead to r2(pa, pb, pab) >
r2(pa, pb, 0).

2.5. The relationship between r2(pa, pb, pab) and D′(pa, pb, pab)

So far, we have focused on the r2 measure of LD and on various
properties of its maximum value. A second LD statistic, namely
D′, is defined based on maxima and minima. Our computations
with r2max provide a basis for examining the connection between r2
and D′.

D′ is defined as

D′
=

D
Dmax

, (13)

where D = pab − papb, Dmax = min(papb, (1 − pa)(1 − pb)) if
D < 0, andDmax = min(pa(1−pb), (1−pa)pb) ifD > 0 (Lewontin,
1964). Given any values for pa and pb,D′ can take on any value from
−1 to 1, thus differing from r2 in that its range is not frequency
dependent (Hedrick, 1987; Lewontin, 1988).

D′ is equal to D normalized by its maximum given the allele
frequencies; r2 can similarly be normalized by its maximum to
obtain r2/r2max. This quotient is the squared correlation coefficient
between allelic indicator variables at two loci, standardized by
the maximum squared correlation possible given the frequencies
of the alleles at the two loci. As D′2 and r2/r2max both have
numeratorD2, it is natural to compare their different normalization
procedures to determine if they represent the same quantity. We
can rewrite r2/r2max as

r2

r2max
=

D2

D2
r2max

. (14)

Here, Dr2max
is defined as pab − papb evaluated at the value of pab

that produces the maximum of D2 as a function of pa and pb. This
quantity differs across components of the allele frequency space,
as described in Section 2.1. Comparing Eq. (14) to Eq. (13), we find
that D′2

= r2/r2max if D
2
max = D2

r2max
.

The sign of D determines how Dmax is computed. Thus, whether
Dmax = Dr2max

, and consequentlyD′2
= r2/r2max, depends on the sign

of D. For example, consider S1, in which pa < 1/2, pb > 1/2, and
pa+pb > 1. In this component,Dmax equalsDr2max

= (1−pa)(1−pb)
only when D is less than 0 (pab < papb). In each of the eight
components, D2

max = D2
r2max

either when D < 0 or when D > 0, but

not in both cases (Table 1). Thus, the region in which D′2
= r2/r2max
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includes some but not all of the space of possible values of pa, pb,
and pab. When D′2

6= r2/r2max, D
′2 is always greater than r2/r2max.

As D′2 and r2/r2max are functions of pa, pb, and pab, we can fix one
of these three variables and examine the relationship between D′2

and r2/r2max as a function of the other two variables. If we fix pab,
then the domain for (pa, pb) is a triangle, as pa ≥ pab, pb ≥ pab,
and pa + pb − 1 ≤ pab. Inside this triangle, Fig. 8 shows the
values of (pa, pb) where D′2

= r2/r2max for pab = 0.1, 0.4, and
0.7. The three graphs represent the three qualitatively different
patterns observed for such graphs as pab varies from 0 to 1. For
pab = 0.1, the domain spans all eight components, S1 to S8. For
pab = 0.4, the domain spans all eight components, but in two of
these components there is no region in which D′2

= r2/r2max and in
two other components there is no region in which D′2

6= r2/r2max.
Finally, for pab = 0.7, the domain spans only two components,
S2 and S3. The transition points between the three cases occur at
pab = 1/4, where the boundary line pab = papb crosses the point
(1/2, 1/2), and at pab = 1/2 where the space of allowable (pa, pb)
becomes restricted to the upper right quadrant.

As a function of pab, we can calculate the fraction of the space
of possibilities where D′2

= r2/r2max. For a given pab, the space of
possible values of (pa, pb) is bounded by pa = pab, pb = pab, and
pab = pa + pb − 1, producing a triangle of area (1 − pab)2/2. For
0 ≤ pab ≤ 1/4, we calculate the area where D′2

= r2/r2max by
subtracting the area where the two quantities are not equal from
the total area possible, yielding

1
2
(1 − pab)2 −

[
2

∫ 1

1
2

∫ pab
pa

pab
1dpbdpa +

1
2
p2ab

+

∫ 1
2

2pab

∫ 1
2

pab
pa

1dpbdpa

]
. (15)

For 1/4 ≤ pab ≤ 1/2, we calculate the area where D′2
= r2/r2max

by summing areas in each quadrant and noting that the upper left
and lower right quadrants have the same area. This area is

2
∫ 1

2

pab

∫ 1+pab−pa

pab
pa

1dpbdpa

+

∫ 2pab

1
2

∫ pab
pa

1
2

1dpbdpa +

(
1
2

− pab

)2

. (16)

For 1/2 ≤ pab ≤ 1, the calculation of the area where D′2
= r2/r2max

is simplified due to the restriction of the space of possible values
of (pa, pb) to the upper right quadrant. This area is∫ 1

pab

∫ pab
pa

pab
1dpbdpa. (17)

Computing the integrals in Eqs. (15)–(17) and then dividing by the
area of the space of possible values of (pa, pb), we find that the
fraction of the space where D′2

= r2/r2max is

1
4 + pab(1 − 4 ln 2) − pab ln pab

1
2 (1 − pab)2

, 0 < pab ≤
1
4

5
4 + pab(4 ln 2 − 3) + 3pab ln pab

1
2 (1 − pab)2

,
1
4

< pab ≤
1
2

pab(pab − 1 − ln pab)
1
2 (1 − pab)2

,
1
2

< pab < 1.

(18)

Fig. 9 shows a plot of this function. The minimum fraction of the
space where D′2

= r2/r2max is ∼0.31357, which occurs at pab ≈

0.37162. The fraction is generally large for large pab; when pab is
Fig. 9. The fraction of the space of possible values of (pa, pb, pab) for which D′2
=

r2/r2max , as a function of pab .

large the probability is quite high that D > 0. In S2 and S3, positive
D leads to D′2

= r2/r2max.
By integrating the function in Eq. (18) from 0 to 1, we can obtain

the fraction of the space of all three variables – pa, pb, and pab – in
which D′2

= r2/r2max. Again using the dilogarithm, we obtain

1
3
π2

− 4(ln 2)2 +
3
2

− 8Li2

(
1
4

)
for the probability that a set of values of pa, pb and pab chosen from
the space of possible values leads to r2/r2max = D′2. Numerically,
this probability is ∼0.72683.

3. Discussion

In this paper, we have examined the mathematical relationship
between r2 and allele frequencies, producing a variety of results
concerning the frequency dependence of r2. By evaluating the
volume below r2max(pa, pb), we found that the mean r2max over the
space of possible allele frequencies is only ∼0.43051. This number
is rather low, implying that for much of the allele frequency space,
the value of r2 is severely restricted.We also calculated the formula
for the proportion of the allele frequency space where it is possible
for r2 to exceed some constant c (Eq. (6)). Using the cutoff of c =

4/5 commonly employed for examining the genomic coverage of
a set of ‘‘tag SNPs’’ in association studies (e.g. Jorgenson andWitte,
2006), we find that it is possible for r2 to be greater than or equal
to this value in only ∼0.14232 of the allele frequency space.

An additional scenario that we considered is the case in which
one of the allele frequencies was set to a fixed known value. This
is the situation, for example, in an association study in which a
marker locus with fixed known allele frequencies is used to detect
a trait locus of unknown allele frequencies. By assuming a uniform
distribution for the frequency of an allele at the other locus, we
found that the marker minor allele frequency able to detect high
LD with the largest range of values for the minor allele frequency
of the trait locus was ∼0.30131, not 1/2 as might have been
expected from an assumption that the most polymorphic markers
have the greatest potential for LD detection. Although the specific
location of the optimummay change with the distribution of allele
frequencies in an actual population, this result has the implication
that algorithms that choose informative markers for detecting
LD might produce improved performance if they ensure that a
considerable fraction of markers near the optimum frequency are
selected. The sharp allele frequency dependence of r2 may also
mean that it is desirable to choose a range of allele frequencies
among ‘‘tag SNP’’ markers in order to increase the probability of
capturing LD with unknown trait loci.
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Another perhaps surprising result, obtained by considering
the effect of recombination on the value of r2 for different
genealogical histories, is that in certain contexts recombination
can increase rather than decrease the value of r2. This is
somewhat counterintuitive; a typical scenario of loss of LD with
recombination involves a decoupling of derived mutations that
have occurred sequentially on the same lineage, such as in
recombination events between haplotypes ab and AB of Genealogy
1 in Fig. 6. In our scenarios where recombination can increase LD,
in Genealogy 2 of Fig. 6, the LD is produced by recombination that
produces sufficient coupling between derivedmutations that have
occurred in parallel on separate lineages. This type of scenario is
likely to be a rather unusual outcome under common assumptions
about evolutionary processes; however, we did observe that such
scenarios accounted for a non-trivial proportion of the space of
possible values for (pa, pb, pab).

Finally, we considered the relationship between r2 and another
commonly used measure of LD, D′. We found that a close
connection exists between r2 and D′, in that D′2 is often equal
to r2/r2max. For any haplotype frequency pab, this equality occurs
over at least ∼31.357% of the space of possible allele frequencies
(pa, pb), and when r2/r2max and D′2 are not equal, r2/r2max is always
less than D′2. Due to its connections to both r2 and D′, there may
exist some potential for r2/r2max, which we term r2′, to serve as a
useful LDmeasure. Althoughmanymeasures of LD have situations
in which they are particularly applicable (Hedrick, 1987; Devlin
and Risch, 1995; Hudson, 2001; Morton et al., 2001), r2′ – the
squared correlation coefficient between allelic indicator variables
at two loci standardized by the maximum squared correlation
possible given the frequencies of the alleles at the two loci – is
one of relatively few that can be used when a measure with allele-
frequency-independent range is desired.

Note that in various computations we have considered the
entire unit square as the domain for pa and pb. Some treatments
of LD reorient alleles and loci so that only S6 or S7 is examined
(e.g. Amos, 2007), or otherwise use a reorientation that spansmore
than one of the eight components in Fig. 1 (e.g. Morton et al., 2001).
Consideration of only a single component in some cases will yield
results that are identical on the allowed domain to those presented
(e.g. Fig. 2). Particularly in the comparison between r2′ and D′2,
however, restriction of the space of allele frequencies may lead to
somewhat different results. Within a component, r2max is achieved
when the haplotypewith themajor alleles at both loci has as high a
frequency as possible, so that thenormalization in the computation
of r2′ depends only on the allele frequencies pa and pb. However,
the normalization in the computation of D′ additionally takes into
account which alleles are coupled, so that it depends on whether
or not pab exceeds papb. Thus, reorienting alleles so that pa ≤ pb,
pa ≤ 1/2, and D > 0, as is done by Morton et al. (2001), leads
to a domain for pa and pb that cannot be obtained by dividing the
plots in Fig. 8 along one of their lines of symmetry. Consequently,
given pab, the reorientation of Morton et al. (2001) will produce a
different result for the probability that r2′ is equal to D′2 over the
allowed domain.

We have additionally assumed Uniform(0,1) distributions of
allele frequencies in many computations. This assumption can
be viewed as a basis for assessing functions of allele frequencies
across their entire ranges, rather than as an assumption that
these distributions apply in any particular population. Our primary
interest has been to provide details on the theoretical properties of
r2; future work may have the potential to exploit the properties
that we have uncovered, such as in interpreting unusual LD
behavior, or in improving the design of disease-mapping studies
that rely on patterns of LD.
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