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a b s t r a c t

Private microsatellite alleles tend to be found in the tails rather than in the interior of the allele size
distribution. To explain this phenomenon, we have investigated the size distribution of private alleles in
a coalescent model of two populations, assuming the symmetric stepwise mutation model as the mode
of microsatellite mutation. For the case in which four alleles are sampled, two from each population, we
condition on the configuration in which three distinct allele sizes are present, one of which is common to
both populations, one of which is private to one population, and the third of which is private to the other
population. Conditional on this configuration, we calculate the probability that the two private alleles
occupy the two tails of the size distribution. This probability, which increases as a function of mutation
rate and divergence time between the two populations, is seen to be greater than the value that would
be predicted if there was no relationship between privacy and location in the allele size distribution. In
accordance with the prediction of the model, we find that in pairs of human populations, the frequency
with which private microsatellite alleles occur in the tails of the allele size distribution increases as a
function of genetic differentiation between populations.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Private alleles are alleles that are found only in a single
population among a broader collection of populations. These
alleles have proven to be informative for diverse types of
population-genetic studies, in such areas as molecular ecology
and conservation genetics (e.g. Petit et al., 1998; Parker et al.,
1999; Fiumera et al., 2000; Neel and Cummings, 2003; Torres
et al., 2003; Kalinowski, 2004) and human evolutionary genetics
(e.g. Neel, 1973, 1978; Neel and Thompson, 1978; Calafell et al.,
1998; Schroeder et al., 2007; Szpiech et al., 2008).

Some of the first investigations of private alleles trace to studies
of private electrophoretic variants in native American groups from
South America (Neel, 1973, 1978; Neel and Thompson, 1978).
Using private alleles, Neel and colleagues obtained estimates of
mutation rates in these populations. Slatkin (1985) and Barton
and Slatkin (1986) showed that private alleles can contribute to
indicators of gene flow, finding in theoretical models of population
structure that the occurrence of private alleles was related to
the mean number of migrants exchanged per generation between
populations. Private alleles have also been used in empirical
studies of human migrations. Calafell et al. (1998) noted that in
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human populations, the mean number of private alleles is greater
in Africa, providing support to models of human migration out
of Africa. Schroeder et al. (2007) argued on the basis of a private
allele ubiquitous in the Americas that all modern native American
populations are descended from the same founding population.

One recent study, which investigated 678 microsatellite
markers in 29 native American populations from North, Central,
and South America (Wang et al., 2007), has identified a peculiar
property of private alleles. Wang et al. (2007) characterized
the distribution of private alleles across four subregions in the
Americas, observing that private microsatellite alleles were found
in the tails rather than in the interior of the allele size distribution
more often than was expected by chance. In other words, private
alleles at a locus frequently had very long or very short repeat
lengths with respect to the other alleles at the locus.

Here we take a modeling approach to examine the reasons
underlying the frequent occurrence of private alleles on the edges
of the allele size distribution. Using a simple coalescent model,
we assess the properties of microsatellite private alleles, thereby
helping to explain patterns that exist in the relationship between
privacy and allele size across human populations.

2. Theory

Let {x1x2/x3x4} denote four sampled microsatellite alleles in
two populations, where xi indicates the allele size for sampled
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allele i, and the forward slash separates alleles from different
populations. We restrict our attention to cases with four alleles;
a scenario with two alleles each in two populations gives the
smallest sample size useful for examining the phenomenon of
interest, as we will explain below. Because the four-allele case
involves a tractable number of calculations, it is possible in this
case to mathematically investigate the position of private alleles
in the size distribution.

We map sets of four allele sizes in two populations to one of
seven possible configurations of identity and nonidentity, using
the letters A, B, C , and D to denote distinct allele sizes. Thus, if two
sampled alleles are identical by state (IBS), we indicate this identity
by assigning the alleles the same letter. For example, if all four
sampled alleles are IBS, we represent the allele configuration by
{AA/AA}. If one allele in population 1 is IBS to an allele in population
2 and the other allele in population 1 is IBS to the other allele in
population 2 (and no alleles are IBS within populations), then we
represent the allele configuration by {AB/AB}. We label the seven
possible configurations by Ci for i ∈ {1, . . . , 7}, and we list them in
Table 1.

We are interested in comparing private and shared alleles on
the basis of size. In particular, we wish to examine whether alleles
lie on the edges of the size distribution, that is, whether they have
the longest or shortest lengths. To have a sensible definition of
the ‘‘edges’’ and interior of the allele size distribution, we must
have at least three distinct alleles among the four sampled alleles
that we consider. Furthermore, becausewe are concernedwith the
location of private alleles with respect to shared alleles, we must
have at least one shared allele and one private allele. The only
one of the seven configurations of four alleles that satisfies both
of these requirements—and that therefore enables a computation
of the probability that private alleles lie on the edges of the allele
size distribution—is C6 (configuration {AB/AC}). This configuration,
with sample size four, provides the smallest scenario that contains
both private alleles and shared alleles and that contains both edges
and an interior of the allele size distribution. We aim to compute
the probability that B and C , the two private alleles in configuration
{AB/AC}, both lie on the edges of the size distribution, conditional
on this configuration being produced.

2.1. A naïve argument

If we disregard the genealogical relatedness of the alleles in
our two-population four-allele model, what do we expect for the
probability that the private alleles lie on the edges? There are six
possible orderings of the three allele sizes A, B, and C (A < B < C ,
A < C < B, etc.), and, if no relationship exists between the size
of an allele and its status as shared or private, we expect the six
orderings to be equiprobable. Two of the six orderings place the
private alleles B and C on the edges of the size distribution. Under
this simple argument, we would expect the probability that both
private alleles lie on the edges to be 1/3.

This argument gives an initial sense of what might be predicted
for the probability that the private alleles lie on the edges of the
size distribution. However, it disregards the fact that the alleles are
related through a common ancestor.Wenow turn to a genealogical
argument that more directly models this relationship.

2.2. The probability of microsatellite configurations

To account for the genealogical relatedness of the four alleles
in obtaining a prediction of the probability that private alleles lie
on the edges of the allele size distribution, we use the coalescent
with symmetric stepwise mutation. Initially, we consider the two
populations to have instantaneously diverged zero coalescent time
Table 1
The seven possible configurations of four alleles in two populations and the counts
of shared, private, and total distinct alleles for each configuration.

Event Configuration Number of
shared alleles

Number of
private alleles

Total number of
distinct alleles

C1 {AA/AA} 1 0 1
C2 {AA/AB} 1 1 2
C3 {AA/BB} 0 2 2
C4 {AB/AB} 2 0 2
C5 {AA/BC} 0 3 3
C6 {AB/AC} 1 2 3
C7 {AB/CD} 0 4 4

units in the past (td = 0). Later, we will consider arbitrary values
of the divergence time td.

To calculate the desired probability, we first condition on
the {AB/AC} allele configuration (configuration C6), the mutation
rate, and the coalescence times of the genealogy. By considering
the probability of a net change by d mutational steps along
a genealogical branch, we construct the joint probability of
an allele configuration and a particular labeled history for the
four alleles, where the allele configuration refers to one of the
seven scenarios in Table 1 and the labeled history refers to
the sequence of coalescences (Fig. 1). We then calculate the
total probability that the private alleles lie on the edges of
the allele size distribution, summing across all labeled histories,
and integrating over coalescence times to arrive at the desired
probability, conditional only on a mutation rate θ .

Consider the events E1: size(B) < size(A) < size(C), and E2:
size(C) < size(A) < size(B). These events are equiprobable, and
we aim to calculate the probability

P[E1 ∪ E2|C6, θ] =
2P[E1, C6|θ ]

P[C6|θ ]
. (1)

Under the symmetric single stepwise mutation model, a mi-
crosatellite allele can mutate by only one step at a time in either a
positive or negative direction, and the probability of mutating +1
step is equal to the probability ofmutating−1 step, independent of
the size of the allele. We work with coalescent time units (units of
2Ne generations, where Ne is the effective size of each population,
treated as containing diploid individuals) andwith the population-
scaled mutation rate θ = 4Neµ, where µ is the per-locus per-
generation mutation rate.

2.3. Mutations on a genealogical branch

The probability that a marker evolving according to the
symmetric stepwise mutation model with population-scaled
mutation rate θ has net change d units along a branch of length
t coalescent time units is (Wehrhahn, 1975; Wilson and Balding,
1998)

f (|d|; t, θ) = e−tθ/2I|d|(tθ/2), (2)

where

I|d|(x) =

∞−
k=0

(x/2)(2k+|d|)

k!(k + |d|)!

is the modified Bessel function of the first kind (Gradshteyn and
Ryzhik, 2000). Because positive and negativemutations are equally
likely, we write f as a function of |d| rather than d, which can be
positive, negative or zero.

2.4. Probability of the set of allele sizes on a genealogical tree

We can use Eq. (2) to calculate the probability that changes
along a coalescent tree ultimately give rise to a specified set of al-
lele sizes. Considering that each branch evolves independently of
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Fig. 1. An enumeration of all possible labeled histories relating four sampled
alleles. Twelve histories have asymmetric topologies (1–12), and six histories have
symmetric topologies (13–18).

the others, we calculate the probabilities of changes along individ-
ual branches and thenmultiply probabilities across branches to get
the joint probability of all changes on the tree. There are two un-
labeled topologies that we need to consider: an asymmetric topol-
ogy (Fig. 2(A)) and a symmetric topology (Fig. 2(B)). Each topology
is parameterized by a vector of allele sizes, (n2, n3, x1, x2, x3, x4),
and a vector of coalescence times, (t2, t3, t4). The x variables rep-
resent the sizes of alleles at the leaf nodes, and ni represents the
size of the allele at the interior node located at the reduction of
the number of distinct lineages to i. The coalescence time ti rep-
resents the length of time during which there exist i distinct lin-
eages. Initially, we treat the coalescence times as fixed, and later
we will integrate the probabilities against the density of coales-
cence times to obtain a probability unconditional on t2, t3, and t4.
Because we assume that mutation probabilities do not depend on
allele size, we can set the allele size of themost recent common an-
cestor of the four-allele sample (the root node) to 0 without loss of
generality. However, following a choice similar to that of Pritchard
and Feldman (1996) and Zhang and Rosenberg (2007), we instead
choose to set n2 = 0 rather than setting the root node to 0, and we
treat the two branches that descend from the root as one branch
Fig. 2. Example labelings of the two possible unlabeled topologies for gene
genealogies with four lineages. (A) The asymmetric topology and (B) the symmetric
topology are parameterized by allele sizes at the nodes, (x1, x2, x3, x4, n3, n2), and
by coalescence times (t2, t3, t4) indicating the lengths of certain segments of the
branches.

with length equal to the sum of the lengths of its two constituent
branches. This choicemakes it possible to consider coalescent trees
with five rather than six separate branches, thereby simplifying the
computation.

Considering the asymmetric caterpillar topology (Fig. 2(A)),
we obtain the joint probability of (n2, n3, x1, x2, x3, x4) given
(t2, t3, t4) by calculating the probability of changing from n2 to x4
repeats along a branch of length 2t2 + t3 + t4, from n2 to x3 repeats
along a branch of length t3+t4, from n2 to n3 repeats along a branch
of length t3, from n3 to x2 repeats along a branch of length t4, and
from n3 to x1 repeats along a branch of length t4. Assuming n2 = 0
and multiplying these five probabilities together gives

V cat(x1, x2, x3, x4, n3, Ψ )

= f (|x4|; 2t2 + t3 + t4, θ) × f (|x3|; t3 + t4, θ) × f (|n3|; t3, θ)

× f (|n3 − x2|; t4, θ) × f (|n3 − x1|; t4, θ),

where Ψ = (τ , θ) is a vector of parameters and τ = (t2, t3, t4)
is the vector of coalescence times. Similarly, for the symmetric
topology, we calculate the probability of the set of allele sizes in
Fig. 2(B) to get

V sym(x1, x2, x3, x4, n3, Ψ )

= f (|n3|; 2t2 + t3, θ) × f (|n3 − x4|; t4, θ) × f (|n3 − x3|; t4, θ)

× f (|x2|; t3 + t4, θ) × f (|x1|; t3 + t4, θ).

2.5. Assigning alleles the roles of A, B, and C

There are 18 labeled histories for the alleles {x1, x2, x3, x4},
which we denote by Ti for i ∈ {1, . . . , 18} (Fig. 1). We can
then calculate P[C6|Ti, Ψ ] by considering all possible ways to get
configuration C6 with labeled history Ti. Because we have defined
{x1, x2} to be in population 1 and {x3, x4} to be in population 2,
we need to consider four cases for each history, reflecting the four
possible assignments of the allele sizes x1, x2, x3, and x4 to the
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Table 2
The four allele size relationships possible for the {AB/AC} allele configuration.

Case Allele size relationship Allele roles in {AB/AC}

x1 x2 x3 x4

1 x1 = x3 x2 ≠ x4 x1 ≠ x2 x1 ≠ x4 A B A C
2 x1 = x4 x2 ≠ x3 x1 ≠ x2 x1 ≠ x3 A B C A
3 x2 = x3 x1 ≠ x4 x2 ≠ x1 x2 ≠ x4 B A A C
4 x2 = x4 x1 ≠ x3 x2 ≠ x1 x2 ≠ x3 B A C A

roles of distinct alleles A, B, and C . These four cases are shown in
Table 2.

If we represent the size of the shared allele (allele A) by nA
and the sizes of the two private alleles (B and C) by nB and nC ,
respectively, then we can calculate P[C6|Ti, Ψ ] by summing the
individual probabilities of each of the four cases in Table 2. For
example, consider T1:
P[C6|T1, Ψ ]

=

∞−
n3=−∞

∞−
nA=−∞

∞−
nB=−∞

∞−
nC=−∞

V cat(nA, nB, nA, nC , n3, Ψ )

+ V cat(nA, nB, nC , nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ )

+ V cat(nB, nA, nC , nA, n3, Ψ ). (3)

Here, without loss of generality, we treat the private allele in the
first population as the B allele and the private allele in the second
population as the C allele. Similar calculations can be performed
for the 17 remaining labeled histories (Table 3).

2.6. Summing over labeled histories

In order to calculate P[E1, C6|Ψ ], we proceed exactly as in
Eq. (3), conditioning on each history Ti, but we restrict the bounds
Table 3
The probability contributions for a given set of values (nA, nB, nC , n3, Ψ ) for each of the 18 labeled histories. These probabilities occur in the sums in Eqs. (6) and (7).

History number History Contribution

1 V cat(nA, nB, nA, nC , n3, Ψ ) + V cat(nA, nB, nC , nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ ) + V cat(nB, nA, nC , nA, n3, Ψ )

2 V cat(nA, nB, nC , nA, n3, Ψ ) + V cat(nA, nB, nA, nC , n3, Ψ ) + V cat(nB, nA, nC , nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ )

3 V cat(nA, nA, nB, nC , n3, Ψ ) + V cat(nA, nC , nB, nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ )

4 V cat(nA, nA, nC , nB, n3, Ψ ) + V cat(nA, nC , nA, nB, n3, Ψ ) + V cat(nB, nA, nC , nA, n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ )

5 V cat(nA, nC , nB, nA, n3, Ψ ) + V cat(nA, nA, nB, nC , n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ )

6 V cat(nA, nC , nA, nB, n3, Ψ ) + V cat(nA, nA, nC , nB, n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nB, nA, nC , nA, n3, Ψ )

7 V cat(nB, nA, nA, nC , n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nA, nA, nB, nC , n3, Ψ ) + V cat(nA, nC , nB, nA, n3, Ψ )

8 V cat(nB, nA, nC , nA, n3, Ψ ) + V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nA, nA, nC , nB, n3, Ψ ) + V cat(nA, nC , nA, nB, n3, Ψ )

9 V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nB, nA, nA, nC , n3, Ψ ) + V cat(nA, nC , nB, nA, n3, Ψ ) + V cat(nA, nA, nB, nC , n3, Ψ )

10 V cat(nB, nC , nA, nA, n3, Ψ ) + V cat(nB, nA, nC , nA, n3, Ψ ) + V cat(nA, nC , nA, nB, n3, Ψ ) + V cat(nA, nA, nC , nB, n3, Ψ )

11 V cat(nA, nC , nA, nB, n3, Ψ ) + V cat(nC , nA, nA, nB, n3, Ψ ) + V cat(nA, nC , nB, nA, n3, Ψ ) + V cat(nC , nA, nB, nA, n3, Ψ )

12 V cat(nA, nC , nB, nA, n3, Ψ ) + V cat(nC , nA, nB, nA, n3, Ψ ) + V cat(nA, nC , nA, nB, n3, Ψ ) + V cat(nC , nA, nA, nB, n3, Ψ )

13 V sym(nA, nB, nA, nC , n3, Ψ )+ V sym(nA, nB, nC , nA, n3, Ψ )+ V sym(nB, nA, nA, nC , n3, Ψ )+ V sym(nB, nA, nC , nA, n3, Ψ )

14 V sym(nA, nA, nB, nC , n3, Ψ )+ V sym(nA, nC , nB, nA, n3, Ψ )+ V sym(nB, nA, nA, nC , n3, Ψ )+ V sym(nB, nC , nA, nA, n3, Ψ )

15 V sym(nA, nC , nB, nA, n3, Ψ )+ V sym(nA, nA, nB, nC , n3, Ψ )+ V sym(nB, nC , nA, nA, n3, Ψ )+ V sym(nB, nA, nA, nC , n3, Ψ )

16 V sym(nB, nA, nA, nC , n3, Ψ )+ V sym(nB, nC , nA, nA, n3, Ψ )+ V sym(nA, nA, nB, nC , n3, Ψ )+ V sym(nA, nC , nB, nA, n3, Ψ )

17 V sym(nB, nC , nA, nA, n3, Ψ )+ V sym(nB, nA, nA, nC , n3, Ψ )+ V sym(nA, nC , nB, nA, n3, Ψ )+ V sym(nA, nA, nB, nC , n3, Ψ )

18 V sym(nA, nC , nA, nB, n3, Ψ )+ V sym(nC , nA, nA, nB, n3, Ψ )+ V sym(nA, nC , nB, nA, n3, Ψ )+ V sym(nC , nA, nB, nA, n3, Ψ )
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of summation on nB and nC to −∞ < nB < nA and nA < nC < ∞,
respectively.

We now have

P[C6|Ψ ] =

18−
i=1

P[C6|Ti, Ψ ]P[Ti|Ψ ] (4)

and

P[E1, C6|Ψ ] =

18−
i=1

P[E1, C6|Ti, Ψ ]P[Ti|Ψ ]. (5)

Here, P[Ti|Ψ ] = 1/18 for all i because each labeled history of four
lineages is equally likely under the assumption of the coalescent
process that lineages join randomly going back in time. Note that
symmetries exist in V cat and V sym as a result of exchangeability of
certain nodes in the topologies that they consider. For asymmetric
topologies,

V cat(W , X, Y , Z, n3, Ψ ) = V cat(X,W , Y , Z, n3, Ψ ).

For symmetric topologies,

V sym(W , X, Y , Z, n3, Ψ ) = V sym(X,W , Y , Z, n3, Ψ )

= V sym(W , X, Z, Y , n3, Ψ )

= V sym(X,W , Z, Y , n3, Ψ ).

Using the list of probability contributions for each labeled history,
as given in Table 3, we can exploit these symmetries and collect
like terms across labeled histories to write Eq. (4) as

P[C6|Ψ ]

=

∞−
n3=−∞

∞−
nA=−∞

∞−
nB=−∞

∞−
nC=−∞

(4V cat(nA, nA, nB, nC , n3, Ψ )

+ 4V cat(nA, nA, nC , nB, n3, Ψ ) + 8V cat(nA, nB, nA, nC , n3, Ψ )

+ 8V cat(nA, nB, nC , nA, n3, Ψ ) + 8V cat(nA, nC , nA, nB, n3, Ψ )

+ 8V cat(nA, nC , nB, nA, n3, Ψ ) + 8V cat(nB, nC , nA, nA, n3, Ψ )

+ 8V sym(nA, nB, nA, nC , n3, Ψ )

+ 8V sym(nA, nC , nA, nB, n3, Ψ )

+ 4V sym(nA, nA, nB, nC , n3, Ψ )

+ 4V sym(nB, nC , nA, nA, n3, Ψ ))P[Ti|Ψ ]

(6)

and Eq. (5) as

P[E1, C6|Ψ ]

=

∞−
n3=−∞

∞−
nA=−∞

nA−1−
nB=−∞

∞−
nC=nA+1

(4V cat(nA, nA, nB, nC , n3, Ψ )

+ 4V cat(nA, nA, nC , nB, n3, Ψ ) + 8V cat(nA, nB, nA, nC , n3, Ψ )

+ 8V cat(nA, nB, nC , nA, n3, Ψ ) + 8V cat(nA, nC , nA, nB, n3, Ψ )

+ 8V cat(nA, nC , nB, nA, n3, Ψ ) + 8V cat(nB, nC , nA, nA, n3, Ψ )

+ 8V sym(nA, nB, nA, nC , n3, Ψ )

+ 8V sym(nA, nC , nA, nB, n3, Ψ )

+ 4V sym(nA, nA, nB, nC , n3, Ψ )

+ 4V sym(nB, nC , nA, nA, n3, Ψ ))P[Ti|Ψ ]. (7)

2.7. Integrating out the coalescence times

Finally, we integrate over the density of coalescence times
under the standard coalescent model. Under this model, the time
in coalescent time units (units of 2Ne generations) for i lineages
to coalesce to i − 1 lineages is exponentially distributed with rate
i
2


(Wakeley, 2009). Separate coalescence times are independent,

and we can write their joint distribution in the four-taxon

case as ρ(t2, t3, t4) =


2
2


e−


2
2


t2


3
2


e−


3
2


t3


4
2


e−


4
2


t4

=

18e−t2−3t3−6t4 . Using this density, we integrate to get

P[C6|θ ] =

∫
∞

0

∫
∞

0

∫
∞

0
P[C6|Ψ ]ρ(t2, t3, t4) dt2 dt3 dt4 (8)

and

P[E1, C6|θ ] =

∫
∞

0

∫
∞

0

∫
∞

0
P[E1, C6|Ψ ]ρ(t2, t3, t4) dt2 dt3 dt4. (9)

2.8. Implementing the computation

To calculate P[E1 ∪ E2|C6, θ] (Eq. (1)) in practice, we use two
approaches, a numerical method and a simulation-based method.

2.8.1. Numerical computation
First, we employ Gaussian quadrature to numerically esti-

mate the numerator (2P[E1, C6|θ ], Eq. (9)) and denominator
(P[C6|θ ], Eq. (8)) of P[E1 ∪ E2|C6, θ]. In order to compute the in-
tegrals in finite time, we estimate the expression e−tθ/2I|d|(tθ/2)
using the GNU Scientific Library (GSL) function gsl_sf_bessel_
In_scaled(|d|, tθ/2). Additionally, we truncate the bounds of
the infinite sums embedded in 2P[E1, C6|θ ] and P[C6|θ ] to
±10 instead of ±∞. These limits provide bounds on the size
that an allele can have at any particular node. We addition-
ally integrate all time parameters from 0 to 10 rather than
from 0 to ∞. For small values of θ , these approximations
are very accurate, as it is unlikely that an allele will mutate
more than a few steps away from its initial number of re-
peats. However, for large θ , the approximation will become less
accurate, as large numbers of mutations are likely to occur.
These mutations ultimately cause alleles to shift further from the
initial base size and beyond the arbitrary truncation in our approxi-
mation, so that the calculation fails to account for a non-trivial por-
tion of probability mass.

2.8.2. Simulation-based computation
In order to calculate P[E1 ∪ E2|C6, θ] accurately for large θ , we

obtain the ratio in Eq. (1) directly by simulating the coalescent and
mutation processes and tabulating the outcomes of interest. The
simulation proceeds as follows.

1. Beginning with k = 4 alleles, arbitrarily define two alleles to be
in one population and the other two alleles to be in the other
population.

2. Generate a random time to coalescence from an exponential
k
2


distribution.

3. Randomly choose two alleles to coalesce; set k = k − 1.
4. If k ≠ 1, go to 2.
5. For each branch of the genealogy, generate a randomnumber of

mutation events, x, from a Poisson distribution with rate θ t/2,
where t is the branch length.

6. Assign each mutation a value of +1 or −1 by sampling the
number of +1 mutations from a binomial(x, 1/2) distribution.
Those mutations not chosen to be +1 are assigned a value of
−1.

7. Determine the allele size of each of the four sampled alleles by
summing the net value of mutations from the root (allele size
0) down to the leaves.
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Fig. 3. The simulated frequency of occurrence of seven possible allele configura-
tions as a function of scaledmutation rate (θ ) on a log scale. 106 trees are simulated
per θ step. These simulations utilize four alleles, two in each of two populations.
Alleles are related by the coalescent, and they mutate according to the symmetric
stepwise mutation model.

8. Classify the collection of four alleles into one of the seven allele
configurations (Table 1).

9. If the alleles are in the C6 configuration, accept the simulation
and determine if the sizes of the private alleles (B and C) are on
the ends of the distribution (nB < nA < nC or nC < nA < nB). If
yes, count a success.

By repeating this algorithm until the number of accepted
simulations reaches some pre-specified number (we choose
1,000,000), we can estimate the probability that the private alleles
lie on the edges of the size distribution by simply dividing the
number of successes by the number of accepted simulations.

Note that the proportion of simulations that have configuration
C6 provides an estimate of P[C6|θ ]. Through a separate application
of 106 iterations of steps 1 to 8, we estimate the probabilities of all
seven configurations as functions of θ . These estimates appear in
Fig. 3. At small values of θ , we see that most simulations produce
configurationC1 ({AA/AA}), a sensible result becausemutations are
unlikely to happen for small θ . As θ grows larger, more mutations
occur, and we see that configurations with two or more distinct
alleles begin to rise in frequency. For large values of θ , mutations
happen so often that most trees have configuration C7 ({AB/CD}).

Fig. 4 shows, as a function of θ , the probability of interest,
P[E1 ∪ E2|C6, θ], calculated both by simulation and numerically.
Because we must truncate the internal sums for the numerical
computation, we plot several numerical calculations at varying
truncation values. Most of the numerical computations are quite
accurate at small θ : we expect few mutations in this case, and
the approximation made by truncating the sums will reasonably
covermost of the probabilitymass.We see that as θ becomes large,
the numerical results differ from the simulation-based result; at
large θ manymutations occur and the numerical approximation is
poorer.

We note that the probability of interest appears to level off well
above the naïve calculation of 1/3 as themutation rate grows large.
Furthermore, as θ tends toward zero, we see that the probability
remains above 1/3 and appears to tend toward 1/2. We can
prove this small-θ limiting result by considering a parsimony-style
approximation for our probability near θ = 0.
Fig. 4. The probability that the private alleles lie on the edges of the size
distribution conditional on production of an {AB/AC} configuration, as a function
of θ (log scale). This probability is plotted from simulations and for a range of
truncations for the infinite sums in numerically approximating Eq. (1). Simulation
results are based on 100,000 {AB/AC} trees simulated per θ step.

2.9. Small-θ approximation

We can make some simplifications to approximate our
calculation of P[E1 ∪ E2|C6, θ] (Eq. (1)) in the limit as θ becomes
small. For small θ , we expect fewer superfluousmutations to occur
along a branch with a change of d steps—that is, we expect fewer
mutations in one direction to be canceled bymutations in the other
direction. Therefore, for very small θ , we can approximate the
probability of changing d steps along a branch length t by setting
k = 0 in Eq. (2) so that no extra mutations occur. Denoting the
small-θ approximation to f (|d|, t, θ) by fs(|d|, t, θ), we then obtain

fs(|d|; t, θ) = e−tθ/2 (tθ/4)|d|

|d|!
.

Furthermore, for small θ , we also expect fewer mutations in
total to occur on the whole genealogy. The minimum number of
mutations needed to provide our pattern of interest, C6, is two (one
mutation on each of two branches). Therefore, for sufficiently small
θ , we expect to find nomore than twomutations on the entire tree.
The probability f (|d|; t, θ) in Eq. (2) will take one of three forms:

fs(|0|; t, θ) = e−tθ/2 (10)

or

fs(| − 1|; t, θ) = fs(|1|; t, θ) = e−tθ/2 tθ
4

. (11)

This situation is analogous to a problem in phylogenetics.
When rates of change are low, likelihood calculations on trees
that consider all possible changes among allelic states converge
to calculations of a parsimony score, as only changes of a single
unit along a branch have non-trivial likelihood (Felsenstein, 2004).
Similarly, our calculation of the probability that the private alleles
lie on the edges of the size distribution, considering all possible
states for allele sizes, is reduced in the small-θ case to a parsimony-
style approximation by replacing f (|d|; t, θ) with fs(|0|; t, θ) and
fs(|1|; t, θ). This parsimony approximation further eliminates the
sums over n3, nA, nB, and nC , making P[E1 ∪ E2|C6, θ] (Eq. (1))
tractable to analytically compute.

Examining all the ways of placing two mutations on one of the
18 topologies such that the {AB/AC} configuration is produced,
each placement will contribute some probability to either the
denominator in Eq. (1) or to both the denominator and numerator
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x1 = x4

x1 = x4

x1 = x4

Fig. 5. A small-θ ‘‘parsimony’’ approximation for calculating the probability that
private alleles occur on the edges of the size distribution, for the case of x1 = x4
with history 8. Alleles x1 and x2 are in population 1, and alleles x3 and x4 are in
population 2. In (A), the private alleles (±1) lie on the edges of the size distribution
(−1 < 0 < 1); however, in (B) and (C) the private alleles (±1, ±2) are not on the
two edges of the size distribution (−2 < −1 < 0 or 0 < 1 < 2).

in Eq. (1). As an example, consider history 8 from Fig. 1. We first
examine the four ways of getting configuration C6 by assignment
of the roles of A, B, and C to the alleles x1, x2, x3, and x4. We
then find all placements of two mutations on the tree that are
consistent with this configuration. Each placement will either
place the private alleles on both ends of the size distribution, or
the shared allele will be on one end. If the private alleles are on
both ends, then the term contributes to both the numerator and
the denominator. If the shared allele is on an end, then the term
contributes to the denominator only. Fig. 5 illustrates this approach
for the case of x1 = x4.

We can substitute fs for f in our definitions of V cat and V sym to
get the following small-θ versions of the probability of an arbitrary
set of allele sizes.

V cat
s (x1, x2, x3, x4, n3, Ψ )

= fs(|x4|; 2t2 + t3 + t4, θ) × fs(|x3|; t3 + t4, θ) × fs(|n3|; t3, θ)

× fs(|n3 − x2|; t4, θ) × fs(|n3 − x1|; t4, θ)

V sym
s (x1, x2, x3, x4, n3, Ψ )

= fs(|n3|; 2t2 + t3, θ) × fs(|n3 − x4|; t4, θ) × fs(|n3 − x3|; t4, θ)

× fs(|x2|; t3 + t4, θ) × fs(|x1|; t3 + t4, θ).

Each possible placement of twomutations on one of the 18 labeled
histories has a probability that falls into one of 12 equivalence
classes as a result of symmetries in V cat

s and V sym
s . We denote these

classes by σi (i ∈ {1, . . . , 12}), as defined in Table 4.
By tabulating in Table 5 the contributions from each class to

the numerator and denominator of the probability for each of
the 18 labeled histories, we can now compute the numerator,
2P[E1, C6|θ ], in Eq. (1) as∫

∞

0

∫
∞

0

∫
∞

0
ρ(t2, t3, t4)

1
18

(32σ1(t2, t3, t4, θ)

+ 32σ2(t2, t3, t4, θ) + 16σ3(t2, t3, t4, θ) + 16σ6(t2, t3, t4, θ)

+ 32σ8(t2, t3, t4, θ) + 8σ9(t2, t3, t4, θ)

+ 8σ11(t2, t3, t4, θ)) dt2 dt3 dt4, (12)
Table 4
Definitions for the 12 classes of probability in the small-θ
‘‘parsimony’’ approximation.

Class Defined probability

1 σ1(Ψ ) = V cat
s (1, 0, 0, 0, 1, Ψ )

2 σ2(Ψ ) = V cat
s (1, 0, 0, 1, 0, Ψ )

3 σ3(Ψ ) = V cat
s (0, 0, 0, 1, 1, Ψ )

4 σ4(Ψ ) = V cat
s (0, 0, 1, 1, 0, Ψ )

5 σ5(Ψ ) = V cat
s (0, 0, 1, 0, 1, Ψ )

6 σ6(Ψ ) = V cat
s (1, 1, 0, 0, 0, Ψ )

7 σ7(Ψ ) = V cat
s (1, 0, 1, 0, 0, Ψ )

8 σ8(Ψ ) = V sym
s (1, 0, 0, 1, 0, Ψ )

9 σ9(Ψ ) = V sym
s (0, 0, 0, 1, 1, Ψ )

10 σ10(Ψ ) = V sym
s (0, 0, 1, 1, 0, Ψ )

11 σ11(Ψ ) = V sym
s (1, 1, 0, 0, 0, Ψ )

12 σ12(Ψ ) = V sym
s (1, 0, 1, 0, 0, Ψ )

which evaluates to

θ2(648 + 990θ + 489θ2
+ 79θ3)

18(1 + θ)2(2 + θ)3(3 + θ)3
. (13)

The denominator, P[C6|θ ], of Eq. (1) is∫
∞

0

∫
∞

0

∫
∞

0
ρ(t2, t3, t4)

1
18

(32σ1(t2, t3, t4, θ)

+ 32σ2(t2, t3, t4, θ) + 16σ3(t2, t3, t4, θ)

+ 16σ4(t2, t3, t4, θ) + 16σ5(t2, t3, t4, θ) + 16σ6(t2, t3, t4, θ)

+ 32σ7(t2, t3, t4, θ) + 32σ8(t2, t3, t4, θ) + 8σ9(t2, t3, t4, θ)

+ 16σ10(t2, t3, t4, θ) + 8σ11(t2, t3, t4, θ)

+ 16σ12(t2, t3, t4, θ)) dt2 dt3 dt4, (14)

which evaluates to

θ2(432 + 630θ + 295θ2
+ 45θ3)

6(1 + θ)2(2 + θ)3(3 + θ)3
. (15)

Taking the ratio of expressions (13) and (15) and evaluating the
limit as θ tends to 0 gives us

lim
θ→0

P[E1 ∪ E2|C6, θ] = lim
θ→0

(648 + 990θ + 489θ2
+ 79θ3)

3(432 + 630θ + 295θ2 + 45θ3)

=
1
2
. (16)

This result shows that, for low mutation rates, we expect the
private alleles in an {AB/AC} sample of size four to be on the
ends of the size distribution approximately 1/2 of the time. This
is substantially more often than the value of 1/3 predicted when
the relatedness of the alleles was not taken into account.

3. Arbitrary divergence time

Extending our two-population model, we now consider two
populations separated by arbitrary divergence time td (Fig. 6). Note
that as shown in Fig. 6, the definitions of t2, t3, and t4 differ slightly
from those used in the calculations for the td = 0 case in Fig. 2. We
can formulate Eq. (1) for arbitrary divergence time td and compute

P[E1 ∪ E2|C6, θ, td] =
2P[E1, C6|θ, td]

P[C6|θ, td]
. (17)

Detailed derivations appear in Appendix A. We calculate Eq. (17)
numerically by Gaussian quadrature and by simulation using
methods similar to those used for the td = 0 case (Appendix B).

Fig. 7 shows, as a function of θ and td, the probability that
the private alleles lie on the edges of the size distribution,
as obtained using the simulation in Appendix B. We see that
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Table 5
The small-θ approximation contributions to the numerator (Eq. (12)) and denominator (Eq. (14)) of the probability that the private alleles lie on the edges, for each labeled
history.

History number History Contribution to numerator Contribution to denominator

1 4σ1 + 4σ2 4σ1 + 4σ2

2 4σ1 + 4σ2 4σ1 + 4σ2

3 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

4 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

5 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

6 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

7 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

8 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

9 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

10 2σ1 + 2σ2 + 2σ3 + 2σ6 2σ1 +2σ2 +2σ3 +2σ4 +2σ5 +2σ6 +4σ7

11 4σ1 + 4σ2 4σ1 + 4σ2

12 4σ1 + 4σ2 4σ1 + 4σ2

13 8σ8 8σ8

14 4σ8 + 2σ9 + 2σ11 4σ8 + 2σ9 + 4σ10 + 2σ11 + 4σ12

15 4σ8 + 2σ9 + 2σ11 4σ8 + 2σ9 + 4σ10 + 2σ11 + 4σ12

16 4σ8 + 2σ9 + 2σ11 4σ8 + 2σ9 + 4σ10 + 2σ11 + 4σ12

17 4σ8 + 2σ9 + 2σ11 4σ8 + 2σ9 + 4σ10 + 2σ11 + 4σ12

18 8σ8 8σ8
throughout the parameter space, the probability always exceeds
the naïve expectation of 1/3. For all values of θ , we observe that
increasing the divergence time between the populations increases
the probability of finding the private alleles on the edges of the size
distribution. Furthermore, we see that for small θ , the probability
that private alleles in a sample of size four are found on the edges
of the size distribution quickly tends toward 1 as td increases. By
applying the small-θ approximation of Eqs. (10) and (11), we can
show that this probability does indeed converge to 1 as td tends to
infinity.

Conditioning on each of the four possible scenarios depicted
in Fig. 6, we follow an approach similar to the td = 0 small-
θ derivation to obtain a small-θ approximation for the case of
arbitrary divergence time (Appendix C). The resulting limiting
expression for this approximation as θ tends to 0 is

lim
θ→0

P[E1 ∪ E2|C6, θsmall, td] =
3e2td − 2td − 2

3e2td − 1
. (18)

Eq. (18) is sensible in that it agrees with the small-θ result of
1/2 at td = 0 (Eq. (16)), and it approaches the conditional result
P[E1 ∪ E2|C6, θsmall, td, E11] = 1 as td increases without bound
(Eq. (C.6)). In Fig. 8, we plot the function of td in Eq. (18) along
with simulated results at increasingly small θ . We see that for
each θ , the probability that the private alleles lie on the edges of
the size distribution increases monotonically as a function of the
divergence time, and that the simulatedprobability approaches the
limiting expression as θ approaches 0.
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Fig. 6. The four types of coalescent scenarios with td > 0, with their coalescent
time parameterizations. In scenario E11, t3 is defined as the time to coalescence of
the two lineages in population 1, and t4 is defined as the time to coalescence of the
two lineages in population 2.
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Fig. 7. Simulated probability that the private alleles lie on the edges of the size
distribution, conditional on production of an {AB/AC} configuration. The plot shows
this probability as a function of θ (log scale) and td . 106

{AB/AC} trees are simulated
for each choice of θ and td .

4. Properties of the probability that private alleles lie on the
edges

In order to investigate the probability that private alleles lie
on the edges of the size distribution, we started with a naïve
argument that suggests that this should happen 1/3 of the time
in a sample of four alleles, two from each of two populations.
However, this naïve argument ignored the relatedness of the four
alleles. We have presented a calculation of the desired probability
using a coalescent framework for gene relatedness, together with
the symmetric stepwise mutation model. When fixing td, we see a
monotonic decrease in the probability that the private alleles lie on
the edges as θ grows, but for every collection of parameter values
evaluated (scaled mutation rate θ and divergence time td between
the two populations), the probability remains greater than 1/3.

Furthermore, the probability appears to stay well above 1/3
even for very large θ . For large θ , we might expect so many
mutations to occur on the tree that the allele sizes would not be
correlated, effectively ‘‘erasing’’ the genealogical relatedness. In
Fig. 8. Simulated small-θ probabilities that the private alleles lie on the edges of
the size distribution conditional on production of an {AB/AC} configuration, and the
corresponding limiting probability computed analytically for θ → 0 (Eq. (18)), as
functions of td . The simulation approach follows that of Fig. 7 and is described in
Appendix B.

Fig. 9. Relative difference between mean coalescence times conditional on
obtaining configuration C6 (t̄C6i ) and unconditional mean coalescence times (t̄i), as
a function of θ (log scale). The mean conditional coalescence times were calculated
by taking the mean of 106 simulated coalescence times in scenarios that produced
configuration C6 .

this case, we would expect the naïve prediction of 1/3 to hold.
However, in order to observe a C6 configuration, two alleles must
be identical by state. Thus, when conditioning on configuration
C6, the distribution of branch lengths is biased toward shorter
branches compared to the unconditional distribution, and even for
large θ , the number of mutations tends to be small enough that
genealogical relatedness remains important.

Holding td fixed at 0, Fig. 9 plots (t̄C6i − t̄i)/t̄i versus θ , where
t̄i is the unconditional expectation of ti under the coalescent
and t̄C6i is the conditional expectation given configuration C6,
as obtained in 106 simulations that produced this configuration.
We see that as θ increases, the relative difference between the
conditional mean coalescence times given configuration C6 and
the unconditional mean coalescence times becomes increasingly
negative. Most notably, t4 becomes particularly short, reflecting
the observation that for large θ , scenarios with configuration C6
often have a ‘‘cherry’’ with short external branches of length t4 on
which no mutations occur.

In the small-θ case, we find that for td = 0, the probability
that the private alleles lie on the edges in a sample of size four
approaches 1/2 as θ tends to zero. By letting the divergence time
between the two populations exceed zero (td > 0), we see a
monotonic increase in this probability. In fact, in the small-θ limit,
the probability that the private alleles lie on the edges in a sample
of size four tends to 1 as td tends to infinity.
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Fig. 10. The empirical probability that private alleles lie on the edges of the size distribution in a sample of size four from a pair of populations. Plotted are pairwise
calculations of this frequency for all 53 worldwide populations from the Human Genome Diversity Panel, arranged in major geographic regions. African, Middle Eastern,
European, Central/South Asian, East Asian, Oceanian, and American populations are arranged by color in the labels. Blue represents a lower probability, and red represents
a higher probability.
These results show that the genealogical history of a set
of microsatellite alleles is an important factor in determining
the prevalence of private alleles in the ends of the allele size
distribution, even under circumstances in which we might expect
the genealogy to be relatively unimportant. Our calculations also
predict that the probability that private alleles lie on the edges of
the allele size distribution grows as the divergence time between
populations increases.

5. Application to data

To test the prediction that the probability that private alleles
lie on the edges of the allele size distribution grows as the
divergence time between populations grows, we analyzed data
on microsatellites at 783 loci covering 1048 individuals in 53
worldwide populations from the Human Genome Diversity Panel
(Rosenberg et al., 2005). Computations with these microsatellites
have established a general increase of genetic differentiation (and
hence, divergence time) with increasing geographical distance
between a pair of populations (Ramachandran et al., 2005). Thus,
although a strict divergence model is only an approximation
to the population histories, we can consider the pairwise
comparisons of populations that are geographically near each
other to represent populations that diverged recently. Similarly,
we can consider the pairwise comparisons of populations that are
geographically distant from each other to represent populations
that diverged relatively farther in the past. Pairwise comparisons
of a population with itself can be interpreted as the case in which
a population divergence happened at time td = 0 in the past.
Based on the theory we have developed, we expect that pairs
of geographically separated populations will produce a higher
probability that the private alleles will lie on the edges of the
size distribution. Similarly, we expect smaller probabilities for
pairs of geographically proximate populations and the smallest
probabilities for comparisons of populations with themselves. We
further expect that measures of genetic differentiation such as FST
will correlate with this probability as well, since these measures
can be taken as a loose proxy for the divergence time between two
populations.

To estimate the empirical frequency that the private alleles in
a sample of size four lie on the edges of the size distribution, we
perform the following analysis. For each population at each locus,
we estimate the allele frequency distribution by counting the total
number of observations of each distinct allele size and dividing by
the total number of observations in the population. For a pair of
populations, we then draw two alleles from the empirical allele
frequency distribution in each population. If the set of four alleles
has an {AB/AC} configuration, we accept the draw and determine
if the private alleles lie on the edges of the size distribution. If so,
then the draw is counted as a success. We repeatedly draw sets of
four alleles until 100,000 draws are accepted. Finally, we calculate
the empirical frequency that the private alleles lie on the edges of
the size distribution for a locus by dividing the number of successes
by the number of acceptances, and we calculate the mean of this
empirical frequency across loci. By performing this analysis, we get
an estimate for the mean frequency that private alleles lie on the
edges of the size distribution.

The results of this analysis are plotted in Fig. 10, and we find
that real populations do indeed follow the expected theoretical
trend. The probabilities that private alleles lie on the edges range
from 0.3759 to 0.4595. African populations paired with each other
have lower probabilities, and a trend toward higher probabilities
occurs as African populations are paired with other populations
that are more geographically distant. The pairings of African
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Fig. 11. FST vs. the empirical frequency with which private alleles in a sample
of size four lie on the edges of the size distribution. Each point represents a
pair among 53 worldwide populations from the Human Genome Diversity Panel,
excluding comparisons involving native American populations and comparisons of
populations with themselves. Pearson’s r = 0.9333.

populations with native American populations (representing the
most genetically distant pairs) have the highest probabilities.
Furthermore, pairings close to the diagonal in Fig. 10 tend to be
more closely related than pairings farther away from the diagonal,
and for these pairs, we see mostly low probabilities. Finally, the
main diagonal represents the analysis of a population paired with
itself; this is interpreted as comparing two populations with a
divergence time of td = 0. We find that probabilities along the
diagonal are the lowest among all pairs considered.

Because we also expect the frequency of private alleles on
the edges to correlate with measures of genetic differentiation,
we calculate pairwise FST between populations using Eq. (5.3)
from Weir (1996). In Fig. 11, FST values are plotted against the
frequency with which private alleles occur on the edges of the
size distribution, and we find a very tight correlation (r =

0.9333). Thus, our empirical calculations show that our model for
explaining the size distribution of private microsatellite alleles is
able to predict phenomena observed in real data.

6. Discussion

We have modeled the phenomenon of private microsatellite
alleles lying on the edges of the allele size distribution in order
to explain an observation by Wang et al. (2007) that they occupy
these locations more often than is expected by chance. Using
a simple two-population model with sample size four, we have
provided a naïve argument, inwhichwe expect the probability that
privatemicrosatellite alleles lie on the edges of the size distribution
to be 1/3. Using a coalescent model with symmetric stepwise
mutation to explicitly calculate this probability as a function of two
parameters (mutation rate θ and divergence time td), we find that
this probability appears to always exceed 1/3. Furthermore, the
model predicts that the probability that private alleles lie on the
edges of the size distribution grows larger as the divergence time
between populations increases.We have found that this prediction
holds in an analysis of worldwide microsatellite data in humans.

Intuitively, we can understand why P[E1 ∪ E2|C6, θ, td] might
be expected to exceed the naïve expectation by considering the
process by which private alleles are generated. When an ancestral
population splits into two groups, all allele sizes present in the
population become shared alleles in the descendant populations,
and these shared alleles define the center of the allele size
distribution. As allele sizes diffuse away from the center in the
separate descendant populations, mutations in either population
toward the edges of the size distribution are likely to generate
alleles that are novel and therefore private. Conversely, mutations
that push alleles toward the center of the size distribution are likely
to produce sizes that already exist in both populations, as a result of
the shared descent of central allele sizes. Furthermore, to produce
shared alleles on an edge of the size distribution, unless the edge
allele size is inherited by descent from the ancestral population
in both descendant groups, alleles from each population must
separately mutate to the same size on the edge. Because more
mutations in total are required for producing such a shared allele
on the edge compared to the number required in one population
to produce a private allele on the edge, we expect private alleles
to lie on the edges of the size distribution more often than is
predicted under the assumption that there is no relationship
between privacy and allele size.

This work augments the coalescent theory of microsatellite
markers by providing predictions about the properties of private
alleles in a simple model with sample size four. Previous work has
examined additional quantities in the case of a four-allele sample.
For example, Kimmel and Chakraborty (1996) and Pritchard and
Feldman (1996) studied the expectation E[(Xi − Xk)

2(Xj − Xℓ)
2
]

for random allele sizes Xi, Xj, Xk, and Xℓ in a stepwise mutation
model. Zhang and Rosenberg (2007) studied the genealogies of
duplicated microsatellites in a model with four sampled alleles,
two each for two paralogous microsatellite loci. Together with
these other efforts, ourwork demonstrates that analytical formulas
can sometimes be obtained in coalescent-based microsatellite
models of non-trivial size.

While our main goal has been to explore the properties of our
simple model, the model may potentially enable the inference
of θ and td. For each of a collection of loci whose mutational
characteristics are assumed to be identical, the probability that
private alleles lie on the edges of the size distribution could
be estimated from data by repeatedly sampling alleles from the
observed allele frequency distributions for pairs of populations.
Using this empirical estimate, a likelihood surface could then be
constructed to jointly estimate θ and td. This approach might not
produce identifiable estimates; however, if θ has already been
estimated by another method or if additional summary statistics
are combined with a private allele statistic, a potentially viable
method for estimating td might be constructed, considering the
dramatic effect that this parameter has on the probability that
private alleles lie on the edges of the size distribution.

We conclude with a discussion of model limitations. Because of
the complexity of the probability calculations, we have restricted
our attention to a sample of size four. We have assumed a simple
demographic model of two populations, in which population
sizes are equal and no migration occurs after the populations
diverge. The simple stepwise mutation model assumes symmetry
in the direction of mutation and independence of the mutation
rate with allele size, and both the demographic model and the
mutation model likely reflect conditions that are not strictly met
in the human population example that we consider. Indeed, more
complex mutation models, allowing for directional bias, multistep
mutations, length-dependent mutation rates, or a combination of
these factors could potentially be considered (e.g. Calabrese and
Durrett, 2003; Whittaker et al., 2003; Watkins, 2007). In general,
however, we did not need a more complex model to explain
the core observation that private alleles frequently lie on the
edges of the size distribution. While the true demographic and
mutational phenomena are undoubtedly more complicated than
our model captures, we are still able to observe that as predicted,
the probability that privatemicrosatellite alleles lie on the edges of
the size distribution in a sample of four alleles correlates with the
genetic differentiation between pairs of populations.
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Appendix A. Derivation for arbitrary divergence time

The expression that must be calculated in order to obtain
the probability that the private alleles lie on the edges of the
size distribution for arbitrary td appears in Eq. (17). To perform
the calculation in Eq. (17), we must utilize the probability that
two lineages reduce to one lineage during time td as well as the
probability that two lineages survive until td. Under the coalescent
(Wakeley, 2009), these probabilities are g21(td) = 1 − e−td and
g22(td) = e−td , where gij(td) denotes the probability under the
coalescent that i lineages reduce to j lineages during time td.

We can partition our probability calculation into four pieces
corresponding to the four coalescent scenarios possible by time td
(Fig. 6). First, in each population, the two lineages could coalesce
more recently than td (event E11). Second, the two lineages in
population 1 could coalesce more recently than td, and the two
lineages in population 2 could survive to td (event E12). Third,
the two lineages in population 1 could survive to td, and the
two lineages in population 2 could coalesce more recently than
td (event E21). Finally, in each population, the two lineages could
survive to td (event E22). These four events happen with the
following probabilities:

P[E11|td] = (g21(td))2 = (1 − e−td)2, (A.1)

P[E12|td] = g21(td)g22(td) = (1 − e−td)e−td , (A.2)

P[E21|td] = g22(td)g21(td) = e−td(1 − e−td), (A.3)

P[E22|td] = (g22(td))2 = e−2td . (A.4)

We then calculate P[E1 ∪ E2|C6, θ, td] by separately conditioning
on E11, E12, E21, and E22 to get

P[E1 ∪ E2|C6, θ, td]

=

2
2∑

i=1

2∑
j=1

P[E1, C6|θ, td, Eij]P[Eij|θ, td]

2∑
i=1

2∑
j=1

P[C6|θ, td, Eij]P[Eij|θ, td]
, (A.5)

in which

P[E1, C6|θ, td, Eij] =

∫
∞

0

∫
∞

0

∫
∞

0
P[E1, C6|t2, t3, t4, θ, td, Eij]

× ρij(t2, t3, t4)dt2 dt3 dt4, (A.6)

P[C6|θ, td, Eij] =

∫
∞

0

∫
∞

0

∫
∞

0
P[C6|t2, t3, t4, θ, td, Eij]

× ρij(t2, t3, t4) dt2 dt3 dt4, (A.7)
P[E1, C6|t2, t3, t4, θ, td, Eij]

=

∞−
n3=−∞

∞−
nA=−∞

nA−1−
nB=−∞

∞−
nC=nA+1

VEij(nA, nB, nC , n3, Ψ ), (A.8)

and

P[C6|t2, t3, t4, θ, td, Eij]

=

∞−
n3=−∞

∞−
nA=−∞

∞−
nB=−∞

∞−
nC=−∞

VEij(nA, nB, nC , n3, Ψ ). (A.9)

We can determine the values of the conditional probability
VEij of the node allele sizes and the conditional coalescence time
Table A.1
The reparameterizations of Ψ for the events Eij .

Event Ψ = (τ , θ)

E11 τ = (t2 + td −max(t3, t4),max(t3, t4)−min(t3, t4),min(t3, t4))
E12 τ = (t2, t3 + td − t4, t4)
E21 τ = (t2, t3 + td − t4, t4)
E22 τ = (t2, t3, t4 + td)

density ρij by examining which labeled histories are possible for
each Eij. For example, for event E11 both pairs of lineages coalesce
more recently than time td, and only symmetric histories are
possible. Furthermore, x1 will always coalesce with x2 and x3 will
always coalesce with x4 in this scenario, leaving only two possible
equiprobable histories (histories 13 and 18 in Fig. 1). Therefore,
we only sum over the V sym terms that are associated with these
histories.

In addition, for each event, compared to the case of td = 0, we
must reparameterize the branch lengths of the histories to account
for changes due to forced survival of lineages to time td. For event
E11, we reparameterize by setting Ψ = (τ , θ) with τ = (t2 + (td −

max(t3, t4)),max(t3, t4)−min(t3, t4),min(t3, t4)), as illustrated in
Fig. 6 and tabulated in Table A.1. By conditioning on one of the four
events E11, E12, E21, or E22, the density of coalescence times differs
from the corresponding density ρ(t2, t3, t4) defined in the td = 0
case.

For event E11, the distribution of coalescence times is ρ11(t2, t3,
t4) = ρ11t2(t2)ρ11t3(t3)ρ11t4(t4), where ρ11t2(t) = e−t and
ρ11t3(t) = ρ11t4(t) = 1t<tde

−t/(1 − e−td). We can then write

VE11 =
1
2
(V sym(nA, nB, nA, nC , n3, Ψ )

+ V sym(nA, nB, nC , nA, n3, Ψ ) + V sym(nB, nA, nA, nC , n3, Ψ )

+ V sym(nB, nA, nC , nA, n3, Ψ ) + V sym(nA, nA, nB, nC , n3, Ψ )

+ V sym(nA, nC , nB, nA, n3, Ψ ) + V sym(nB, nA, nA, nC , n3, Ψ )

+ V sym(nB, nC , nA, nA, n3, Ψ )). (A.10)

We proceed with similar arguments for events E12, E21, and E22.
The corresponding values for Ψ are tabulated in Table A.1, and the
values for VEij and ρij are tabulated in Table A.2.

Appendix B. Implementing the computation for arbitrary di-
vergence time

To implement the calculation of P[E1 ∪ E2|C6, θ, td] (Eq. (17))
derived in Appendix A, we use Gaussian quadrature and a
simulation-based approach. These approaches are analogous to the
approaches that we used in the case of td = 0.

B.1. Numerical computation

As in the td = 0 case, we use Gaussian quadrature to nu-
merically evaluate P[E1, C6|θ, td, Eij] (Eq. (A.6)) and P[C6|θ, td, Eij]
(Eq. (A.7)), once again estimating the expression e−tθ/2I|d|(tθ/2)
using the GNU Scientific Library (GSL) function gsl_sf_bessel_
In_scaled(|d|, tθ/2). We use the same value as in the td = 0
case (±10) to truncate the infinite sums in Eqs. (A.8) and (A.9). Ad-
ditionally, we again integrate all time dimensions in Eqs. (A.6) and
(A.7) from 0 to 10 rather than from 0 to∞. As in the case of td = 0,
these calculations are very accurate for small values of θ and less
accurate for large values of θ (not shown).
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Table A.2
The probabilities of node allele sizes and the coalescence time densities conditional on events Eij .

Event VEij ρij(t2, t3, t4, td) = ρijt2 (t2, td)ρijt3 (t3, td)ρijt4 (t4, td)

ρijt2 (t, td) ρijt3 (t, td) ρijt4 (t, td)

E11 1
2 (4V sym(nA, nB, nA, nC , n3, Ψ ) + 4V sym(nA, nC , nA, nB, n3, Ψ )) e−t 1t<td e

−t/(1 − e−td ) 1t<td e
−t/(1− e−td )

E12 1
3 (4V cat(nA, nB, nA, nC , n3, Ψ ) + 4V cat(nA, nB, nC , nA, n3, Ψ )

+ 4V sym(nA, nC , nA, nB, n3, Ψ ))

e−t 3e−3t 1t<td e
−t/(1− e−td )

E21 1
3 (4V cat(nA, nB, nA, nC , n3, Ψ ) + 4V cat(nA, nB, nC , nA, n3, Ψ )

+ 4V sym(nA, nC , nA, nB, n3, Ψ ))

e−t 3e−3t 1t<td e
−t/(1− e−td )

E22 1
18 (4V cat(nA, nA, nB, nC , n3, Ψ ) + 4V cat(nA, nA, nC , nB, n3, Ψ )

+ 8V cat(nA, nB, nA, nC , n3, Ψ ) + 8V cat(nA, nB, nC , nA, n3, Ψ )

+ 8V cat(nA, nC , nA, nB, n3, Ψ ) + 8V cat(nA, nC , nB, nA, n3, Ψ )

+ 8V cat(nB, nC , nA, nA, n3, Ψ ) + 8V sym(nA, nB, nA, nC , n3, Ψ )

+ 8V sym(nA, nC , nA, nB, n3, Ψ ) + 4V sym(nA, nA, nB, nC , n3, Ψ )

+ 4V sym(nB, nC , nA, nA, n3, Ψ ))

e−t 3e−3t 6e−6t
B.2. Simulation-based computation

As in the td = 0 case, we are able to accurately estimate
the quantity P[E1 ∪ E2|C6, θ, td] (Eq. (17)), directly obtaining the
ratio 2P[E1, C6|θ, td]/P[C6|θ, td] by simulating the coalescent and
mutation processes and counting the outcomes of interest. The
simulation proceeds as follows.
1. Beginning with k = 4 alleles, arbitrarily define two alleles to

be in one population and the other two alleles to be in the other
population.

2. Randomly choose an event E11, E12, E21, or E22 based on their
relative probabilities conditional on td (Eqs. (A.1)–(A.4)).

3. If event E11 is chosen:
(a) Generate a randomtime to coalescence fromanexponential

2
2


distribution conditional on being less than td.

(b) Coalesce the pair of lineages in population 1; set k = k−1.
(c) Generate a randomtime to coalescence fromanexponential

2
2


distribution conditional on being less than td.

(d) Coalesce the pair of lineages in population 2; set k = k−1.
4. If event E12 or E21 is chosen:

(a) Generate a randomtime to coalescence fromanexponential
2
2


distribution conditional on being less than td.

(b) Coalesce a pair of lineages in population 1 (if event E12) or
population 2 (if event E21); set k = k − 1.

5. Extend all remaining lineages up to td.
6. Generate a random time to coalescence from an exponential

k
2


distribution.

7. Randomly choose two lineages to coalesce; set k = k − 1.
8. If k ≠ 1, go to 6.
9. For each branch of the genealogy, generate a random number

of mutation events, x, from a Poisson distribution with rate
θ t/2, where t is the branch length.

10. Assign each mutation a value of +1 or −1 by sampling the
number of +1 mutations from a binomial(x,1/2) distribution.
Those mutations not chosen to be +1 are assigned a value of
−1.

11. Determine the allele size of each of the four sampled alleles by
summing the net value of mutations from the root (allele size
0) down to the leaves.

12. Classify the collection of four alleles into one of the seven allele
configurations (Table 1).

13. If the alleles are in the C6 configuration, accept the simulation
and determine if the sizes of the private alleles (B and C) are on
the ends of the distribution (nC < nA < nB or nB < nA < nC ).
If yes, count a success.
As in the td = 0 case, after the number of accepted simulations

reaches some pre-specified number (we choose 1,000,000), we
estimate the probability of the private alleles occurring on the
edges of the size distribution by dividing the number of successes
by the number of accepted simulations.
Appendix C. Small-θ approximation for arbitrary divergence
time

With td > 0, we can consider a small-θ approximation to the
probability that the private alleles lie on the edges in a similar
way to the corresponding calculation with td = 0. By considering
a fixed td, we proceed as before, counting the contributions of
each labeled history to the numerator and denominator in Eq. (17).
The probability distribution of labeled histories depends on td,
and the 18 histories are no longer equiprobable when td > 0.
Conditional on one of the events {E11, E12, E21, E22}, however, we
can determine the possible histories and weight the probability
contributions of these histories to the numerator and denominator
as before.

Thus, following Eq. (A.5) for the small-θ case, we wish to
calculate

P[E1 ∪ E2|C6, θsmall, td]

=

2∑
i=1

2∑
j=1

P[E1 ∪ E2, C6|θsmall, td, Eij]P[Eij|θsmall, td]

2∑
i=1

2∑
j=1

P[C6|θsmall, td, Eij]P[Eij|θsmall, td]
. (C.1)

Note that although E1 and E2 have the same probability, in this
calculation it is convenient to calculate E1 ∪ E2 directly. We do
this by tabulating contributions to the numerator and denominator
conditional on each event Eij (Table 5), reparameterizing Ψ to
augment certain branch lengths by amounts dependent on td
(Table A.1).

First, consider event E11. If both pairs of lineages coalesce
more recently than the population divergence time, then the only
possible histories are 13 and 18, and the conditional contribution
to the denominator of Eq. (C.1) is

P[C6|θsmall, td, E11]

=

∫
∞

0

∫
∞

0

∫
∞

0

1
2
16σ8(t2 + td − tmax, tmax

− tmin, tmin, θ)ρE11(t2, t3, t4, td)dt2 dt3 dt4, (C.2)

where tmax = max(t3, t4) and tmin = min(t3, t4). Here, we obtain
the coefficients for each σi by referencing histories 13 and 18 in
Table 5, and we use the conditional density of coalescence times
ρE11(t2, t3, t4, td) from Table A.2. Eq. (C.2) also provides the P[E1 ∪

E2, C6|θsmall, td, E11] term in the numerator, because for histories 13
and 18, at small θ , the private alleles always lie on the edges of the
size distribution.

Next, consider event Eij (i ≠ j). If the two lineages in one
population coalesce more recently than the divergence time, and
the two lineages in the other population survive to the divergence
time, then the only possible histories are 1, 2, and 18 for E12
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or 11, 12, and 13 for E21. Because E12 and E21 differ only in
which population contains the coalescence more recent than
the population divergence, they have the same probability. The
conditional contribution to the denominator for either event is
then

P[C6|θsmall, td, Eij]

=

∫
∞

0

∫
∞

0

∫
∞

0

1
3
(8σ1(t2, t3 + td − t4, t4, θ)

+ 8σ2(t2, t3 + td − t4, t4, θ) + 8σ8(t2, t3 + td − t4, t4, θ))

× ρEij(t2, t3, t4, td)dt2 dt3 dt4, (C.3)

where the σi coefficients are taken from Table 5 using either set
of histories (1, 2, and 18 for E12 or 11, 12, and 13 for E21) and
ρEij(t2, t3, t4, td) is taken from Table A.2. Eq. (C.3) is also equal to
the P[E1 ∪ E2, C6|θsmall, td, Eij] term in the numerator, because for
either set of histories, at small θ , the private alleles always lie on
the edges of the size distribution.

For event E22, if in both populations the two lineages survive
to the divergence time, then all 18 histories are possible. The
conditional contribution to the denominator is

P[C6|θsmall, td, E22] =

∫
∞

0

∫
∞

0

∫
∞

0

1
18

(32σ1(t2, t3, t4 + td, θ)

+ 32σ2(t2, t3, t4 + td, θ) + 16σ3(t2, t3, t4 + td, θ)

+ 16σ4(t2, t3, t4 + td, θ) + 16σ5(t2, t3, t4 + td, θ)

+ 16σ6(t2, t3, t4 + td, θ) + 32σ7(t2, t3, t4 + td, θ)

+ 32σ8(t2, t3, t4 + td, θ) + 8σ9(t2, t3, t4 + td, θ)

+ 16σ10(t2, t3, t4 + td, θ) + 8σ11(t2, t3, t4 + td, θ)

+ 16σ12(t2, t3, t4 + td, θ))ρE22(t2, t3, t4)dt2 dt3 dt4 (C.4)

and the conditional contribution to the numerator is

P[E1 ∪ E2, C6|θsmall, td, E22]

=

∫
∞

0

∫
∞

0

∫
∞

0

1
18

(32σ1(t2, t3, t4 + td, θ)

+ 32σ2(t2, t3, t4 + td, θ) + 16σ3(t2, t3, t4 + td, θ)

+ 16σ6(t2, t3, t4 + td, θ) + 32σ8(t2, t3, t4 + td, θ)

+ 8σ9(t2, t3, t4 + td, θ) + 8σ11(t2, t3, t4 + td, θ))

× ρE22(t2, t3, t4)dt2 dt3 dt4, (C.5)

where theσi coefficients are fromTable 5 andρE22(t2, t3, t4) is from
Table A.2.

We can understand how Eq. (C.1) will behave for large
values of td by considering the behavior of P[Eij|td] (Eqs. (A.1)–
(A.4)) as td tends toward ∞. Independently of the value of
θ , when the divergence time between populations grows very
large, we expect each pair of lineages to always coalesce before
the population divergence (event E11). Taking the limits of
Eqs. (A.1)–(A.4), limtd→∞ P[E11|td] = 1 and limtd→∞ P[E12|td] =

limtd→∞ P[E21|td] = limtd→∞ P[E22|td] = 0. Thus as td tends to ∞,
Eq. (C.1) reduces to

P[E1 ∪ E2|C6, θsmall, td] =
P[E1 ∪ E2, C6|θsmall, td, E11]

P[C6|θsmall, td, E11]
= 1. (C.6)

Therefore, for large td, we intuitively expect the small-θ probability
that the private alleles lie on the edges of the size distribution to
tend to unity.

Note that Eqs. (C.4) and (C.5) differ from Eqs. (14) and (12)
only in the definitions of the time parameters and densities
of coalescence times. Using the conditional contributions in
Eqs. (C.2)–(C.5) together with P[Eij|td] in Eqs. (A.1)–(A.4), we can
calculate Eq. (C.1). The resulting expression is unwieldy (not
shown), but taking its limit as θ tends to 0, we obtain Eq. (18).
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