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 a b s t r a c t

Rooted binary perfect phylogenies provide a generalization of rooted binary unlabeled
trees. In a rooted binary perfect phylogeny, each leaf is assigned a positive integer value
that corresponds in a biological setting to the count of the number of indistinguishable
lineages associated with the leaf. For the rooted binary unlabeled trees, these integers
equal 1. We enumerate rooted binary perfect phylogenies with n ≥ 1 leaves and sample
size s, s ≥ n: the rooted binary unlabeled trees with n leaves in which a sample
of size s ≥ n lineages is distributed across the n leaves. (1) First, we recursively
enumerate rooted binary perfect phylogenies with sample size s, summing over all
possible n, 1 ≤ n ≤ s. We obtain an equation for the generating function, showing
that asymptotically, the number of rooted binary perfect phylogenies with sample size
s grows with ≈ 0.3519(3.2599)ss−3/2, faster than the rooted binary unlabeled trees,
which grow with ≈ 0.3188(2.4833)ss−3/2. (2) Next, we recursively enumerate rooted
binary perfect phylogenies with a specific number of leaves n and sample size s ≥ n.
We report closed-form counts of the rooted binary perfect phylogenies with sample size
s ≥ n and n = 2, 3, and 4 leaves. We provide a recurrence for the generating function
describing, for each number of leaves n, the number of rooted binary perfect phylogenies
with n leaves as the sample size s increases. We also obtain an equation satisfied by the
bivariate generating function counting rooted binary perfect phylogenies with n leaves
and sample size s, as well as an asymptotic normal distribution for the number of leaves
in a randomly chosen perfect phylogeny with sample size s. (3) We find a generating
function for the number of rooted binary perfect phylogenies with the n-leaf caterpillar
shape, growing with s. We also find a generating function and exact count ⌊2s/3⌋ for
the number of rooted binary perfect phylogenies with sample size s and any caterpillar
tree shape. A bivariate generating function counting rooted binary perfect phylogenies
with n leaves, sample size s, and a caterpillar shape produces an asymptotic normal
distribution for the number of leaves in a randomly chosen caterpillar perfect phylogeny
with sample size s. (4) Finally, we provide initial results recursively enumerating rooted
binary perfect phylogenies with any specific unlabeled tree shape and sample size s. The
enumerations further characterize the rooted binary perfect phylogenies, which include
the rooted binary unlabeled trees, and which can provide a set of structures useful for
various biological contexts.
© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Rooted binary unlabeled tree structures are classic objects of combinatorics and graph theory [5,8]. In evolutionary 
biology, rooted binary unlabeled trees are used to describe the possible relationships that a set of unlabeled organisms 
can possess, so that they arise in inferences about features of speciation histories [7,17].

The rooted binary unlabeled trees can be enumerated recursively. Denoting by un the number of rooted binary 
unlabeled trees with n leaves, for n ≥ 2, the recursion is 

un =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1∑
i=1

1
2un−iui, odd n ≥ 3,

(n−1∑
i=1

1
2un−iui

)
+

1
2un/2, even n ≥ 2,

(1)

with u0 = 0 and u1 = 1. The recursion is obtained by summing over possible numbers of leaves i for the right-hand 
subtree descended from the root. The factor of 12  arises from the fact that each tree is obtained twice—once with its left 
and right subtrees transposed. If n is even, for i =

n
2 , the recurrence counts the 

(un/2
2

)
 trees with distinct subtrees and 

the un/2 trees with identical subtrees. The un, n ≥ 1, follow the Wedderburn–Etherington sequence (OEIS A001190), with 
initial terms 1, 1, 1, 2, 3, 6, 11, 23, 46, 98; they have implicitly defined generating function 

U(z) =
1
2
U(z)2 +

1
2
U(z2) + z. (2)

The convergence radius for U(z) is approximately 0.4027. The asymptotic growth of un approximately follows
0.3188(2.4833)nn−3/2 [3,11,15].

Rooted binary perfect phylogenies can be viewed as generalizing the rooted binary unlabeled trees. A rooted binary 
perfect phylogeny is a rooted binary tree in which each leaf is associated with a positive integer [16]. Each integer can be 
regarded as a multiplicity for the biological entity associated with a leaf—for example, the number of times that a specific 
DNA sequence is seen in a sample of sequences that are not necessarily distinct. A rooted binary perfect phylogeny has a 
number of leaves n and a sample size s that represents the sum of the multiplicities at the leaves. Rooted binary perfect 
phylogenies are a special case of rooted multifurcating perfect phylogenies—perfect phylogenies in which internal nodes 
possess two or more immediate descendants [16]. The rooted binary unlabeled trees correspond to rooted binary perfect 
phylogenies in the case that s = n; the leaf multiplicities of the perfect phylogenies all equal 1 in this equivalence.

In evolutionary biology, perfect phylogenies can sometimes be used as representations of the relationships of genetic 
sequences [9,16]. The topology of a perfect phylogeny encodes ancestral relationships in a set of sequences that have not 
experienced recombination, and in which each mutation has occurred only once. Rooted perfect phylogenies have one 
vertex designated as the root, representing a sequence from which all other sequences in the perfect phylogeny descend.

Palacios et al. [16] have recently developed the enumerative combinatorics of rooted perfect phylogenies, focusing on 
enumerations of various classes of binary trees that are compatible with a given rooted perfect phylogeny. Our focus here 
is different: we enumerate the possible rooted binary perfect phylogenies themselves.

After introducing definitions in Section 2, in Section 3, we recursively enumerate the rooted binary perfect phylogenies 
with sample size s, considering all possible values of the number of leaves n; we provide the asymptotic approximation 
of this quantity as s increases. In Section 4, we recursively enumerate rooted binary perfect phylogenies with a specific 
number of leaves n and sample size s. We provide a recursive equation to compute, for each n, the generating function 
for the sequence of the number of rooted binary perfect phylogenies with the number of leaves n fixed and the sample 
size s growing. We analyze the asymptotic growth with s of the number of rooted binary perfect phylogenies with a fixed 
number of leaves n, and we study the distribution of n in a randomly chosen perfect phylogeny with sample size s. In 
Section 5, we recursively enumerate the rooted binary perfect phylogenies with sample size s for a caterpillar tree shape. 
We obtain, for each small n, a closed-form expression for the number of perfect phylogenies for any s. We also provide 
generating functions for the numbers of perfect phylogenies with n-leaf caterpillar shapes, as well as a generating function 
and closed form for the total number of perfect phylogenies with sample size s across all caterpillar shapes. We analyze 
the asymptotic growth with s of the number of rooted binary perfect phylogenies with a caterpillar shape and n leaves, 
and we study the distribution of n in a randomly chosen perfect phylogeny with sample size s and a caterpillar shape. 
Section 6 then considers arbitrary tree shapes, obtaining a recurrence for the number of perfect phylogenies with sample 
size s for any specific tree shape.

2. Preliminaries

2.1. Definitions

We restrict attention to rooted perfect phylogenies that are binary, with each internal node possessing exactly two child 
nodes. Henceforth, the perfect phylogenies that we consider are understood to be rooted and binary, and we sometimes 
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Fig. 1. A perfect phylogeny with sample size s = 17 and n = 8 leaves. The numbers at the leaves represent leaf multiplicities.

omit these descriptors. Like the rooted binary unlabeled trees, we consider perfect phylogenies to be non-plane trees, so 
that the left–right order in which child nodes are depicted is ignored.

We denote the number of leaves in a perfect phylogeny by n. Each leaf is associated with a positive integer, its 
multiplicity—representing in biological applications of perfect phylogenies the number of copies of a biological sequence 
seen in a sample of sequences. We refer to the sum of the multiplicities in a perfect phylogeny as its sample size.

For fixed sample size s, it is convenient to allow an empty perfect phylogeny, though we exclude this empty perfect 
phylogeny from our enumerations. We do include the trivial perfect phylogeny with sample size s, namely a perfect 
phylogeny that consists only of a single leaf of multiplicity s.

Fig.  1 displays an example perfect phylogeny with n = 8 leaves. The leaf multiplicities are 2, 1, 3, 3, 1, 4, 1, and 2, for 
a total sample size s = 17.

2.2. Lattices of perfect phylogenies

In the work of Palacios et al. [16], all possible rooted binary trees (with all leaf multiplicities equal to 1) that can be 
‘‘collapsed’’ into a specific perfect phylogeny (with leaf multiplicities possibly greater than 1) are enumerated. To facilitate 
the enumerations, Palacios et al. [16] defined a partial order on rooted binary perfect phylogenies with fixed sample size 
s, inducing a lattice structure for those rooted binary perfect phylogenies. The lattice structure defines the sense in which 
trees can be ‘‘collapsed.’’

In particular, recall that a cherry node in a rooted tree is an internal node with precisely two descendant leaves. Consider 
binary perfect phylogenies A and B. In the partial order, A refines B if by collapsing cherries of A, B can be produced—
where collapsing a cherry involves replacing the cherry node by a leaf node with multiplicity equal to the sum of the 
multiplicities of the leaves previously descended from the cherry node. Trivially, a perfect phylogeny refines itself. A and 
B are comparable if A refines B or B refines A.

Considering all binary perfect phylogenies with sample size s, the partial order of Palacios et al. [16] produces a lattice. 
Fig.  2 depicts the lattice for the case of s = 5. Moving left to right, a path is drawn between pairs (A, B), with A to the 
left of B, if and only if A refines B. The trivial perfect phylogeny of sample size s is refined by all perfect phylogenies of 
sample size s and is the maximal element of the lattice. The empty perfect phylogeny refines all perfect phylogenies of 
sample size s and is the minimal element.

Palacios et al. [16] focused on using the lattice to enumerate rooted binary trees associated with a rooted binary 
perfect phylogeny. However, the lattice formulation provides a convenient structure for working with perfect phylogenies 
themselves.

2.3. Description of the enumeration problems

We enumerate several sets of objects. First, we consider the set of (non-empty) rooted binary perfect phylogenies with 
fixed sample size s ≥ 1. Denote the size of this set by bs. Next, we enumerate the rooted binary perfect phylogenies with 
fixed sample size s and fixed number of leaves n, 1 ≤ n ≤ s. Denote the size of this set by bs,n; we have bs =

∑s
n=1 bs,n. 

We enumerate the rooted binary perfect phylogenies with sample size s and a caterpillar topology with n leaves, where 
s ≥ n ≥ 2, denoting this quantity gs,n; we also enumerate the rooted binary phylogenies with sample size s and any
caterpillar topology, denoting this quantity gs =

∑s
n=2 gs,n. Finally, we enumerate the rooted binary perfect phylogenies 

with sample size s and a specified unlabeled topology T , denoting this quantity Ns,T .
Note that we have already described bn,n (alternatively, bs,s), the number of rooted binary perfect phylogenies with 

sample size equal to the number of leaves, in Eq. (1). A rooted binary perfect phylogeny with s = n is simply a rooted 
binary unlabeled tree; each leaf multiplicity in the perfect phylogeny is 1, so that the rooted binary unlabeled trees 
correspond to the rooted binary perfect phylogenies in which all leaf multiplicities equal 1. Hence, bn,n = un.

3. Rooted binary perfect phylogenies with sample size s

3.1. Enumeration

To enumerate all rooted binary perfect phylogenies with a fixed sample size s ≥ 1, we first note that for each s, the 
trivial perfect phylogeny is permissible. If a perfect phylogeny is not trivial, then each of the two child nodes of the root 
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Fig. 2. The lattice of rooted binary perfect phylogenies for sample size s = 5. Each column is labeled by its associated number of leaves n.

is itself the root of a perfect phylogeny. In other words, for s ≥ 2, the perfect phylogeny can be decomposed into two 
perfect phylogenies, one with sample size i, 1 ≤ i ≤ s − 1, and the other with sample size s − i.

For i = s − i, we count the 
(bs/2

2

)
= bs/2(bs/2 − 1)/2 perfect phylogenies with distinct perfect phylogenies in the two 

children of the root and the bs/2 perfect phylogenies with identical perfect phylogenies in the subtrees: 
(bs/2

2

)
+ bs/2 =

1
2 (b

2
s/2 + bs/2). We obtain the following result. 

Proposition 1.  The number bs of rooted binary perfect phylogenies with sample size s ≥ 2 satisfies 

bs =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 +

s−1∑
i=1

1
2bs−ibi, odd s ≥ 3,

1 +

( s−1∑
i=1

1
2bs−ibi

)
+

1
2bs/2, even s ≥ 2,

(3)

with b0 = 0 and b1 = 1. 
The recursion has the same form as Eq. (1), adding a +1 term for the trivial perfect phylogeny. The first terms of 

the sequence appear in Table  1, along with the Wedderburn–Etherington numbers of rooted binary unlabeled trees. The 
number of rooted binary perfect phylogenies bs with sample size s appears to grow substantially faster than bs,s, the 
number of rooted binary unlabeled trees with sample size s and multiplicity 1 assigned to each leaf.

3.2. Generating function

To analyze the asymptotic growth of the rooted binary perfect phylogenies with sample size s as s → ∞, we rewrite 
Eq. (3) in the form 

bs =
1
2

( s−1∑
i=1

bs−ibi

)
+

1
2
bs/2 + 1, s ≥ 1, (4)

with base case b0 = 0 and bs = 0 if s is not a positive integer.
Denote by B(z) the generating function for the rooted binary perfect phylogenies with sample size s, B(z) =

∑
∞

s=0 bsz
s. 

To obtain the generating function for the bs, we multiply Eq. (4) by zs and sum from s = 1 to ∞, obtaining

B(z) =

∞∑
s=1

(
1
2

s−1∑
i=1

bs−ibizs
)

+

∞∑
s=1

1
2
bs/2zs +

∞∑
s=1

zs.

We simplify by noting 
∑

∞

s=1(
1
2

∑s−1
i=1 bs−ibizs) =

1
2B(z)

2, 
∑

∞

s=1
1
2bs/2z

s
=

1
2

∑
∞

s=1 bsz
2s

=
1
2B(z

2), and 
∑

∞

s=1 z
s
=

z
1−z . We 

have therefore demonstrated the following proposition. 

Proposition 2.  The generating function B(z) for the number bs of rooted binary perfect phylogenies with sample size s satisfies

B(z) =
1
B(z)2 +

1
B(z2) +

z
. (5)
2 2 1 − z
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Table 1
The number of rooted binary perfect phylogenies bs with sample size s (Eq. (3), OEIS A113822), and the number of rooted binary unlabeled trees 
bs,s = us (Eq. (1), OEIS A001190).
 s 1 2 3 4 5 6 7 8 9 10 11 12 13 14  
 bs 1 2 3 7 14 35 85 226 600 1658 4622 13141 37699 109419 
 bs,s 1 1 1 2 3 6 11 23 46 98 207 451 983 2179  

3.3. Asymptotics

Now that we have obtained an equation satisfied by the generating function for the coefficients bs, we find an 
asymptotic approximation for the growth of the bs.

Recall that the generating function U(z) for the number of rooted binary unlabeled trees in Eq. (2) has a radius of 
convergence ρ ≈ 0.4027. The rooted binary perfect phylogenies with sample size s include the rooted binary unlabeled 
trees with s leaves, so that bs ≥ us, and indeed bs > us for s ≥ 2. Hence, we have B(z) > U(z) for all z with 0 < z < ρ. 
Labeling the radius of convergence of B(z) by β , it follows that 0 ≤ β ≤ ρ < 1. In addition, because z2 < z for 0 < z < 1
and B(z) is monotonically increasing with z for z > 0, B(z2) < B(z) for 0 < z < 1, so that if B(z) converges at z, 0 < z < 1, 
then it also converges at z2.

To obtain the asymptotic approximation, we first prove a lemma about the relationship of the bs to the Catalan 
numbers. 

Lemma 3.  Each bs for s ≥ 1 is bounded above by the Catalan number Cs =
1

s+1

(2s
s

)
. 

Proof.  To prove bs ≤ Cs for all s ≥ 1, we recall the recursion for the Catalan numbers, Cs =
∑s−1

k=0 CkCs−1−k =∑s
k=1 Ck−1Cs−k with C0 = 1 [5, p. 26]. We first prove inductively that 12bs+1 ≤ Cs for all s ≥ 0.
For the base case s = 0, we have 12 =

1
2b1 ≤ C0 = 1; for s = 1, we have 1 =

1
2b2 ≤ C1 = 1. For the inductive step, 

suppose 12bs+1 ≤ Cs for all s < N , N ≥ 2. By the recursion in Eq. (4) and the inductive assumption,

1
2
bN+1 =

( N∑
i=2

1
2
bN+1−i

1
2
bi

)
+

1
4
bNb1 +

1
4
b(N+1)/2 +

1
2

≤

( N∑
i=2

CN−iCi−1

)
+

1
4
bNb1 +

1
4
b(N+1)/2 +

1
2
.

By the inductive assumption, noting b1 = C0 = 1, 14bNb1 ≤
1
2CN−1C0. Also by the inductive assumption, 14b(N+1)/2+

1
2 ≤

1
2C(N−1)/2 +

1
2 . The Catalan numbers are strictly monotonically increasing for N ≥ 1, so that 12C(N−1)/2 +

1
2 ≤

1
2CN−1 =

1
2CN−1C0 for N ≥ 2.

We then have 14bNb1 +
1
4b(N+1)/2 +

1
2 ≤ CN−1C0 and 12bN+1 ≤

∑N
i=1 CN−iCi−1 = CN , and the induction is complete.

To complete the proof that bs ≤ Cs for s ≥ 1, we proceed again by induction. We note that the result holds in the base 
case s = 1 (1 = b1 ≤ C1 = 1) and s = 2 (2 = b2 ≤ C2 = 2), and suppose that it holds for all s ≤ N , N ≥ 2. Then

bN+1 =

( N∑
i=2

1
2
bN+1−ibi

)
+

1
2
bNb1 +

1
2
b(N+1)/2 + 1

≤

( N∑
i=2

CN+1−iCi−1

)
+

1
2
bNb1 +

1
2
b(N+1)/2 + 1.

We have 1
2bNb1 ≤

1
2CNC0 by the inductive hypothesis, and 1

2b(N+1)/2 + 1 ≤ C(N−1)/2 + 1 ≤ CN = CNC0 by the 
earlier 1

2bs+1 ≤ Cs and the strict monotonicity of the CN  for N ≥ 2. Then 1
2bNb1 +

1
2b(N+1)/2 + 1 ≤

3
2CNC0 and 

bN+1 ≤
(∑N

i=2 CN+1−iCi−1
)
+

3
2CNC0 =

(∑N
i=1 CN+1−iCi−1

)
+

1
2CNC0 <

∑N+1
i=1 CN+1−iCi−1 = CN+1. □

Corollary 4.  The radius of convergence β for B(z) is positive, and in particular, 14 ≤ β ≤ ρ. 

Proof.  We have seen that β ≤ ρ ≈ 0.4027 because the rooted binary perfect phylogenies include the rooted binary 
unlabeled trees, whose generating function has radius of convergence ρ.

For the lower bound, because the Catalan generating function C(z) = (1 −
√
1 − 4z)/(2z) has radius of convergence 

1
4 , it follows from Lemma  3 that B(z) ≤ C(z) for 0 < z < 1

4 , so that the generating function B(z) for the smaller sequence 
{b } has radius of convergence β ≥

1 . □
n 4
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Theorem 5.  The number bs of rooted binary perfect phylogenies with sample size s has asymptotic growth 

bs ∼ [γ /(2
√

π )](1/r)ss−3/2
≈

0.3519(3.2599)s

s3/2
, (6)

where γ ≈ 1.2476 and r ≈ 0.3068 are constants.
Because B(z) is written in terms of B(z2) in Proposition  2, the proof of Theorem  5 relies on methods for generating 

functions defined implicitly. We use the smooth implicit-function schema in Theorem VII.3 from [8, pp. 467–468]. 
According to this theorem, we begin with an implicitly defined generating function y(z) =

∑
∞

n=0 ynz
n that takes the 

form y(z) = H
(
z, y(z)

)
. Suppose that y(z) is analytic at 0, y0 = 0, and yn ≥ 0. Suppose also that

i. H(z, w) =
∑

∞

m=0
∑

∞

n=0 hm,nzmwn is analytic in a neighborhood of (z, w) = (0, 0).
ii. H(z, w) has coefficients hm,n ≥ 0 with h0,0 = 0, h0,1 ̸= 1, and hm,n > 0 for some (m, n) with n ≥ 2.
iii. There exists some point (z, w) = (r, s) in the analytic portion of the domain around (0, 0), such that H(r, s) = s

and Hw(r, s) = 1.

Then [zn]y(z) grows with [γ /(2
√

π )](1/r)nn−3/2, where γ =
√
2rHz(r, s)/Hww(r, s).

Proof.  We verify that B(z) belongs to the smooth implicit-function schema. Eq. (5) gives the implicitly defined generating 
function. Write H(z, w) =

1
2w

2
+

1
2B(z

2)+ z
1−z =

∑
∞

m=0
∑

∞

n=0 hm,nzmwn. We prove H(z, w) satisfies the required conditions.

i. We show H(z, w) is analytic in a neighborhood of (0, 0). First note that w2/2 is entire. Next, for β the radius of 
convergence of B(z), 12B(z2) is analytic for |z| <

√
β . Finally, z

1−z  is analytic for z ̸= 1. Hence, noting β < 1, H(z, w)
is analytic for |w| < ∞ and |z| <

√
β .

ii. For the conditions on hm,n, we examine the expansion of H(z, w), and observe h0,0 = 0, h0,1 = 0 ̸= 1, and 
h0,2 =

1
2 > 0. Each hm,n satisfies hm,n ≥ 0 for m, n ≥ 0, as B(z2) and z/(1 − z) have nonnegative coefficients.

iii. We show there exists a solution to the characteristic system
Hw(z, w) = 1, H(z, w) = w.

We first note that Hw(z, w) = w, so Hw(r, s) = 1 is satisfied for s = 1. Thus, we need only show that there exists r
with |r| <

√
β such that 

H(r, 1) =
1
2

+
1
2
B(r2) +

r
1 − r

= 1. (7)

Restricting our attention to the positive, real line, we note that:

1. H(z, 1) is a monotonically increasing function for real z > 0, as it is a sum of power series with nonnegative 
coefficients.

2. H(0, 1) =
1
2 , as neither B(z2) nor 

z
1−z  has a constant term.

3. H( 13 , 1) > 1, as 13/(1 −
1
3 ) =

1
2  and B

(
( 13 )

2
)

> 0 (because B(z2) has all non-negative coefficients and at least 
one positive term; e.g. the coefficient of z2 is 1). Note also that 13 < 1

2 ≤
√

β by Corollary  4.

We conclude that there exists some r , 0 ≤ r < 1
3 <

√
β such that H(r, 1) = 1.

We have therefore shown that B(z) belongs to the smooth implicit-function schema. The smooth implicit-function 
schema tells us that the same r that solves the characteristic system is indeed the radius of convergence of B(z). With 
s = 1, we solve Eq. (7) for r numerically. We approximate B(r2) using the terms in Table  1: B(r2) ≈

∑14
i=1 bi(r

2)i =

1r2 + 2r4 + 3r6 + 7r8 + · · · + 109419r28. Numerically solving for the positive, real root, we obtain r ≈ 0.306760104888.
To compute the constant γ , we use Hz(r, s) = rB′(r2) + 1/(1 − r)2 and Hww(r, s) = 1. We approximate B′(r2) by the 

terms in Table  1: 

B′(r2) ≈

14∑
i=1

ibi(r2)i−1
= (1 · 1)r0 + (2 · 2)r2 + (3 · 3)r4 + (4 · 7)r6 + · · · + (14 · 109419)r26. (8)

We obtain B′(r2) ≈ 1.4871. Then

γ =

√
2r

[
rB′(r2) +

1
(1 − r)2

]
≈ 1.2476,

from which bs ∼ [γ /(2
√

π )](1/r)ss−3/2
≈ 0.3519(3.2599)s/s3/2. □

Fig.  3 plots the logarithm of the exact number of rooted binary perfect phylogenies bs from Eq. (3) alongside the 
logarithm of the asymptotic growth from Theorem  5. We can observe, for example, that the asymptotic approximation 
0.3519(3.2599)60/603/2 gives 4.6930 × 1027; the exact value is 4, 753, 678, 474, 171, 125, 902, 623, 929, 051.
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Fig. 3. The number bs of perfect phylogenies with sample size s. Exact values are computed from Eq. (3). The asymptotic approximation is computed 
from Eq. (6).

4. Rooted binary perfect phylogenies with sample size s and n leaves

Having enumerated all rooted binary perfect phylogenies with sample size s, we now decompose the enumeration 
across perfect phylogenies with different numbers of leaves. A (non-empty) perfect phylogeny with sample size s must 
possess a number of leaves in [1, s]. In the case that the number of leaves n is equal to s, the rooted binary perfect 
phylogenies are simply rooted binary unlabeled trees, as each leaf has multiplicity 1.

4.1. Enumeration

We generalize to consider all pairs (s, n) with 1 ≤ n ≤ s. Let bs,n be the number of rooted binary perfect phylogenies 
with sample size s and n leaves, where bs,n = 0 if s < n, or s /∈ N, or n /∈ N.

Proposition 6.  The number bs,n of rooted binary perfect phylogenies with sample size s and n leaves, 1 ≤ n ≤ s, satisfies
(i) bs,1 = 1 for all s ≥ 1.
(ii) For (s, n) with s ≥ n ≥ 2, 

bs,n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n−1∑
j=1

s−n+j∑
i=j

1
2bs−i,n−j bi,j, s odd or n odd,

(n−1∑
j=1

s−n+j∑
i=j

1
2bs−i,n−j bi,j

)
+

1
2bs/2,n/2, s even and n even.

(9)

In Eq. (9), the index i counts the sample size assigned to the right subtree and the index j counts its number of leaves. 
The left subtree then has sample size s − i, with n − j leaves.

We observe that in the case s = n, in which a perfect phylogeny has all leaf multiplicities equal to 1, the recursion 
recovers Eq. (1). In this case, we must have i = j. Because s = n, the cases become cases for n odd or n even. Because 
n = s and j = i, we obtain for n ≥ 3 odd:

bn,n =

n−1∑
j=1

1
2
bn−j,n−jbj,j =

n−1∑
j=1

1
2
un−j uj = un.

The case for even n ≥ 2 reduces to

bn,n =

(n−1∑
j=1

1
2
bn−j,n−j bj,j

)
+

1
2
bn/2,n/2 =

(n−1∑
j=1

1
2
un−j uj

)
+

1
2
un/2 = un.

Proof.  We count rooted binary perfect phylogenies with sample size s and n leaves by considering all partitions of the 
sample and leaves into left and right subtrees. We index the sample size of the right subtree by i and the number of 
leaves of the right subtree by j.

The right subtree has sample size i ≥ j. Because the left subtree has n − j leaves, it has sample size at least n − j, so 
that the right subtree has sample size at most i ≤ s − (n − j).
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Table 2
The number bs,n of rooted binary perfect phylogenies with sample size s and n leaves. Entries are obtained using Eq. (9); the ‘‘total’’ is bs =

∑s
n=1 bs,n . 

The total follows OEIS sequence A113822; bs,3 follows A002620. The main diagonal and its subdiagonal follow A001190 and A085748. For 
completeness, b12,12 = 451, b13,12 = 3264, b13,13 = 983, b14,12 = 15 886, b14,13 = 7777, and b14,14 = 2179.
 Sample size (s) Number of leaves (n) Total  
 11 10 9 8 7 6 5 4 3 2 1  
 1 1 1  
 2 1 1 2  
 3 1 1 1 3  
 4 2 2 2 1 7  
 5 3 4 4 2 1 14  
 6 6 9 10 6 3 1 35  
 7 11 20 24 17 9 3 1 85  
 8 23 46 61 49 30 12 4 1 226  
 9 46 106 152 138 93 44 16 4 1 600  
 10 98 248 386 387 290 157 66 20 5 1 1658  
 11 207 582 974 1072 878 535 253 90 25 5 1 4622  
 12 1376 2473 2951 2633 1774 939 383 124 30 6 1 13141  
 13 6262 8061 7763 5727 3340 1534 562 160 36 6 1 37699  
 14 21899 22657 18119 11551 5881 2420 792 208 42 7 1 109419 

Given the number of leaves j for the right subtree, 1 ≤ j ≤ n−1, and sample size i, j ≤ i ≤ s−n+ j, if j ̸=
n
2  or i ̸=

s
2  or 

both, then we count bs−i,n−j bi,j perfect phylogenies: bi,j for the right subtree and bs−i,n−j for the left. Each distinct perfect 
phylogeny is obtained twice, the second time with the left and right subtrees transposed.

If the sample size s and number of leaves n are both even, then we count both the 
(bs/2,n/2

2

)
 perfect phylogenies with 

two distinct subtrees of sample size s2  and 
n
2  leaves as well as the bs/2,n/2 perfect phylogenies with two identical subtrees, 

as in Eqs. (3) and (9). □

Fig.  4 shows an example of the enumeration, considering all possible rooted binary perfect phylogenies with (s, n) =

(8, 6). Table  2 gives the values of bs,n for small (s, n), illustrating that the sums 
∑s

n=1 bs,n agree with the values obtained 
for bs via Proposition  1.

For fixed small n, bs,n can be stated in closed form. First, bs,1 = 1 for s ≥ 1. We obtain a sequence of corollaries of 
Proposition  6. 

Corollary 7.  For s ≥ 2, the number bs,2 of rooted binary perfect phylogenies with n = 2 leaves is 

bs,2 =

⌊
s
2

⌋
. (10)

Proof.  From Proposition  6, we have

bs,2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s−1∑
i=1

1
2bs−i,1bi,1, odd s ≥ 3,

( s−1∑
i=1

1
2bs−i,1bi,1

)
+

1
2bs/2,1, even s ≥ 2.

Because bs,1 = 1 for all s ≥ 1, we obtain bs,2 =
s−1
2  for odd s ≥ 3, and bs,2 =

s
2  for even s ≥ 2. Summarizing the odd and 

even cases in one expression, bs,2 = ⌊
s
2⌋. □

Corollary 8.  For s ≥ 3, the number bs,3 of rooted binary perfect phylogenies with n = 3 leaves is 

bs,3 =

⌊
s − 1
2

⌋⌈
s − 1
2

⌉
. (11)

Proof.  Using Proposition  6,

bs,3 =

2∑
j=1

s−3+j∑
i=j

1
2
bs−i,3−jbi,j =

s−1∑
i=2

bs−i,1bi,2,

noting 
∑s−2

i=1
1bs−i,2bi,1 =

∑s−1
i=2

1bs−i,1bi,2 by an exchange of s − i and i.
2 2
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Fig. 4. The enumeration of all b8,6 = 61 rooted binary perfect phylogenies with sample size s = 8 and n = 6 leaves. The number of leaves in the 
right subtree is indicated by j, and i indicates the sample size for the right subtree.

Fig. 5. The bs,3 rooted binary perfect phylogenies with n = 3 leaves, for each s from 3 to 8, as obtained by Proposition  6. The value of i indicates 
the sample size for the right subtree.

Using Corollary  7, bs,3 =
∑s−1

i=2⌊
i
2⌋. The summation yields

bs,3 =

{
2
(
1 + 2 + · · · +

s−3
2

)
+

s−1
2 =

( s−1
2

)( s−1
2

)
, odd s ≥ 3,

2
(
1 + 2 + · · · +

s−2
2

)
=

( s−2
2

)( s
2

)
, even s ≥ 4.

We can summarize both cases in the single expression bs,3 = ⌊
s−1
2 ⌋⌈

s−1
2 ⌉. □

For small s, the rooted binary perfect phylogenies with n = 3 leaves appear in Fig.  5.

Corollary 9.  For s ≥ 4, the number bs,4 of rooted binary perfect phylogenies with n = 4 leaves is 

bs,4 =

{
(s−1)(s−3)(5s−1)

48 , odd s ≥ 5,
s(s−2)(5s−11)

48 +
1
2⌊

s
4⌋, even s ≥ 4.

(12)

Proof.  Using Eq. (9), we see that:

bs,4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3∑
j=1

s−4+j∑
i=j

1
2bs−i,4−j bi,j, odd s ≥ 5,

( 3∑
j=1

s−4+j∑
i=j

1
2bs−i,4−j bi,j

)
+

1
2bs/2,2, even s ≥ 4.

The outer sum considers values of 1, 2, and 3 for the sample size j assigned to the right subtree. Assigning j = 3 gives 
the same inner sum as j = 1, as 

∑s−1
i=3

1
2bs−i,1bi,3 =

∑s−3
i=1

1
2bs−i,3bi,1 by an exchange of i and s− i. Noting that bs,1 = 1 for 

s ≥ 1, the problem becomes:

bs,4 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s−3∑
i=1

bs−i,3 +

s−2∑
i=2

1
2bs−i,2bi,2, odd s ≥ 5,( s−3∑

bs−i,3 +

s−2∑
1
2bs−i,2bi,2

)
+

1
2bs/2,2, even s ≥ 4.
i=1 i=2
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For s odd, s − 3 is even and s − 2 is odd. We use Corollaries  7 and 8 to obtain the summands, resolving floor and 
ceiling functions separately for odd and even quantities. The sums are completed using 

∑n
k=1 k = n(n + 1)/2 and ∑n

k=1 k
2

= n(n + 1)(2n + 1)/6. Then

s−3∑
i=1

bs−i,3 =

s−3∑
i=1

⌊
s − i − 1

2

⌋⌈
s − i − 1

2

⌉

=

s−3
2∑

k=1

⌊
s − (2k − 1) − 1

2

⌋⌈
s − (2k − 1) − 1

2

⌉
+

⌊
s − 2k − 1

2

⌋⌈
s − 2k − 1

2

⌉

=

s−3
2∑

k=1

(
s − 2k − 1

2

)(
s − 2k + 1

2

)
+

(
s − 2k − 1

2

)2

= (s − 1)(s − 3)(2s − 1)/24. (13)
s−2∑
i=2

bs−i,2 bi,2 =

s−2∑
i=2

⌊
s − i
2

⌋⌊
i
2

⌋

=

s−3
2∑

k=1

⌊
s − (2k + 1)

2

⌋⌊
2k + 1

2

⌋
+

⌊
s − (2k)

2

⌋⌊
2k
2

⌋

=

s−3
2∑

k=1

(
s − 2k − 1

2

)
k +

(
s − 2k − 1

2

)
k

= (s + 1)(s − 1)(s − 3)/24. (14)

Summing Eq. (13) and half of Eq. (14), we obtain the result in Eq. (12) for odd s.
The even case is similar, except that now s − 3 is odd and s − 2 is even.

s−3∑
i=1

bs−i,3 =

s−3∑
i=1

⌊
s − i − 1

2

⌋⌈
s − i − 1

2

⌉
=

⌊
s − (s − 3) − 1

2

⌋⌈
s − (s − 3) − 1

2

⌉

+

s−4
2∑

k=1

⌊
s − (2k − 1) − 1

2

⌋⌈
s − (2k − 1) − 1

2

⌉
+

⌊
s − 2k − 1

2

⌋⌈
s − 2k − 1

2

⌉

= 1 +

s−4
2∑

k=1

(
s − 2k

2

)2

+

(
s − 2k − 2

2

)(
s − 2k

2

)
= s(s − 2)(2s − 5)/24. (15)

s−2∑
i=2

bs−i,2 bi,2 =

s−2∑
i=2

⌊
s − i
2

⌋⌊
i
2

⌋

=

⌊
s − (s − 2)

2

⌋⌊
s − 2
2

⌋
+

s−4
2∑

k=1

⌊
s − (2k + 1)

2

⌋⌊
2k + 1

2

⌋
+

⌊
s − (2k)

2

⌋⌊
2k
2

⌋

=
s − 2
2

+

s−4
2∑

k=1

(
s − 2k − 2

2

)
k +

(
s − 2k

2

)
k

= s(s − 1)(s − 2)/24. (16)

We obtain Eq. (12) for even s by summing Eq. (15), half of Eq. (16), and 1b =
1
⌊

s
⌋. □
2 s/2,2 2 4
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4.2. Generating function

Beyond the closed-form expressions for the cases of n = 2, 3, and 4, for a specific value of n more generally, we can 
obtain a generating function for the sequence bs,n describing the number of rooted binary perfect phylogenies with fixed 
n and increasing values of the sample size s.

Denote by Bn(z) the generating function describing the sequence of values for the number of rooted binary perfect 
phylogenies with n leaves and increasing sample size s:

Bn(z) =

∞∑
s=1

bs,nzs.

Recall that bs,n > 0 only for integers (s, n) with s ≥ n ≥ 1. We set Bn(z) = 0 for non-integer n. 

Proposition 10.  The generating function Bn(z) for the number bs,n of rooted binary perfect phylogenies with sample size s
and n leaves satisfies
(i) B1(z) =

z
1−z .

(ii) For n ≥ 2, 

Bn(z) =

[n−1∑
j=1

1
2
Bn−j(z) Bj(z)

]
+

1
2
Bn/2(z2). (17)

Proof.  (i) For n = 1, for all s ≥ 1, bs,1 = 1. Hence, B1(z) =
z

1−z .
(ii) For n ≥ 2, we use the recursive Eq. (9),

Bn(z) =

∞∑
s=n

(n−1∑
j=1

s−n+j∑
i=j

1
2
bs−i,n−jbi,j

)
zs +

∞∑
s=n

1
2
bs/2,n/2zs

=

∞∑
s=n

(n−1∑
j=1

s−n+j∑
i=j

1
2
bs−i,n−jzs−ibi,jz i

)
+

∞∑
s=n

1
2
bs/2,n/2zs.

We adjust the summation limits, noting that bs,n = 0 for s < n:

Bn(z) =

∞∑
s=2

(n−1∑
j=1

s−1∑
i=1

1
2
bs−i,n−jzs−ibi,jz i

)
+

∞∑
s=2

1
2
bs/2,n/2zs

=

[n−1∑
j=1

1
2
Bn−j(z) Bj(z)

]
+

1
2
Bn/2(z2),

completing the proof. □

Iterating from the base case B1(z) =
z

1−z , we can write an explicit form for Bn(z) for a fixed n. Using Proposition  10, 
we have

B2(z) =
1
2
B1(z)2 +

1
2
B1(z2)

=
1
2

z2

(1 − z)2
+

1
2

z2

1 − z2

=
z2

(1 − z)2(1 + z)
. (18)

Next, using B2(z) from Eq. (18), we have

B3(z) =
1
2
B1(z) B2(z) +

1
2
B2(z) B1(z)

=
z3

(1 − z)3(1 + z)
. (19)
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For B4(z), we use Eq. (19):

B4(z) =
1
2
B1(z) B3(z) +

1
2
B2
2(z) +

1
2
B3(z) B1(z) +

1
2
B2(z2)

=
z4

(1 − z)4(1 + z)
+

1
2

z4

(1 − z)4(1 + z)2
+

1
2

z4

(1 − z2)2(1 + z2)

=
z4(2 + 2z2 + z3)

(1 − z)4(1 + z)2(1 + z2)
. (20)

We can continue iteratively to get generating functions Bn(z) for larger n.

4.3. Asymptotics

We next study the asymptotics of bs,n for fixed n, as s → ∞. 

Proposition 11.  As s → ∞, for fixed n ≥ 1, the number bs,n of rooted binary perfect phylogenies with sample size s and n
leaves has asymptotic growth bs,n ∼ [Cn−1sn−1

]/[2n−1(n − 1)!], where Cn−1 =
1
n

(2n−2
n−1

)
 is a Catalan number. 

First, we need a lemma concerning the generating function Bn(z). The lemma uses the concept of a ∆-domain, which, 
informally, describes a certain region around a point that is enclosed by a ball centered at the point [8, p. 389]; a function 
that is analytic in a ball around the point (excluding at the point itself) is analytic in a ∆-domain at the point. 

Lemma 12.  Fix n ≥ 1. Bn(z) ∼ an/(1 − z)n as z → 1 in a ∆-domain in the neighborhood of z = 1, for a constant an. 

Proof.  From Proposition  10, we see that B1(z) =
z

1−z  and that a1 = 1. By Eq. (18), a2 =
1
2 , by Eq. (19), a3 =

1
2 , and by 

Eq. (20), a4 =
5
8 .

The recursive form of Bn(z) in Proposition  10, together with B1(z) =
z

1−z , indicates that each Bn(z) has a pole at z = 1
and potentially also at other roots of zk = 1. Bn(z) is otherwise analytic, and hence, it is analytic in a ∆-domain around 
z = 1.

We continue by induction, supposing that for each k, 1 ≤ k ≤ n, Bk(z) ∼ ak/(1 − z)k as z → 1 in a ∆-domain around 
z = 1, for a constant ak. We seek to show that Bn+1(z) ∼ an+1/(1 − z)n+1 as z → 1 in a ∆-domain. Starting from Eq. (17),

(1 − z)n+1Bn+1(z) =

[ n∑
j=1

1
2
Bn+1−j(z) (1 − z)n+1−j Bj(z) (1 − z)j

]
+ (1 − z)n+1

[
1
2
B(n+1)/2(z2)

]
.

Taking z → 1 and applying the inductive hypothesis,

lim
z→1

(1 − z)n+1Bn+1(z) =

n∑
j=1

1
2
an+1−jaj,

noting that the term (1−z)n+1 1
2B(n+1)/2(z2) is zero for n even, and for n odd, it has limit (1−z)n+1 1

2a(n+1)/2/(1 − z2)(n+1)/2
→

0 as z → 1. We have proven the lemma, with an =
∑n−1

j=1
1
2an−jaj for n ≥ 2. □

Proof of Proposition  11.  By Lemma  12, writing A(z) =
∑

∞

n=1 anz
n, we have

A(z) = z +

∞∑
n=2

(n−1∑
j=1

1
2
an−jaj

)
zn = z +

1
2
A(z)2,

from which A(z) = 1 −
√
1 − 2z. This generating function is the exponential generating function for the rooted labeled 

binary trees [17, p. 17], with an = (2n − 3)!!/n! = Cn−1/2n−1. Note that this expression recovers a2 =
1
2 , a3 =

1
2 , a4 =

5
8 , 

in accord with Eqs. (18)–(20).
We have obtained Bn(z) ∼ Cn−1/[2n−1(1 − z)n] as z → 1 in a ∆-domain at z = 1. Corollary 2.16 from [5] states that if 

a(z) is analytic in a delta-domain ∆ such that a(z) ∼ D(1 − z/z0)−n for z → z0, z ∈ ∆, where D is a constant and n is a 
complex number that is not a non-positive integer, then as s → ∞, [zs] a(z) ∼ Dsn−1z−s

0 /Γ (n).
We apply this corollary with Bn(z) in the role of a(z), z0 = 1, and D = Cn−1/2n−1. Noting that Γ (n) = (n − 1)!, we 

obtain 

bs,n ∼
Cn−1sn−1

2n−1(n − 1)!
. □ (21)
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4.4. Bivariate generating function

As s grows large, we show that the distribution of the number of leaves n in a rooted binary perfect phylogeny selected 
uniformly at random among those with sample size s follows an asymptotic normal distribution. To obtain this result, we 
first obtain a bivariate generating function. Let 

B(z, u) =

∞∑
s=1

∞∑
n=1

bs,nunzs =

∞∑
n=1

Bn(z) un. (22)

Then by Proposition  10,

B(z, u) = B1(z) u1
+

∞∑
n=2

[(n−1∑
j=1

1
2
Bn−j(z)Bj(z)

)
+

1
2
Bn/2(z2)

]
un

=
z

1 − z
u +

∞∑
n=2

[(n−1∑
j=1

1
2
Bn−j(z) un−j Bj(z) uj

)
+

1
2
Bn(z2) u2n

]

=
uz

1 − z
+

1
2

[ ∞∑
n=1

Bn(z) un
][ ∞∑

n=1

Bn(z) un
]

+

∞∑
n=1

1
2
Bn/2(z2) un

=
uz

1 − z
+

1
2
B(z, u)2 +

1
2
B(z2, u2). (23)

4.5. Asymptotic normal distribution for the number of leaves

We now proceed to the asymptotic normal distribution. 

Theorem 13.  Let Xs denote the random variable describing the number of leaves of a perfect phylogeny chosen at random 
with sample size s. Then as s grows large,
(i) E[Xs] ∼ µs, with µ ≈ 0.7326,
(ii) Var[Xs] ∼ σ 2s, with σ 2

≈ 0.2325,
(iii) The distribution of Xs has a limiting normal distribution

Xs − E[Xs]
√
Var[Xs]

→ N(0, 1).

Proof.  We use the combinatorial central limit theorem in Theorem 2.23 in [5]. Suppose Xs is a sequence of random 
variables with

E[uXs ] =
[zs] y(z, u)
[zs] y(z, 1)

,

where y(z, u) is a power series that is the solution of y = F (z, y, u). Suppose also that the following conditions hold for 
F :

1. F (z, y, u) =
∑

∞

s=0
∑

∞

m=0 Fs,m(u) z
sym is analytic around (0, 0, 0).

2. The coefficients Fs,m(1) are real and non-negative;
3. There exists (z0, y0) such that y0 = F (z0, y0, 1) and 1 = Fy(z0, y0, 1), with Fz(z0, y0, 1) ̸= 0 and Fyy(z0, y0, 1) ̸= 0.

Then (i) E[Xs] ∼ µs, where µ = Fu(z0, y0, 1)/[z0Fz(z0, y0, 1)].
(ii) Var[Xs] ∼ σ 2s, where 

σ 2
= µ + µ2

+
1

z0F 3
z Fyy

[
F 2
z (FyyFuu − F 2

yu) − 2FzFu(FyyFzu) + F 2
u (FyyFzz − FyzFyu)

]
, (24)

and all derivatives of F  are evaluated at (z0, y0, 1). 
(iii) If σ 2 > 0, then (Xs − E[Xs])/

√
Var[Xs] has a limiting standard normal distribution N(0, 1).

To apply the combinatorial central limit theorem, denote by Xs the number of leaves of a perfect phylogeny with 
sample size s, selected uniformly at random. In terms of generating functions B(z) and B(z, u), 

E[Xs] =

∑s
n=1 nbs,n
bs

=

∑s
n=1 nbs,n

[zs] B(z)
. (25)

In the same manner, because the bivariate generating function has [zs] B(z, u) =
∑s

n=1 bs,nu
n, 

E[uXs ] =

∑s
n=1 bs,nu

n

=
[zs] B(z, u)

. (26)

bs [zs] B(z)
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We let B(z, u) = F
(
z, B(z, u), u

)
, so that in Eq. (23),

F (z, y, u) =
uz

1 − z
+

1
2
y2 +

1
2
B(z2, u2).

We treat B(z2, u2) as a known function in z and u, because it is analytic in the region with |z| <
√
r and |u| < 1, where 

r ≈ 0.3068 is the constant that specifies the region of convergence for B(z).
We now verify the conditions. For condition 1, we can write F (z, y, u) =

∑
∞

s=0
∑

∞

m=0 Fs,m(u) z
sym by setting F0,2(u) =

1
2 , 

and for all m ̸= 2, F0,m(u) = 0. For s ≥ 1, we set 

Fs,0(u) =

{
u, odd s ≥ 1,
u +

1
2

∑s/2
n=1 bs/2,nu

2n, even s ≥ 2.
(27)

For s ≥ 1 and m ≥ 1, Fs,m(u) = 0. We see that F (z, y, u) is analytic around (0, 0, 0) as 1
2y

2 is entire, uz
1−z  is analytic 

everywhere except at z = 1, and B(z2, u2) is analytic for |z| <
√
r and |u| < 1.

For condition 2, we have defined the coefficients Fs,m(u) in verifying condition 1; all are real and non-negative in 
Eq. (27) at u = 1 because bs,n ≥ 0 for all s, n.

For condition 3, we note that F (z, y, 1) =
z

1−z +
1
2y

2
+

1
2B(z

2) = H(z, y) and Fy(z, y, 1) = Hy(z, y) where H(z, y) is 
the function defined in the proof of Theorem  5 (with variable y here in place of w previously). In that proof, we found 
the solution (z, y) = (z0, y0) = (r, 1) that satisfies F (z, y, 1) = y and Fy(z, y, 1) = 1: z0 = r ≈ 0.306760104888 and 
y0 = 1, where r is the radius of convergence of B(z). We also have Fz(z, y, u) = u/(1 − z)2 +

1
2

∂
∂z B(z

2, u2), so that 
Fz(z0, y0, 1) = Fz(r, 1, 1) = 1/(1 − r)2 + rB′(r2) ̸= 0, because all coefficients for B(z) are non-negative so that B′(r2)
is non-negative, and 1/(1 − r)2 is positive. Finally, Fyy(z0, y0, 1) = Fyy(r, 1, 1) = 1 ̸= 0.

With the conditions of the theorem verified, we approximate µ and σ 2. Because |u| < 1 and |z| < r < 1 in the region 
where B(z, u) converges, we can approximate B(z2, u2) by its first terms:

B(z2, u2) ≈
1
2

[
(u2)z2 + (u2

+ u4)z4 + (u2
+ u4

+ u6)z6 + (u2
+ 2u4

+ 2u6
+ 2u8)z8

+ (u2
+ 2u4

+ 4u6
+ 4u8

+ 3u10)z10 + (u2
+ 3u4

+ 6u6
+ 10u8

+ 9u10
+ 6u12)z12

]
, (28)

making use of terms bs,n that represent the coefficients of unzs from Table  2.
We approximate B(z2) ≈

∑14
i=1 bi(z

2)i = 1z2 + 2z4 + 3z6 + 7z8 + · · · + 109419z28 with the first 14 terms as in the 
proof of Theorem  5. We then compute approximations to the derivatives:

Fz(z, y, u) ≈
u

(1 − z)2
+

1
2
B′(z2) 2z,

Fzz(z, y, u) ≈
2u

(1 − z)3
+

1
2
[B′′(z2)4z2 + 2B′(z2)],

Fu(z, y, u) ≈
z

1 − z
+

1
2
[(2u)z2 + (2u + 4u3)z4 + (2u + 4u3

+ 6u5)z6

+ (2u + 8u3
+ 12u5

+ 16u7)z8 + (2u + 8u3
+ 24u5

+ 32u7
+ 30u9)z10

+ (2u + 12u3
+ 36u5

+ 80u7
+ 90u9

+ 72u11)z12],

Fuu(z, y, u) ≈
1
2
[2z2 + (2 + 12u2)z4 + (2 + 12u2

+ 30u4)z6 + (2 + 24u2
+ 60u4

+ 112u6)z8

+ (2 + 24u2
+ 120u4

+ 224u6
+ 270u8)z10

+ (2 + 36u2
+ 180u4

+ 560u6
+ 810u8

+ 792u10)z12],

Fzu(z, y, u) ≈
1

(1 − z)2
+

1
2
[(4u)z + (2u + 4u3)4z3 + (2u + 4u3

+ 6u5)6z5

+ (2u + 8u3
+ 12u5

+ 16u7)8z7 + (2u + 8u3
+ 24u5

+ 32u7
+ 30u9)10z9

+ (2u + 12u3
+ 36u5

+ 80u7
+ 90u9

+ 72u11)12z11],
Fyz(z, y, u) = 0,
Fyu(z, y, u) = 0,
Fyy(z, y, u) = 1.

We then approximate the derivatives of F  at z = z0 = r , y = y0 = 1, and u = 1, where B′(r2) is approximated as in Eq. (8) 
in the proof of Theorem  5, and B′′(r2) ≈

∑14
i=1 i(i − 1)bi(r2)i−2.

We obtain Fz(r, 1, 1) ≈ 2.5370, Fzz(r, 1, 1) ≈ 8.7686, Fu(r, 1, 1) ≈ 0.5701, Fuu(r, 1, 1) ≈ 0.1854, and Fzu(r, 1, 1) ≈

3.1929. Then µ = Fu(r, 1, 1)/[rFz(r, 1, 1)] ≈ 0.7326, and simplifying Eq. (24) with Fyz = 0, Fyu = 0, and Fyy = 1, we 
obtain σ 2

= µ + µ2
+ (F 2F − 2F F F + F 2F )/(z F 3) ≈ 0.2325. □
z uu z u zu u zz 0 z
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We note a minor technicality. The statement of Theorem 2.23 of [5] includes an additional condition, namely 
F (0, y, u) ≡ 0, which does not hold in our scenario, as F (0, y, u) =

1
2y

2
+ B(0, u2) =

1
2y

2
̸≡ 0. However, this condition is 

used only to guarantee the existence of a solution y = y(z, u) to y = F (z, y, u) with non-negative Taylor coefficients (see 
the beginning of the proof of Remark 2.20 of [5]). In our setting, this existence is guaranteed, as we defined F (z, y, u) to 
be the implicit generating function B(z, u) = F

(
z, B(z, u), u

)
, where B(z, u) =

∑
∞

s=1
∑

∞

n=1 bs,nz
sun and the coefficients bs,n

are counts that are necessarily nonnegative for all s, n.
Theorem 2.23 of [5] also states the condition F (z, 0, u) ̸≡ 0. It is not clear where this condition is required for 

obtaining the conclusions of the theorem, but in any case, in our situation, it is straightforward to verify, as F (z, 0, u) =
uz
1−z +

1
2B

2(z2, u2) ̸≡ 0.
Computing from Table  2 the sequence of values µs/s describing the mean number of leaves in perfect phylogenies of 

size s, we obtain 1, 34 , 
2
3 , 

19
28 , 

24
35 , 

73
105 , 

419
595 , 

641
904 , 

107
150 , 

11869
16580 , 

18253
25421 , 

113467
157692 , and 

353277
490087  for s = 1, 2, . . . , 12, 13. The numerical value 

at s = 13 is approximately 0.7208, close to the limiting value of approximately 0.7326. The sequence of approximate values 
of σ 2

s /s gives 0, 0.125, 0.222, 0.265, 0.278, 0.281, 0.268, 0.265, 0.257, 0.254, 0.250, 0.248, and 0.246 for s = 1, 2, . . . , 12, 13, 
nearing the limit of approximately 0.2325.

5. Rooted binary perfect phylogenies with a caterpillar shape

We have counted perfect phylogenies with sample size s, and with sample size s and number of leaves n. Each perfect 
phylogeny has an associated unlabeled tree shape; we now count the perfect phylogenies with sample size s and a 
caterpillar shape (with n leaves).

5.1. Enumeration

A caterpillar tree with n ≥ 2 leaves has exactly 1 cherry node. In other words, for n ≥ 3, a caterpillar tree is constructed 
by adjoining a caterpillar tree with n − 1 leaves and a single-leaf tree to a shared root. Denote by gs,n the number of 
caterpillar rooted binary phylogenies with sample size s and n ≥ 2 leaves. We set gs,n = 0 if s < n (or s /∈ N, or n /∈ N). 

Proposition 14.  The number gs,n of rooted binary perfect phylogenies with caterpillar shape, sample size s, and n leaves, 
2 ≤ n ≤ s, satisfies
(i) gs,2 = ⌊

s
2⌋ for all s ≥ 2.

(ii) For (s, n) with s ≥ n ≥ 3, 

gs,n =

s−1∑
i=n−1

gi,n−1 =

s−1∑
i1=n−1

i1−1∑
i2=n−2

. . .

in−4−1∑
in−3=3

in−3−1∑
in−2=2

⌊
in−2

2

⌋
. (29)

Proof.  (i) Recognizing that the only tree shape with n = 2 leaves is the 2-leaf caterpillar tree, we see that we already 
proved this result in Corollary  7.

(ii) For n ≥ 3, the left subtree of a caterpillar of size n is a caterpillar of size n − 1. We assign sample size i to the left 
subtree, n − 1 ≤ i ≤ s − 1, and s − i to the leaf in the right subtree: 

gs,n =

s−1∑
i=n−1

gi,n−1bs−i,1 =

s−1∑
i=n−1

gi,n−1. (30)

Proceeding iteratively, we have

gs,n =

s−1∑
i1=n−1

gi1,n−1 =

s−1∑
i1=n−1

i1−1∑
i2=n−2

gi2,n−2 = · · · =

s−1∑
i1=n−1

i1−1∑
i2=n−2

. . .

in−4−1∑
in−3=3

in−3−1∑
in−2=2

gin−2,2.

We apply the base case of n = 2 to complete the proof. □

We can apply Proposition  14 with specific small values of n, completing the sum in Eq. (29). The case of n = 3 was 
obtained in Corollary  8, and we will write its solution in a different form. We proceed via calculations similar to those 
performed in obtaining Corollaries  7–9.

We use an approach that avoids summations that include floor and ceiling functions, as appeared in the proofs of 
Corollaries  8 and 9. Separating the n = 2 result gs,2 = ⌊

s
2⌋ (Corollary  7) into cases for odd and even s, we can increase n

incrementally, observing from Eq. (30) that for fixed n, gs,n as a function of s can be written with odd and even cases, each 
consisting of a polynomial of degree n−1 in s. It is convenient to instead define the cases in terms of odd and even s−n. 
In particular, for s − n even, we define f es,n to be the polynomial describing the number of caterpillar perfect phylogenies 
with sample size s and n leaves. For s−n odd, we define f os,n as the corresponding polynomial for the number of caterpillar 
perfect phylogenies with sample size s and n leaves. Note that both polynomials are functions that can be calculated for 
all (s, n) with s ≥ n ≥ 2; however, each represents the number of caterpillar perfect phylogenies only in its associated 
case. With these definitions, the number of caterpillar perfect phylogenies gs,n can be written in a form that is convenient 
for computation, containing only a single floor function. 
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Proposition 15.  For (s, n) with n ≥ 2 and s ≥ n, the number of caterpillar perfect phylogenies with n leaves and sample size 
s is 

gs,n = ⌊f es,n⌋ =

⌊( s−1∑
i=n−1

f ei,n−1

)
−

s − n
2n−1

⌋
. (31)

The proposition relies on a lemma. 

Lemma 16.  For (s, n) with n ≥ 2 and s ≥ n, 

f es,n − f os,n =
1

2n−1 . (32)

Proof.  We proceed by induction on n. For the base case, n = 2, by Corollary  7, we have gs,2 = ⌊
s
2⌋. Thus for s even, 

gs,2 =
s
2 , and for s odd, gs,2 =

s
2 −

1
2 . In other words, we have f es,2 =

s
2  and f

o
s,2 =

s−1
2 . It follows that f es,2 − f os,2 =

1
2 .

For the inductive step, suppose for n ≥ 3 that f es,n−1− f os,n−1 = 1/2n−2. If s−(n−1) is even, then f es,n−1 is an integer, with 
gs,n−1 = f es,n−1 = ⌊f es,n−1⌋. If instead s − (n − 1) is odd, then f os,n−1 = gs,n−1 is an integer, and by the inductive hypothesis, 
⌊f es,n−1⌋ = f es,n−1 − 1/2n−2

= f os,n−1.
By Eq. (30) and the inductive hypothesis, using 1{x} = 1 if x holds and 1{x} = 0 otherwise,

gs,n =

s−1∑
i=n−1

gi,n−1 =

s−1∑
i=n−1

⌊f ei,n−1⌋

=

( s−1∑
i=n−1

f ei,n−1

)
−

1
2n−2

s−1∑
i=n−1

1{i−(n−1) is odd}.

We then use that
s−1∑

i=n−1

1{i−(n−1) is odd} =

s−n∑
i=0

1{i is odd} =

{
s−n
2 , s − n even,

s−(n−1)
2 , s − n odd.

We then obtain expressions for gs,n in the case of even s−n and odd s−n. Because gs,n = f es,n for even s−n and gs,n = f os,n
for odd s − n, we have

f es,n =

( s−1∑
i=n−1

f ei,n−1

)
−

s − n
2n−1 , (33)

f os,n =

( s−1∑
i=n−1

f ei,n−1

)
−

s − (n − 1)
2n−1 . (34)

Now we see that f es,n − f os,n = 1/2n−1, completing the induction. □

Proof of Proposition  15.  From Lemma  16, for each n ≥ 2, f es,n exceeds f os,n by a quantity that is less than 1. Hence, for 
odd s − n, for which gs,n = f os,n and f os,n is an integer, ⌊f es,n⌋ = f os,n = gs,n. For even s − n, gs,n = f es,n and f es,n is an integer, so 
that ⌊f es,n⌋ = f es,n = gs,n. We conclude in both odd and even cases that gs,n = ⌊f es,n⌋, with f es,n specified by Eq. (33). □

We can then compute gs,n for the smallest n by iteratively summing polynomials to calculate f es,n in Eq. (33), taking the 
floor of the output. We present the first several functions gs,n.

gs,2 =

⌊
s
2

⌋
(35)

gs,3 =

⌊
(s − 1)2

4

⌋
(36)

gs,4 =

⌊
s(s − 2)(2s − 5)

24

⌋
(37)

gs,5 =

⌊
(s − 1)(s − 3)(s2 − 4s + 1)

48

⌋
(38)

gs,6 =

⌊
s(s − 2)(s − 4)(2s2 − 13s + 16)

⌋
(39)
480
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Table 3
The number gs,n of rooted binary perfect phylogenies with sample size s and a caterpillar shape with n leaves. Entries are obtained using Proposition 
14; the ‘‘total’’ is gs =

∑s
n=2 gs,n . The total follows A000975 (with the index shifted so that term s in A000975 is gs+1).

 Sample size (s) Number of leaves (n) Total 
 13 12 11 10 9 8 7 6 5 4 3 2  
 2 1 1  
 3 1 1 2  
 4 1 2 2 5  
 5 1 3 4 2 10  
 6 1 4 7 6 3 21  
 7 1 5 11 13 9 3 42  
 8 1 6 16 24 22 12 4 85  
 9 1 7 22 40 46 34 16 4 170  
 10 1 8 29 62 86 80 50 20 5 341  
 11 1 9 37 91 148 166 130 70 25 5 682  
 12 1 10 46 128 239 314 296 200 95 30 6 1365 
 13 1 11 56 174 367 553 610 496 295 125 36 6 2730 

gs,7 =

⌊
(s − 1)(s − 3)2(s − 5)(2s2 − 12s + 1)

2880

⌋
(40)

gs,8 =

⌊
s(s − 2)(s − 4)(s − 6)(4s3 − 50s2 + 176s − 151)

40320

⌋
(41)

gs,9 =

⌊
(s − 1)(s − 3)(s − 5)(s − 7)(s4 − 16s3 + 78s2 − 112s + 3)

80640

⌋
. (42)

The values of gs,n for 2 ≤ n ≤ s ≤ 13 appear in Table  3.

5.2. Generating function

We next obtain a generating function for the number of perfect phylogenies with the fixed caterpillar shape with n
leaves, as s increases. 

Proposition 17.  The generating function Gn(z) for the number gs,n of rooted binary perfect phylogenies with sample size s ≥ n
and the caterpillar topology with n ≥ 2 leaves satisfies 

Gn(z) =
zn

(1 − z)n(1 + z)
. (43)

Proof.  We proceed by induction. We obtained the result for n = 2 in Eq. (18), as the caterpillar is the only shape with 2 
leaves. Suppose the generating function for the number of rooted binary perfect phylogenies with sample size s and the 
n-leaf caterpillar follows Eq. (43). We apply Eq. (30) to obtain the generating function associated with the caterpillar with 
n + 1 leaves (propagating bs−i,1 = 1 through the calculation for clarity):

Gn+1(z) =

∞∑
s=1

gs,n+1zs

=

∞∑
s=1

( s−1∑
i=n

gi,nbs−i,1

)
zs

=

∞∑
s=1

s−1∑
i=n

(gi,nz i)(bs−i,1zs−i).

Because gs,n = 0 for 1 ≤ s ≤ n − 1, we add additional zeros and simplify a convolution:

Gn+1(z) =

∞∑
s=1

s−1∑
i=1

(gi,nz i)(bs−i,1zs−i)

= Gn(z) B1(z)

=
zn

(1 − z)n(1 + z)
z

1 − z
.

The induction is complete. □
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Note that gs, the total number of caterpillar perfect phylogenies with sample size s, allowing all possible values of n, 
2 ≤ n ≤ s, follows the Lichtenberg sequence, OEIS sequence A000975 (the index is shifted, so that if A000975 is denoted 
{as}, then as = gs+1). We verify this equivalence by showing an identity of generating functions. Denote the generating 
function for the number of caterpillars with sample size s, considering all possible numbers of leaves, by G(z) =

∑
∞

s=2 gsz
s.

We have that 

gs =

s∑
n=2

gs,n (44)

and Gn(z) =
∑

∞

s=n gs,nz
s, and we add zeros to obtain

G(z) =

∞∑
s=2

gszs =

∞∑
s=2

( ∞∑
n=2

gs,n

)
zs =

∞∑
n=2

( ∞∑
s=2

gs,nzs
)

=

∞∑
n=2

Gn(z).

By Proposition  17, we then have

G(z) =

∞∑
n=2

zn

(1 − z)n(1 + z)

=
1

1 + z

(
1

1 −
z

1−z
−

z
1 − z

− 1
)

=
z2

(1 + z)(1 − z)(1 − 2z)
, (45)

where the summation requires |z| < 1
2 . The Lichtenberg sequence [12,13] has generating function z/[(1+z)(1−z)(1−2z)], 

differing only in missing a factor of z, so that its term as accords with our gs+1. Using the exact form for the Lichtenberg 
sequence [12], we have 

gs =

⌊
2s

3

⌋
. (46)

Note that if we were to consider the 1-leaf perfect phylogeny a caterpillar and to allow a trivial perfect phylogeny 
with s = 0, then we would obtain a sequence {g ′

s} for the total number of perfect phylogenies with sample size s and 
n ≥ 1 leaves; for all s ≥ 0, g ′

s = gs + 1. This sequence, with generating function G(z) +
1

1−z  to account for the extra 
perfect phylogeny with 1 leaf (for all s ≥ 1) and the trivial perfect phylogeny (s = 0), accords with A005578, which has 
generating function (1 − z − z2)/[(1 + z)(1 − z)(1 − 2z)] = G(z) +

1
1−z .

5.3. Asymptotics

We study the asymptotics for gs,n, the number of rooted binary caterpillar perfect phylogenies with sample size s and 
n ≥ 2 leaves, similarly to our analysis of general perfect phylogenies.

We quickly obtain a result analogous to Lemma  12 directly from the closed form Gn(z) =
∑

∞

s=1 gs,nz
s
=

∑
∞

s=n gs,nz
s
=

Gn(z) = zn/[(1 − z)n(1 + z)] for n ≥ 2 (Eq. (43)). 

Lemma 18.  Fix n ≥ 2. Gn(z) ∼ hn/(1 − z)n as z → 1 in a ∆-domain in the neighborhood of z = 1, for a constant hn.

The constant is hn =
1
2  for all n ≥ 2. Applying Corollary 2.16 of [5], we obtain a result similar to Proposition  11. 

Proposition 19.  As s → ∞, for fixed n ≥ 2, the number gs,n of rooted binary perfect phylogenies with sample size s ≥ n and 
the caterpillar topology has asymptotic growth gs,n ∼ sn−1/[2(n − 1)!]. 

5.4. Bivariate generating function

The bivariate generating function for the number of rooted binary perfect phylogenies with a caterpillar topology, with 
sample size s and n ≥ 2 leaves, also follows from the closed form Gn(z) (Eq. (43)). Let G(z, u) =

∑
∞

n=2 Gn(z) un. Then

G(z, u) =
1

1 + z

∞∑
n=2

unzn

(1 − z)n

= −
1

1 + z
−

uz
(1 − z)(1 + z)

+
1

1 + z

∞∑
n=0

(
uz

1 − z

)n

=
u2z2

. (47)

(1 − z)(1 + z)(1 − z − uz)
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5.5. Asymptotic normal distribution for the number of leaves

We obtain an asymptotic normal distribution for the number of leaves. The result is obtained from the bivariate 
generating function.

Theorem 20.  Let Ys denote the random variable describing the number of leaves of a caterpillar perfect phylogeny chosen at 
random with sample size s. Then as s grows large,
(i) E[Ys] ∼

1
2 s.

(ii) Var[Ys] ∼
1
4 s. 

(iii) The distribution of Ys has a limiting normal distribution
Ys − E[Ys]
√
Var[Ys]

→ N(0, 1).

Proof.  We refer to Theorem IX.9 in [8] (see also the errata, https://ac.cs.princeton.edu/errata/). Consider a function F (z, u)
that is bivariate analytic at (0, 0) and whose expansion has non-negative coefficients. Suppose F (z, 1) is meromorphic in 
|z| ≤ R with a pole at z = ρ for a positive ρ < R. Suppose that the following also hold:

1. For some ϵ > 0 and r > ρ (and r ≤ R), we can write F (z, u) = B(z, u)/C(z, u) for (z, u) in some domain 
D = {|z| ≤ r} × {|u − 1| < ϵ}, where B(z, u) and C(z, u) are analytic in D with B(ρ, 1) ̸= 0.

2. The partial derivatives of C satisfy
∂C(ρ, 1)

∂z
∂C(ρ, 1)

∂u
̸= 0.

3. v
(

ρ(1)
ρ(u)

)
̸= 0, where ρ(u) is the solution to C

(
ρ(u), u

)
= 0 and ρ(1) = ρ, m

(
f (u)

)
=

f ′(1)
f (1) , and v

(
f (u)

)
=

f ′′(1)
f (1) +

f ′(1)
f (1) −

( f ′(1)
f (1)

)2 for a function f  analytic at 1 with f (1) ̸= 0.

Then the random variable Ys with probability generating function ps(u) = [zs]F (z, u)/[zs]F (z, 1), standardized to 
(Ys − µs)/σs, converges in distribution to a standard normal random variable with mean 0 and variance 1, where 
µs = m

(
ρ(1)
ρ(u)

)
s + O(1) and σ 2

s = v
(

ρ(1)
ρ(u)

)
s + O(1).

We verify the hypotheses of the theorem for the bivariate generating function G(z, u). First, G(z, u) is analytic in both 
variables at (0, 0), and its expansion has non-negative coefficients for all (s, n) with s ≥ n ≥ 2 (Eq. (47)).

Next, for a choice of r with 12 < r < 1, G(z, 1) is meromorphic for |z| ≤ r , with a pole only at z = ρ for ρ =
1
2 < r . 

We verify the conditions of the theorem.

1. Write G(z, u) = B(z, u)/C(z, u) in D = {|z| ≤ r} × {|u − 1| < ϵ} for B(z, u) = u2z2 and C(z, u) = (1 − z)(1 + z)(1 −

z − uz), for small ϵ > 0 and 12 < r < 1. Both B and C are analytic with B( 12 , 1) =
1
4 ̸= 0.

2. The condition on the partial derivatives is satisfied, with ρ =
1
2 :

∂C(ρ, 1)
∂z

∂C(ρ, 1)
∂u

= [2(3ρ2
− ρ − 1)][ρ(ρ − 1)(ρ + 1)] =

9
16

̸= 0.

3. Given u, the location of pole ρ as a function of u is z = ρ(u) =
1

1+u , so that ρ(1)/ρ(u) =
1+u
2 . Letting f (u) =

1+u
2 , 

f (u) is analytic at u = 1 with f (1) = 1 ̸= 0. We have m
(
f (u)

)
=

1
2/1 =

1
2  and v

(
f (u)

)
=

0
1 +

1/2
1 − ( 1/21 )2 =

1
4 ̸= 0.

We conclude that for the random variable Ys describing the random number of leaves of a caterpillar perfect phylogeny 
with sample size s, with probability generating function ps(u) = [zs]G(z, u)/[zs]G(z, 1), (Ys − µs)/σs converges in 
distribution to a standard normal random variable, with µs = m

(
f (u)

)
s + O(1) =

1
2 s + O(1) and σ 2

s = v
(
f (u)

)
s + O(1) =

1
4 s + O(1). □

Computing from Table  3 the sequence of values µs/s describing the mean number of leaves in caterpillars of size s, we 
obtain 12 , 

5
6 , 

7
10 , 

33
50 , 

13
21 , 

59
98 , 

199
340 , 

881
1530 , 

967
1705 , 

4209
7502 , 

1517
2730 , and 

6523
11830  for s = 2 to 13; the last of these values is approximately 

0.551, near the limiting value of 12 . Numerical approximations for the corresponding sequence of values σ 2
s /s are 0, 0.083, 

0.140, 0.162, 0.193, 0.201, 0.215, 0.219, 0.226, 0.228, 0.231, and 0.232, approaching the limiting value of 14 .

6. Rooted binary perfect phylogenies with an arbitrary unlabeled shape

For our last analysis, we generalize the argument we have used for recursively counting perfect phylogenies with a 
caterpillar tree shape with n leaves (Section 5.1) to an arbitrary tree shape with n leaves, offering some results in the 
general case of an arbitrary unlabeled tree shape.

Let T  be an unlabeled tree shape with |T | leaves. Tree T  has left and right subtrees, Tℓ and Tr , with |Tℓ| and |Tr | leaves. 
In sequentially decomposing a tree into its left and right subtrees, eventually a single node is reached. Denote by Ns,T  the 
number of rooted binary perfect phylogenies with unlabeled tree shape T , where N = 0 if s < |T | or s is not an integer. 
s,T
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Proposition 21.  The number Ns,T  of rooted binary perfect phylogenies with unlabeled tree shape T  and sample size s ≥ |T |

satisfies
(i) Ns,T = 1 if T  has a single leaf and s ≥ 1.
(ii) For (s, T ) with s ≥ |T | ≥ 2, 

Ns,T =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s−|Tr |∑
i=|Tℓ|

Ni,TℓNs−i,Tr , Tℓ ̸= Tr ,

(s−|Tr |∑
i=|Tℓ|

1
2Ni,TℓNs−i,Tr

)
+

1
2Ns/2,Tℓ , Tℓ = Tr .

(48)

Proof.  (i) We have discussed the base case of the single-leaf tree in Proposition  6i. (ii) For the general case, a perfect 
phylogeny with unlabeled shape T  is constructed from perfect phylogenies with unlabeled shapes Tℓ and Tr . The minimal 
sample size assigned to Tℓ is |Tℓ|, and the minimal sample size assigned to Tr  is |Tr |, so that the maximal sample size for 
Tℓ is s − |Tr |.

If Tℓ ̸= Tr , then we sum the product of the number of perfect phylogenies for Tℓ and the number of perfect phylogenies 
for Tr  over all possible values i of the sample size assigned to Tℓ. Because i ≥ |Tℓ| and s − i ≥ |Tr |, we have i ≤ s − |Tr |.

If Tℓ = Tr  and sample size i ̸=
s
2  is assigned to the left subtree, then a factor of 

1
2  accounts for the fact that each perfect 

phylogeny traversed is also obtained for sample size s − i assigned to the left subtree. If Tℓ = Tr  and i =
s
2  (for even s), 

then we count the 
(Ns/2,Tℓ

2

)
 trees with distinct subtrees and the Ns/2,Tℓ  trees with identical subtrees. □

Using Proposition  21, we compute Ns,T  for each unlabeled tree shape with |T | ≤ 8 and |T | ≤ s ≤ 11, presenting 
these counts in Tables  4 and 5. For each small value of n, at fixed s ≥ n, we observe that across shapes T  with n leaves, 
the number of rooted binary perfect phylogenies Ns,T  tends to be larger for less balanced shapes T  and smaller for more 
balanced shapes.

The proposition can be used to obtain a closed form for the number of rooted binary perfect phylogenies for a 
fixed shape T  as a function of s. For example, suppose T  is the 4-leaf symmetric unlabeled shape, with Tℓ and Tr  both 
corresponding to the 2-leaf caterpillar. Proposition  21 yields, for s ≥ 4,

Ns,T =

( s−2∑
i=2

1
2
gi,2gs−i,2

)
+

1
2
gs/2,2

=

( s−2∑
i=2

1
2

⌊
i
2

⌋⌊
s − i
2

⌋)
+

1
2

⌊
s
4

⌋
1{s is even}

=

{
(s+1)(s−1)(s−3)

48 , odd s ≥ 5,
s(s−1)(s−2)

48 +
1
2⌊

s
4⌋, even s ≥ 4.

(49)

Note that the derivation follows the proof of Corollary  9, Eqs. (14) and (16).
Recall that there are only two 4-leaf unlabeled topologies, the symmetric shape and the caterpillar. Adding Eq. (49), 

counting perfect phylogenies for the symmetric shape, and Eq. (37), for the caterpillar, we obtain Eq. (12), counting all 
perfect phylogenies with n = 4 leaves. In particular, for odd s ≥ 5, using Lemma  16 and Proposition  15 to remove the 
floor function,

(s + 1)(s − 1)(s − 3)
48

+

⌊
s(s − 2)(2s − 5)

24

⌋
=

(s + 1)(s − 1)(s − 3)
48

+
s(s − 2)(2s − 5)

24
−

1
8

=
(s − 1)(s − 3)(5s − 1)

48
.

For even s ≥ 4, by Proposition  15,
s(s − 1)(s − 2)

48
+

1
2

⌊
s
4

⌋
+

⌊
s(s − 2)(2s − 5)

24

⌋
=

s(s − 1)(s − 2)
48

+
1
2

⌊
s
4

⌋
+

s(s − 2)(2s − 5)
24

=
s(s − 2)(5s − 11)

48
+

1
2

⌊
s
4

⌋
.

Subtracting Eq. (49), the number of perfect phylogenies for the symmetric shape, from Eq. (37), the corresponding 
number for the caterpillar, we can quickly demonstrate that for s ≥ 5, the caterpillar possesses more perfect phylogenies 
with sample size s. In particular, for odd s ≥ 5,

s(s − 2)(2s − 5)
−

1
−

(s + 1)(s − 1)(s − 3)
=

(s − 1)2(s − 3)
> 0.
24 8 48 16
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Table 4
The number of rooted binary perfect phylogenies N(T , s) that have sample size s and a given 
unlabeled topology T with n leaves, for small n (1 ≤ n ≤ 7) and s. N(T , s) is calculated according 
to Proposition  21.

For even s ≥ 4,

s(s − 2)(2s − 5)
24

−
s(s − 1)(s − 2)

48
−

1
2

⌊
s
4

⌋
=

s(s − 2)(s − 3)
16

−
1
2

⌊
s
4

⌋
≥

s(s − 2)(s − 3)
16

−
s
8

=
s(s − 1)(s − 4)

16
≥ 0,

with equality if and only if s = 4.

7. Discussion

We have studied the enumerative combinatorics of rooted binary perfect phylogenies. We have provided a recursive 
formula to enumerate the rooted binary perfect phylogenies with a given sample size s via Eq. (3), and we have provided 
an asymptotic approximation in Eq. (6). We have also refined the enumeration, counting rooted binary perfect phylogenies 
for a given sample size s separately for each possible value of the number of leaves n via Eq. (9). We have counted rooted 
binary perfect phylogenies associated with specific shapes (Eq. (48)), notably a caterpillar shape (Eq. (29)). A summary of 
results appears in Table  6.
558



C.E. Shiff and N.A. Rosenberg Discrete Applied Mathematics 380 (2026) 538–561
Table 5
The number of rooted binary perfect phylogenies N(T , s) that have sample size s and a 
given unlabeled topology T with n leaves, for small n (n = 8) and s. N(T , s) is calculated 
according to Proposition  21.

Table 6
The main results of the paper. We have variously obtained recursions, generating functions, and asymptotics for the 
number of rooted binary perfect phylogenies with sample size s: considering all tree shapes, all tree shapes with n
leaves, the n-leaf caterpillar shape, all caterpillar shapes, and a single shape that is specified, but that is arbitrary.
 Tree shapes Recursion Generating function Asymptotics  
 All shapes bs , Proposition  1 B(z), Proposition  2 Theorem  5  
 All n-leaf shapes bs,n , Proposition  6 Bn(z), Proposition  10 Proposition  11 
 n-leaf caterpillar gs,n , Proposition  14 Gn(z), Proposition  17 Proposition  19 
 All caterpillars gs , Eq.  (44) G(z), Eq.  (45) Eq.  (46)  
 Arbitrary shape Ns,T , Proposition  21 – –  

The enumerations build on the efforts of Palacios et al. [16] to enumerate the labeled and unlabeled topologies and 
labeled and unlabeled histories that can be associated with a rooted perfect phylogeny, binary or multifurcating. For rooted 
binary perfect phylogenies, we provide enumerations that can be employed as a starting point for the enumerations of 
labeled and unlabeled topologies and labeled and unlabeled histories by Palacios et al. [16].

The recurrence for bs, the number of rooted binary perfect phylogenies with sample size s (Eq. (3)), is similar to 
the recurrence for the number of rooted binary unlabeled trees (Eq. (1))—except that it requires the addition of a 1 
for the single-leaf perfect phylogeny, whereas the recurrence for the rooted binary unlabeled trees does not include a 
corresponding possibility. This small difference leads to a large difference in asymptotic growth. Whereas the asymptotic 
growth of the rooted binary unlabeled trees—the perfect phylogenies with sample size s and s leaves—is approximately 
0.3188(2.4833)ss−3/2, the growth of the rooted binary perfect phylogenies with sample size s is substantially larger, 
approximately 0.3519(3.2599)ss−3/2 (Eq. (6)).
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Some of our results produce known integer sequences. The sequences for bs (OEIS A113822) and bs+1,s (OEIS A085748) 
have been reported but little studied; bs+1,s counts rooted binary labeled trees with s leaves in which all leaves except 
one are labeled ‘‘1’’ and the last leaf is labeled ‘‘2’’; equivalently, it is the number of rooted binary trees that are unlabeled 
except that one leaf is given a label. Sequence bs,3 follows OEIS A002620 (Corollary  8), the ‘‘quarter-squares’’. The number 
of ways to place a given sample size across some caterpillar shape (Table  3) follows OEIS A000975, a sequence well studied 
in other contexts.

Interestingly, we observed that across all rooted binary unlabeled trees T  with a fixed number of leaves n, the number 
of rooted binary perfect phylogenies for a fixed s appears to be largest for the caterpillar tree shape. For the case of n = 4, 
we proved this result, showing that for sample size s ≥ 5, the caterpillar shape has more perfect phylogenies than the 
symmetric shape (Section 6). Informally, the number of rooted binary perfect phylogenies for fixed s and n, with only 
the tree shape changing, appears to decrease with increasing tree balance. The symmetry introduced by replacement 
of an asymmetric internal node by a symmetric internal node decreases the number of perfect phylogenies; it will be 
informative to systematically examine the number of perfect phylogenies in relation to tree balance indices such as the 
symmetry nodes index [14].

In accord with the result that caterpillars appear to possess larger numbers of perfect phylogenies, asymptotically as 
s grows large, whereas the mean number of leaves in a rooted binary perfect phylogeny selected at random grows with 
approximately 0.7326s (Theorem  13), the mean number of leaves in a rooted binary perfect phylogeny with caterpillar 
shape grows only with 12 s (Theorem  20). The smaller value for the case of caterpillars reflects the fact that a caterpillar 
possesses only one symmetric node—its cherry—so that many distinct perfect phylogenies can be constructed with sample 
size s and a fixed small caterpillar size.

Perfect phylogenies have applications in multiple biological settings. They appear in problems concerning DNA 
sequences descended in a population from an ancestral sequence by a process with little or no genetic recombina-
tion [1,2,10, pp. 460–462]; a classic family of ‘‘perfect phylogeny problems’’ seeks to find algorithms for constructing 
perfect phylogenies from sets of sequences in this context. Recently, perfect phylogenies have also been considered in 
problems with cell lineages and tumors [6,18]. Our enumerative results assist in characterizing the sizes and combinatorial 
properties of sets of perfect phylogenies relevant to the various biological applications.

The binary perfect phylogenies are closely related to the rooted multi-labeled binary trees [4]. In a rooted multi-labeled 
binary tree, a shared label can be assigned to multiple leaves. Czabarka et al. [4] report the number rm = rm1,m2,...,mk  of 
rooted multi-labeled binary trees, each of which is labeled by a given set of ‘‘multi-labels’’ {A1, A2, . . . , Ak}, where label 
Aj appears mj times.

Consider the integers at the leaves of a perfect phylogeny as ‘‘labels.’’ A perfect phylogeny with sample size s and 
n leaves has integer labels s = (s1, s2, . . . , sn). The number of unique integer labels that appear in s is denoted k, and 
those integer labels appear m = (mt1 ,mt2 , . . . ,mtk ) times, where the tj are the k distinct integer labels represented in 
s, mtj  represents the number of leaves labeled by integer tj, 

∑k
j=1 mtj = n, and 

∑k
j=1 tjmtj = s. For example, the perfect 

phylogenies with labels s = (5, 4, 4, 1, 1) and n = 5 leaves correspond to the multi-labeled binary trees with 5 leaves 
and k = 3 multi-labels (‘‘1’’, ‘‘4’’, and ‘‘5’’) and label multiplicities m = (m1,m4,m5) = (2, 2, 1) (and (t1, t2, t3) = (1, 4, 5)). 
Through the correspondence with multi-labeled trees, perfect phylogenies can potentially also be enumerated by summing 
enumerations for relevant sets of multi-labeled trees.

From the perspective of the lattice formulation for perfect phylogenies (Fig.  2), we have counted the (non-empty) 
elements of the lattice, bs, and bs,n, the number of elements that lie s− n+ 1 ‘‘steps’’ from the minimal element φ to the 
maximal element, a single leaf. However, in describing lattices of binary perfect phylogenies, we have left a number of 
questions unanswered. In how many ways can the lattice be traversed—via the order relation—between the minimal 
and maximal perfect phylogenies? How many perfect phylogenies exist with specified features, perhaps concerning 
numbers of nodes with different numbers of descendants or leaves with specified multiplicities? Applications of the lattice 
formulation may provide further insights.
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