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1. Introduction

Rooted binary unlabeled tree structures are classic objects of combinatorics and graph theory [5,8]. In evolutionary
biology, rooted binary unlabeled trees are used to describe the possible relationships that a set of unlabeled organisms
can possess, so that they arise in inferences about features of speciation histories [7,17].

The rooted binary unlabeled trees can be enumerated recursively. Denoting by u, the number of rooted binary
unlabeled trees with n leaves, for n > 2, the recursion is

n—1
E 3 Un—ill;, odd n > 3,
i—1

u, =
n n—1

(Z%%qlﬁ) + Jupp, evenn =2,

i=1
with up = 0 and u; = 1. The recursion is obtained by summing over possible numbers of leaves i for the right-hand
subtree descended from the root. The factor of % arises from the fact that each tree is obtained twice—once with its left
and right subtrees transposed. If n is even, for i = 7, the recurrence counts the (”"2/2) trees with distinct subtrees and

the uy, trees with identical subtrees. The u;,, n > 1, follow the Wedderburn-Etherington sequence (OEIS A001190), with
initial terms 1, 1, 1, 2, 3, 6, 11, 23, 46, 98; they have implicitly defined generating function

U(z) = %U(z)z + %U(zz) +z. (2)
The convergence radius for U(z) is approximately 0.4027. The asymptotic growth of u, approximately follows
0.3188(2.4833)"n—3/2 [3,11,15].

Rooted binary perfect phylogenies can be viewed as generalizing the rooted binary unlabeled trees. A rooted binary
perfect phylogeny is a rooted binary tree in which each leaf is associated with a positive integer [16]. Each integer can be
regarded as a multiplicity for the biological entity associated with a leaf—for example, the number of times that a specific
DNA sequence is seen in a sample of sequences that are not necessarily distinct. A rooted binary perfect phylogeny has a
number of leaves n and a sample size s that represents the sum of the multiplicities at the leaves. Rooted binary perfect
phylogenies are a special case of rooted multifurcating perfect phylogenies—perfect phylogenies in which internal nodes
possess two or more immediate descendants [16]. The rooted binary unlabeled trees correspond to rooted binary perfect
phylogenies in the case that s = n; the leaf multiplicities of the perfect phylogenies all equal 1 in this equivalence.

In evolutionary biology, perfect phylogenies can sometimes be used as representations of the relationships of genetic
sequences [9,16]. The topology of a perfect phylogeny encodes ancestral relationships in a set of sequences that have not
experienced recombination, and in which each mutation has occurred only once. Rooted perfect phylogenies have one
vertex designated as the root, representing a sequence from which all other sequences in the perfect phylogeny descend.

Palacios et al. [16] have recently developed the enumerative combinatorics of rooted perfect phylogenies, focusing on
enumerations of various classes of binary trees that are compatible with a given rooted perfect phylogeny. Our focus here
is different: we enumerate the possible rooted binary perfect phylogenies themselves.

After introducing definitions in Section 2, in Section 3, we recursively enumerate the rooted binary perfect phylogenies
with sample size s, considering all possible values of the number of leaves n; we provide the asymptotic approximation
of this quantity as s increases. In Section 4, we recursively enumerate rooted binary perfect phylogenies with a specific
number of leaves n and sample size s. We provide a recursive equation to compute, for each n, the generating function
for the sequence of the number of rooted binary perfect phylogenies with the number of leaves n fixed and the sample
size s growing. We analyze the asymptotic growth with s of the number of rooted binary perfect phylogenies with a fixed
number of leaves n, and we study the distribution of n in a randomly chosen perfect phylogeny with sample size s. In
Section 5, we recursively enumerate the rooted binary perfect phylogenies with sample size s for a caterpillar tree shape.
We obtain, for each small n, a closed-form expression for the number of perfect phylogenies for any s. We also provide
generating functions for the numbers of perfect phylogenies with n-leaf caterpillar shapes, as well as a generating function
and closed form for the total number of perfect phylogenies with sample size s across all caterpillar shapes. We analyze
the asymptotic growth with s of the number of rooted binary perfect phylogenies with a caterpillar shape and n leaves,
and we study the distribution of n in a randomly chosen perfect phylogeny with sample size s and a caterpillar shape.
Section 6 then considers arbitrary tree shapes, obtaining a recurrence for the number of perfect phylogenies with sample
size s for any specific tree shape.

2. Preliminaries
2.1. Definitions

We restrict attention to rooted perfect phylogenies that are binary, with each internal node possessing exactly two child
nodes. Henceforth, the perfect phylogenies that we consider are understood to be rooted and binary, and we sometimes
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Fig. 1. A perfect phylogeny with sample size s = 17 and n = 8 leaves. The numbers at the leaves represent leaf multiplicities.

omit these descriptors. Like the rooted binary unlabeled trees, we consider perfect phylogenies to be non-plane trees, so
that the left-right order in which child nodes are depicted is ignored.

We denote the number of leaves in a perfect phylogeny by n. Each leaf is associated with a positive integer, its
multiplicity—representing in biological applications of perfect phylogenies the number of copies of a biological sequence
seen in a sample of sequences. We refer to the sum of the multiplicities in a perfect phylogeny as its sample size.

For fixed sample size s, it is convenient to allow an empty perfect phylogeny, though we exclude this empty perfect
phylogeny from our enumerations. We do include the trivial perfect phylogeny with sample size s, namely a perfect
phylogeny that consists only of a single leaf of multiplicity s.

Fig. 1 displays an example perfect phylogeny with n = 8 leaves. The leaf multiplicities are 2, 1, 3, 3, 1, 4, 1, and 2, for
a total sample size s = 17.

2.2. Lattices of perfect phylogenies

In the work of Palacios et al. [16], all possible rooted binary trees (with all leaf multiplicities equal to 1) that can be
“collapsed” into a specific perfect phylogeny (with leaf multiplicities possibly greater than 1) are enumerated. To facilitate
the enumerations, Palacios et al. [16] defined a partial order on rooted binary perfect phylogenies with fixed sample size
s, inducing a lattice structure for those rooted binary perfect phylogenies. The lattice structure defines the sense in which
trees can be “collapsed.”

In particular, recall that a cherry node in a rooted tree is an internal node with precisely two descendant leaves. Consider
binary perfect phylogenies A and B. In the partial order, A refines B if by collapsing cherries of A, B can be produced—
where collapsing a cherry involves replacing the cherry node by a leaf node with multiplicity equal to the sum of the
multiplicities of the leaves previously descended from the cherry node. Trivially, a perfect phylogeny refines itself. A and
B are comparable if A refines B or B refines A.

Considering all binary perfect phylogenies with sample size s, the partial order of Palacios et al. [ 16] produces a lattice.
Fig. 2 depicts the lattice for the case of s = 5. Moving left to right, a path is drawn between pairs (A, B), with A to the
left of B, if and only if A refines B. The trivial perfect phylogeny of sample size s is refined by all perfect phylogenies of
sample size s and is the maximal element of the lattice. The empty perfect phylogeny refines all perfect phylogenies of
sample size s and is the minimal element.

Palacios et al. [16] focused on using the lattice to enumerate rooted binary trees associated with a rooted binary
perfect phylogeny. However, the lattice formulation provides a convenient structure for working with perfect phylogenies
themselves.

2.3. Description of the enumeration problems

We enumerate several sets of objects. First, we consider the set of (non-empty) rooted binary perfect phylogenies with
fixed sample size s > 1. Denote the size of this set by b;. Next, we enumerate the rooted binary perfect phylogenies with
fixed sample size s and fixed number of leaves n, 1 < n < s. Denote the size of this set by bs ,; we have by = >, _, bs p.
We enumerate the rooted binary perfect phylogenies with sample size s and a caterpillar topology with n leaves, where
s > n > 2, denoting this quantity g ,; we also enumerate the rooted binary phylogenies with sample size s and any
caterpillar topology, denoting this quantity g; = Zi:z gs.n- Finally, we enumerate the rooted binary perfect phylogenies
with sample size s and a specified unlabeled topology T, denoting this quantity N r.

Note that we have already described b, , (alternatively, bs ), the number of rooted binary perfect phylogenies with
sample size equal to the number of leaves, in Eq. (1). A rooted binary perfect phylogeny with s = n is simply a rooted
binary unlabeled tree; each leaf multiplicity in the perfect phylogeny is 1, so that the rooted binary unlabeled trees
correspond to the rooted binary perfect phylogenies in which all leaf multiplicities equal 1. Hence, b, , = up.

3. Rooted binary perfect phylogenies with sample size s
3.1. Enumeration

To enumerate all rooted binary perfect phylogenies with a fixed sample size s > 1, we first note that for each s, the
trivial perfect phylogeny is permissible. If a perfect phylogeny is not trivial, then each of the two child nodes of the root

540



C.E. Shiff and N.A. Rosenberg Discrete Applied Mathematics 380 (2026) 538-561

n=2 n=1

4
>3

Y
-
-
-
N
N
N
N

AN

7 3 2\

i
:

/11111\

N
-
-
-
N
N
w

%
>

171111 2 1 1 1

A A

171111 11 2 1

w
-
-

N\ v
N

ﬂ

)

N
N
-

Fig. 2. The lattice of rooted binary perfect phylogenies for sample size s = 5. Each column is labeled by its associated number of leaves n.

is itself the root of a perfect phylogeny. In other words, for s > 2, the perfect phylogeny can be decomposed into two
perfect phylogenies, one with sample size i, 1 <i < s — 1, and the other with sample size s — i.

For i = s — i, we count the (bsz/z) = bs2(bs/2 — 1)/2 perfect phylogenies with distinct perfect phylogenies in the two
children of the root and the by, perfect phylogenies with identical perfect phylogenies in the subtrees: (bsz/z) + by =
5 (b2, + bsj2). We obtain the following result.

Proposition 1. The number b of rooted binary perfect phylogenies with sample size s > 2 satisfies

s—1
1+ Z%bs_ib,‘, odd s > 3,
b = - (3)

s—1
14 (Z%bs_ib,) + 3b2, evens > 2,
i=1
with b =0 and b; = 1.
The recursion has the same form as Eq. (1), adding a +1 term for the trivial perfect phylogeny. The first terms of
the sequence appear in Table 1, along with the Wedderburn-Etherington numbers of rooted binary unlabeled trees. The

number of rooted binary perfect phylogenies b; with sample size s appears to grow substantially faster than b, the
number of rooted binary unlabeled trees with sample size s and multiplicity 1 assigned to each leaf.

3.2, Generating function

To analyze the asymptotic growth of the rooted binary perfect phylogenies with sample size s as s — oo, we rewrite
Eq. (3) in the form

1/ 1
bs = E(Z bs—ibi) + Ebs/z +1, s>1, (4)

i=1
with base case by = 0 and by = 0 if s is not a positive integer.

Denote by B(z) the generating function for the rooted binary perfect phylogenies with sample size s, B(z) = Z;’io bsz5.
To obtain the generating function for the bs;, we multiply Eq. (4) by z° and sum from s = 1 to oo, obtaining

o] s—1 00 00
Bz) = Z(% ) bs*fbizs> +) %bs/zzs +y 2.
S i=1 s=1 s=1

=1

We simplify by noting Y >°,(3 Sl b ibiZ®) = 3B(2)?, Yooy 3bsz® = 3 Y 02 bz® = 1B(z%), and Y 2, z° = 5. We

have therefore demonstrated the following proposition.

Proposition 2. The generating function B(z) for the number bs of rooted binary perfect phylogenies with sample size s satisfies

(5)

B(z) = %B(z)z n %B(zz) + < iz.
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Table 1
The number of rooted binary perfect phylogenies bs; with sample size s (Eq. (3), OEIS A113822), and the number of rooted binary unlabeled trees
bss = us (Eq. (1), OEIS A001190).

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14
bs 1 2 3 7 14 35 85 226 600 1658 4622 13141 37699 109419
b s 1 1 1 2 3 6 11 23 46 98 207 451 983 2179

3.3. Asymptotics

Now that we have obtained an equation satisfied by the generating function for the coefficients bs, we find an
asymptotic approximation for the growth of the b.

Recall that the generating function U(z) for the number of rooted binary unlabeled trees in Eq. (2) has a radius of
convergence p ~ 0.4027. The rooted binary perfect phylogenies with sample size s include the rooted binary unlabeled
trees with s leaves, so that b; > us, and indeed bs; > ug for s > 2. Hence, we have B(z) > U(z) for all z with 0 < z < p.
Labeling the radius of convergence of B(z) by 8, it follows that 0 < 8 < p < 1. In addition, because z2 <z for0 <z < 1
and B(z) is monotonically increasing with z for z > 0, B(z?) < B(z) for 0 < z < 1, so that if B(z) converges at z,0 < z < 1,
then it also converges at z2.

To obtain the asymptotic approximation, we first prove a lemma about the relationship of the bs to the Catalan
numbers.

Lemma 3. Each b, for s > 1 is bounded above by the Catalan number C; = H%(is)
Proof. To prove b; < C for all s > 1, we recall the recursion for the Catalan numbers, C; = f{;}) CC1—x =
Ziﬂ Cr_1Cs_ with Co = 1[5, p. 26]. We first prove inductively that %bH] < (G foralls > 0.

For the base case s = 0, we have 1 = 1b; < Co = 1; for s = 1, we have 1 = 1b, < C; = 1. For the inductive step,

suppose %bsﬂ < G for all s < N, N > 2. By the recursion in Eq. (4) and the inductive assumption,

1

N g 1 1 1 1
EbN+1 = Z EbN—H—iibi + szvlh + Zb(N-H)/Z + 3
i—2

IA

l 1 1 1
Cn—iGi— —bybi + =b —.

(; N-iCi 1>+4 N 1+4 (N+l)/2+2

By the inductive assumption, noting by = Cp = 1, %bNbl < 1Cy_1G,. Also by the inductive assumption, %b(N-H)/Z +%
1Cn-1)2 + 3. The Catalan numbers are strictly monotonically increasing for N > 1, so that 3Cn_1)2 + 3 < 3Cy_1 =
3Cn—1Go for N > 2.

We then have byby + bivi1)2 + 3 < Cyv—1Co and 1byyq < Zf’zl Cn-_iCi_1 = Cy, and the induction is complete.

To complete the proof that b; < C; for s > 1, we proceed again by induction. We note that the result holds in the base
cases=1(1=b; <C;=1)and s =2 (2 = b, < G = 2), and suppose that it holds for all s < N, N > 2. Then

N
1 1 1
bny1 = (Z EbNJr]fibi) + EbNbl + Eb(N+1)/2 +1
i—2

IA

N
1 1
(Z CN+1—iCi7]) + EbNb] + Eb(NJr])/Z + 1.
i—2

We have jbyb; < 1CyGo by the inductive hypothesis, and 1bni1y2 + 1 < Cn—1y2 + 1 < Gy = CyGo by the
earlier 1b;,1 < C; and the strict monotonicity of the Cy for N > 2. Then 3byb; + 3bwine + 1 < 2CyGo and
byy1 < (Z:VZZ Cn+1-iCic1) + %CNCO = (ZL Cn1-iCi1) + %CNCO < vajﬂ Cnvy1-iG1 = Cvyr. O

Corollary 4. The radius of convergence B for B(z) is positive, and in particular, % <B<np

Proof. We have seen that 8 < p = 0.4027 because the rooted binary perfect phylogenies include the rooted binary
unlabeled trees, whose generating function has radius of convergence p.
For the lower bound, because the Catalan generating function C(z) = (1 — /1 — 4z)/(2z) has radius of convergence
%, it follows from Lemma 3 that B(z) < C(z) for 0 < z < %, so that the generating function B(z) for the smaller sequence
1

{bn} has radius of convergence 8 > ;. O
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Theorem 5. The number bs of rooted binary perfect phylogenies with sample size s has asymptotic growth

0.3519(3.2599)°
by ~ Ly f2u/mN s 2 o 2B ©)

where y ~ 1.2476 and r ~ 0.3068 are constants.

Because B(z) is written in terms of B(z?) in Proposition 2, the proof of Theorem 5 relies on methods for generating
functions defined implicitly. We use the smooth implicit-function schema in Theorem VIL3 from [8, pp. 467-468].
According to this theorem, we begin with an implicitly defined generating function y(z) = Z;’io ynz" that takes the
form y(z) = H(z, y(z)). Suppose that y(z) is analytic at 0, yo = 0, and y, > 0. Suppose also that

i. H(z, w) = Zf,f:o Z;’io hmnz™w" is analytic in a neighborhood of (z, w) = (0, 0).
ii. H(z, w) has coefficients hy, , > 0 with hg o = 0, ho,1 # 1, and hp, , > 0 for some (m, n) with n > 2.
iii. There exists some point (z, w) = (r, s) in the analytic portion of the domain around (0, 0), such that H(r,s) = s
and Hy(r,s)= 1.

Then [z"]y(z) grows with [y /(2+/7)1(1/r)"n~3/2, where y = /2rH,(r, $)/Hyy(T, 5).

Proof. We verify that B(z) belongs to the smooth implicit-function schema. Eq. (5) gives the implicitly defined generating
function. Write H(z, w) = Jw?+3B(z*)4+ 15 = Y g Yoo hmnz™w". We prove H(z, w) satisfies the required conditions.

i. We show H(z, w) is analytic in a neighborhood of (0, 0). First note that w?/2 is entire. Next, for 8 the radius of
convergence of B(z), %B(zz) is analytic for |z| < /. Finally, ﬁ is analytic for z # 1. Hence, noting 8 < 1, H(z, w)
is analytic for |w| < oo and |z| < +/B.

ii. For the conditions on h;, ,, we examine the expansion of H(z, w), and observe hgy = 0, hop; = 0 # 1, and
ho, = % > 0. Each hy,, satisfies hy , > 0 for m, n > 0, as B(z?) and z/(1 — z) have nonnegative coefficients.

iii. We show there exists a solution to the characteristic system

H,(z,w)=1, H(z, w) = w.

We first note that H,,(z, w) = w, so H,(r, s) = 1 is satisfied for s = 1. Thus, we need only show that there exists r
with |r| < +/B such that

H(r, 1) 1+1B( 4L = 7)

r,1)= -+ -B(r =1.
2 2 1—r

Restricting our attention to the positive, real line, we note that:

1. H(z, 1) is a monotonically increasing function for real z > 0, as it is a sum of power series with nonnegative
coefficients.

2. H(0,1) = % as neither B(z%) nor 1=; has a constant term.

3.H(3,1) > 1,as $/(1— 1) =5 and B((§)?) > 0 (because B(z?) has all non-negative coefficients and at least

one positive term; e.g. the coefficient of z2 is 1). Note also that % < % < /B by Corollary 4.

We conclude that there exists some r, 0 <r < % < /B such that H(r, 1) = 1.

We have therefore shown that B(z) belongs to the smooth implicit-function schema. The smooth implicit-function
schema tells us that the same r that solves the characteristic system is indeed the radius of convergence of B(z). With
s = 1, we solve Eq. (7) for r numerically. We approximate B(r?) using the terms in Table 1: B(r?) =~ Zi]:] bi(r?) =
1r2 +2r* +3r% + 7r® + ... 4 109419r%8. Numerically solving for the positive, real root, we obtain r ~ 0.306760104888.

To compute the constant y, we use H,(r,s) = rB'(r*) + 1/(1 — r)? and H,,(r,s) = 1. We approximate B'(r?) by the
terms in Table 1:

14
B(r?)~ Y () = (1- 1% +(2- 20 + (3 3)r* + (4 7 + - - + (14 109419)r°. (8)
i=1

We obtain B'(r?) =~ 1.4871. Then

1
= |2r| rB/(r? ~ 1.2476,
’ / e+

from which by ~ [y /(2/7)1(1/r)s~3/? & 0.3519(3.2599)*/s*/2. O

Fig. 3 plots the logarithm of the exact number of rooted binary perfect phylogenies bs from Eq. (3) alongside the
logarithm of the asymptotic growth from Theorem 5. We can observe, for example, that the asymptotic approximation
0.3519(3.2599)%° /6032 gives 4.6930 x 10?7; the exact value is 4, 753, 678, 474, 171, 125, 902, 623, 929, 051.
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Fig. 3. The number b of perfect phylogenies with sample size s. Exact values are computed from Eq. (3). The asymptotic approximation is computed
from Eq. (6).

4. Rooted binary perfect phylogenies with sample size s and n leaves

Having enumerated all rooted binary perfect phylogenies with sample size s, we now decompose the enumeration
across perfect phylogenies with different numbers of leaves. A (non-empty) perfect phylogeny with sample size s must
possess a number of leaves in [1, s]. In the case that the number of leaves n is equal to s, the rooted binary perfect
phylogenies are simply rooted binary unlabeled trees, as each leaf has multiplicity 1.

4.1. Enumeration

We generalize to consider all pairs (s, n) with 1 < n <s. Let by, be the number of rooted binary perfect phylogenies
with sample size s and n leaves, where b; , = 0if s <n,ors ¢ N,orn ¢ N.

Proposition 6. The number b, of rooted binary perfect phylogenies with sample size s and n leaves, 1 < n <'s, satisfies
(i) bsy =1foralls > 1.
(ii) For (s, n) with s > n > 2,

n—1 s—n+j
Z Z 3bs—in—j bij, s odd or n odd,
_ =S

bsn = (9)

n—1 s—n+j
<Z Z b5 in—j b,-,j> + 1bsj2.n/2, s even and n even.
=1 =
In Eq. (9), the index i counts the sample size assigned to the right subtree and the index j counts its number of leaves.
The left subtree then has sample size s — i, with n — j leaves.
We observe that in the case s = n, in which a perfect phylogeny has all leaf multiplicities equal to 1, the recursion
recovers Eq. (1). In this case, we must have i = j. Because s = n, the cases become cases for n odd or n even. Because
n =s and j = i, we obtain for n > 3 odd:

n—1 1 n—1 1
bn,n = Z Ebn,j,n,jbj’j = Z Eun,j Uj = Up.
j=1 j=1

The case for even n > 2 reduces to

— 1 1 — 1 1
bn,n = (Z ibn_j’n_j quj) + 5bn/2,n/2 = (Z Eun_j Uj) + Eun/z = Up.

j=1 j=1

Proof. We count rooted binary perfect phylogenies with sample size s and n leaves by considering all partitions of the
sample and leaves into left and right subtrees. We index the sample size of the right subtree by i and the number of
leaves of the right subtree by j.

The right subtree has sample size i > j. Because the left subtree has n — j leaves, it has sample size at least n — j, so
that the right subtree has sample size at mosti < s — (n —j).
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Table 2

The number b; , of rooted binary perfect phylogenies with sample size s and n leaves. Entries are obtained using Eq. (9); the “total” is by = Y »_; bs n.
The total follows OEIS sequence A113822; bs3; follows A002620. The main diagonal and its subdiagonal follow A001190 and A085748. For
completeness, b12,12 =451, b13<12 = 3264, b]3'13 = 983, b14>12 = 15886, b14_13 = 7777, and b14114 =2179.

Sample size (s) Number of leaves (n) Total
11 10 9 8 7 6 5 4 3 2 1

1 1 1

2 1 1 2

3 1 1 1 3

4 2 2 2 1 7

5 3 4 4 2 1 14

6 6 9 10 6 3 1 35

7 11 20 24 17 9 3 1 85

8 23 46 61 49 30 12 4 1 226

9 46 106 152 138 93 44 16 4 1 600

10 98 248 386 387 290 157 66 20 5 1 1658

11 207 582 974 1072 878 535 253 90 25 5 1 4622

12 1376 2473 2951 2633 1774 939 383 124 30 6 1 13141

13 6262 8061 7763 5727 3340 1534 562 160 36 6 1 37699

14 21899 22657 18119 11551 5881 2420 792 208 42 7 1 109419

Given the number of leaves j for the right subtree, 1 <j <n—1, and sample sizei,j <i <s—n+j, ifj # % ori# % or
both, then we count bs_; ,_; b; ; perfect phylogenies: b;; for the right subtree and b,_; ,_; for the left. Each distinct perfect
phylogeny is obtained twice, the second time with the left and right subtrees transposed.

If the sample size s and number of leaves n are both even, then we count both the (bs/zé“/z) perfect phylogenies with
two distinct subtrees of sample size % and g leaves as well as the by, /> perfect phylogenies with two identical subtrees,
as in Egs. (3) and (9). O

Fig. 4 shows an example of the enumeration, considering all possible rooted binary perfect phylogenies with (s, n) =
(8, 6). Table 2 gives the values of bs , for small (s, n), illustrating that the sums Z;:] bs n agree with the values obtained
for b via Proposition 1.

For fixed small n, bs, can be stated in closed form. First, bs 1 = 1 for s > 1. We obtain a sequence of corollaries of
Proposition 6.

Corollary 7. For s > 2, the number bs, of rooted binary perfect phylogenies with n = 2 leaves is

by = m (10)

Proof. From Proposition 6, we have

s—1
Z%bs—i,lbi,L odd s > 3,
b, = 1=

’ s—1
(Z;bsmbi,]) + 3bs21, evens > 2.

i=1

Because bs;; = 1 for all s > 1, we obtain b, = % for odd s > 3, and b, , = % for even s > 2. Summarizing the odd and
even cases in one expression, bs, = L%J. O

Corollary 8. For s > 3, the number bs 3 of rooted binary perfect phylogenies with n = 3 leaves is

o |54 5]

Proof. Using Proposition 6,
$—=3+j

2 s—1
1
bss = E E Ebs—i,3—jbi,j= E bs_i1bi2,
= g i—2

noting 3 5_7 3bs_iabiq = > 3bs_i.1bi 2 by an exchange of s — i and i.
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A L

4
%
%
>

j=1 311111 311111 311111 j=2, 311111 311111 j=3 311111

=1 221111 221111 221111 j=2 221111 221111 ji=3 221111
212111 212111 212111 212111 212111 212111
211211 211211 211121 211211 1713111
211121 113111 1711131 1713111
113111 112211 1712211 j= 211211
112211 111311 1711311 i=4 2111
112121 111221 1712211
111311 j= 2 1121 211121
111221 i=3 1 2121
111131 111221

j= 211112 21111 211112 j=2, 171131 1711131

j=2 112112 112112 1711122 i=4 171122 1711122
111212 11121
111122

j=1, 111113 111113 1711113

Fig. 4. The enumeration of all bg ¢ = 61 rooted binary perfect phylogenies with sample size s = 8 and n = 6 leaves. The number of leaves in the
right subtree is indicated by j, and i indicates the sample size for the right subtree.

s=3 s=4 s=5 s=6 s=7 s=8

1 1 1 i=2 2 1 1 i=2 3 1 1 i=2 4 1 1 i=2 5 1 1 i=2 6 1 1 i=2
1 2 1 i=3 2 2 1 i=3 3 2 1 i=3 4 2 1 i=3 5 2 1 i=3
1 3 1 i=4 2 3 1 i=4 3 3 1 i=4 4 3 1 i=4

1 2 2 2 2 2 3 2 2 4 2 2
1 4 1 i=5 2 4 1 i=5 3 4 1 i=5

1 3 2 2 3 2 3 3 2
1 5 1 i=6 2 5 1 i=6

1 4 2 2 4 2

1 3 3 2 3 3
1 6 1i=7

1 5 2

1 4 3

Fig. 5. The b; 3 rooted binary perfect phylogenies with n = 3 leaves, for each s from 3 to 8, as obtained by Proposition 6. The value of i indicates
the sample size for the right subtree.

Using Corollary 7, bg 3 = Zf;zl %J. The summation yields

b |20 F 2 52) 1 = (5)(57), odds =3,
200424+ 52) = (52)(5), even s > 4.

We can summarize both cases in the single expression bs 3 = L%J [%1. O

For small s, the rooted binary perfect phylogenies with n = 3 leaves appear in Fig. 5.

Corollary 9. For s > 4, the number bs 4 of rooted binary perfect phylogenies with n = 4 leaves is

(s=1)(s=3)(55—1) odds > 5
b, — 8 ’ - "
47 ) sts=2)(5s-11)

1,s
T +5lz), evens>4.

Proof. Using Eq. (9), we see that:

3 s—44j
1
E E 3bs—i.a-jbij, odds > 5,
j=1 i=j

b5v4 = s—4+j

3
<Z Z %bs—i,él—j b,‘J) + %b5/2,27 even s > 4.
=1 i=j

The outer sum considers values of 1, 2, and 3 for the sample size j assigned to the right subtree. Assigning j = 3 gives
the same inner sum asj = 1, as Zf;; %bs,mb,g = ij %bs,,gbm by an exchange of i and s — i. Noting that bs ; = 1 for
s > 1, the problem becomes:

s—3 s—2
Y beiz+ Y 3bsiabis, odd s > 5,
_ ) i= i=2
b5~4 - s—3 5—2
(st—i,3 + Z%bs—i,ZbiJ) + %bs/Z,Z, evens > 4.
i=1 i=2
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For s odd, s — 3 is even and s — 2 is odd. We use Corollaries 7 and 8 to obtain the summands, resolving floor and

ceiling functions separately for odd and even quantities. The sums are completed using 2221 k = n(n+ 1)/2 and
> ki k? = n(n+ 1)(2n + 1)/6. Then

s—3

Z bs—i,
i=1

>

T
A

s—i—1
2

e

_ir 2k—1)—1J"$—(2k—1)—1"+{s—2k—1ﬂ'5—2k—1“
N 2 2 2
k=1
s—3
_i(s—zk—l)<5—21<+1)+<5—21<—1>2
N 2 2
k=
= (s—1)s—3)2s —1)/24. (13)
s—=2 s—2 s —
stﬂzz bip = Z{ZJ LJ
i=2 i=2
=3
B i{s 21<+1)J{21<+1J N LS_(ZR)JFI{J
N 2 2 2
k=1
s—3
2(5 2k—1) (s—Zk—l)
-y nkLuh 4 )"
2 2
k=1
=(s+ 1)(s— 1)(s — 3)/24. (14)
Summing Eq. (13) and half of Eq. (14), we obtain the result in Eq. (12) for odd s.
The even case is similar, except that now s — 3 is odd and s — 2 is even.
s—i—1|[s—i—1
Lon= 25
1=
. s—(s— 3)—1|[s—=(s=3)—-1
N 2
s—4
N ZLS (2k—1) IJF—(Zk—l)—l—‘+Ls—2k—lJP—2k—l—‘
2 2 2
k=
14 (s—2k> +<s—2k—2><s—2k>
N 2 2 2
k=1
= s(s — 2)(2s — 5)/24. (15)
ls—illi
bSl bl - - .
Sosean= 2] 5|3
5
| s—(s—2) 2 s—(2k + 2k + 1 s—(2k) || 2k
-
ﬂ
_s—2+ 2 <s—2k—2>k+(s—2k)k
) 2 2
k=1
=s(s — 1)(s — 2)/24. (16)
We obtain Eq. (12) for even s by summing Eq. (15), half of Eq. (16), and %bs/z,z = %L%J. O
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4.2. Generating function

Beyond the closed-form expressions for the cases of n = 2, 3, and 4, for a specific value of n more generally, we can
obtain a generating function for the sequence b, , describing the number of rooted binary perfect phylogenies with fixed
n and increasing values of the sample size s.

Denote by B,(z) the generating function describing the sequence of values for the number of rooted binary perfect
phylogenies with n leaves and increasing sample size s:

o0
= E bs.nz°.
s=1

Recall that b , > 0 only for integers (s, n) with s > n > 1. We set B,(z) = 0 for non-integer n.

Proposition 10. The generating function B,(z) for the number b, of rooted binary perfect phylogenies with sample size s
and n leaves satisfies

(i) Bi(z) = 5

(ii) For n > 2,

Proof. (i) For n =1, forall s > 1, bs; = 1. Hence, By(z) = ;.
(ii) For n > 2, we use the recursive Eq. (9),

1s— n+j

Z(Z Z bs in—j 1;)2 +Z =bg/3 n22°

00 nlsn+]

o0
= Z(Z Z bs lﬂ—]z lb;]Z ) + Z %bs/z,n/zls.
s=n “j=1 i=j s=n

We adjust the summation limits, noting that b; , = 0 for s < n:

oo ,n— 1 o 1
Z( 2bs in_iz b ]z> + Z Ebs/Z,n/ZZS
s=2

j=1 i=1

1 s-1

n—1 1 1 2
= |:Z an](z)Bj(z)] + EB”/Z(Z )’

completing the proof. O

Iterating from the base case B{(z) = we can write an explicit form for B,(z) for a fixed n. Using Proposition 10,

1 -z’
we have
l 1
B - 4+ B
h(2) = 5 By(z)” + 5 1Z%)
12 N 1 z2
T 201 —z2  21-22
2
- = (18)
(1-2*(1+2)
Next, using B,(z) from Eq. (18), we have
1 1
B3(z) = 531(2)32(2) + 532(2)31(2)
3
° (19)

T (-2 +2)
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For B4(z), we use Eq. (19):

1 1, 1 1,
Bi(z) = 2 B1(2) Bs(2) + S By(2) + S B3(2) Ba(2) + S Ba(27)

z4 1 z4 1 z4
T 0-2+2) 20—+ z20-2r0+2)
242+ 222+ 73)
T (1—2(1+22(1+22)

We can continue iteratively to get generating functions B,(z) for larger n.

(20)

4.3. Asymptotics

We next study the asymptotics of b; , for fixed n, as s — oo.

Proposition 11. As s — oo, for fixed n > 1, the number b, , of rooted binary perfect phylogenies with sample size s and n
1

leaves has asymptotic growth bs , ~ [Cy_1s"11/[2"(n — 1)!], where C,_y = E(Z" 2) is a Catalan number.

First, we need a lemma concerning the generating function B,(z). The lemma uses the concept of a A-domain, which,
informally, describes a certain region around a point that is enclosed by a ball centered at the point [8, p. 389]; a function
that is analytic in a ball around the point (excluding at the point itself) is analytic in a A-domain at the point.

Lemma 12. Fixn > 1. By(z) ~ a,/(1 —z)"* as z — 1 in a A-domain in the neighborhood of z = 1, for a constant a,,.

Proof. From Proposition 10, we see that B{(z) = 12: and that a; = 1. By Eq. (18), a; = % by Eq. (19), a3 = % and by

Eq. (20), a5 = 3.

The recursive form of B,(z) in Proposition 10, together with By(z) = 1%2 indicates that each B,(z) has a pole at z = 1
and potentially also at other roots of z¥ = 1. B,(z) is otherwise analytic, and hence, it is analytic in a A-domain around
z=1

We continue by induction, supposing that for each k, 1 < k < n, By(z) ~ a;/(1 —z)* as z — 1 in a A-domain around
z = 1, for a constant a,. We seek to show that B, 1(z) ~ an41/(1 —z)"' as z — 1in a A-domain. Starting from Eq. (17),

: 1
(1—2)"*"Byi1(2) = [Z =Bny1-j(z)(1 — 2" Bi(z) (1 —z)’] +(1 —z)”+1[23(n+1)/2(22):|~
Taking z — 1 and applying the inductive hypothesis,

1
lim (1= 2)"*' By (2) = Z 5 Oni1-10,

z—1

noting that the term (1—z)"*! %B(H])/z(zz) is zero for n even, and for n odd, it has limit (1—2)""" 2 ag41y2/(1 — 22" T/2 —

0 as z — 1. We have proven the lemma, with a, = Z]'-:]] %an,jaj forn>2. O

Proof of Proposition 11. By Lemma 12, writing A(z) = Z;’il a,z", we have

_z+Z<Z an_1a1>z =z+ A(z)

from which A(z) = 1 — +/1 — 2z. This generating function is the exponential generating function for the rooted labeled
binary trees [17, p. 17], with a, = (2n — 3)!!/n! = C,_;/2"~". Note that this expression recovers a, = % as = % aq = %
in accord with Eqs. (18)-(20).

We have obtained B,(z) ~ C,—1/[2" (1 —z)*] as z — 1 in a A-domain at z = 1. Corollary 2.16 from [5] states that if
a(z) is analytic in a delta-domain A such that a(z) ~ D(1 — z/zy)™" for z — zg, z € A, where D is a constant and n is a
complex number that is not a non-positive integer, then as s — oo, [z°] a(z) ~ Ds"" 'z o /T (n).

We apply this corollary with B,(z) in the role of a(z), zo = 1, and D = C,_1/2"" 1 . Noting that I'(n) = (n — 1)!, we
obtain

Cn—lsni1

bS,ﬂ ~ m O (21)
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4.4. Bivariate generating function

As s grows large, we show that the distribution of the number of leaves n in a rooted binary perfect phylogeny selected
uniformly at random among those with sample size s follows an asymptotic normal distribution. To obtain this result, we
first obtain a bivariate generating function. Let

B(z,u) = Zstnuz —ZB (22)

s=1 n=1

Then by Proposition 10,

B(Z, u) Bl(z ul + Z[(Z Bn—] Z)B] ) + Bn/Z(Z ):I

n=2

—ut Z[(Z —By_j(z)u" Bj(z)w) + ;Bn(zz)uﬂ

n=

+1[i3n MZBn(z i|+i13n/2

n=1 n=1 n=1

2
uz +1
N 2

2 2
- B(z,u + EB(Z ,u?). (23)

4.5. Asymptotic normal distribution for the number of leaves
We now proceed to the asymptotic normal distribution.

Theorem 13. Let X; denote the random variable describing the number of leaves of a perfect phylogeny chosen at random
with sample size s. Then as s grows large,
(i) E[Xs] ~ us, with u ~ 0.7326,
(i) Var[X,] ~ o2s, with 6% ~ 0.2325,
(iii) The distribution of Xs has a limiting normal distribution
Xs — E[X;]

JVar[X;] -

Proof. We use the combinatorial central limit theorem in Theorem 2.23 in [5]. Suppose X; is a sequence of random
variables with

N(O, 1).

[2°] y(z, u)
(z1y(z, 1)
where y(z, u) is a power series that is the solution of y = F(z, y, u). Suppose also that the following conditions hold for
F:
1L F(z,y,u) =Y 20> oo Fsm(u)z5y™ is analytic around (0, 0, 0).
2. The coefficients F; (1) are real and non-negative;
3. There exists (zo, yo) such that yo = F(z, ¥, 1) and 1 = F(zo, yo, 1), with F;(z9, o, 1) # 0 and Fy(zo, ¥o, 1) # 0.

E[u®] =

Then (i) E[X;] ~ us, where u = Fy(zo, yo, 1)/[20F:(20, Yo, 1)].
(i) Var[X;] ~ o?s, where

02=M+ﬂ2+ |:F22(Fnyuu_Ffu)_ZFzFu(Fnyzu)‘i‘Fuz(Fnyzz_Fyszu)], (24)

1
zoF}Fyy
and all derivatives of F are evaluated at (zg, yq, 1).

(iii) If 6% > 0, then (X; — E[X;])/+/Var[X;] has a limiting standard normal distribution N(0, 1).

To apply the combinatorial central limit theorem, denote by X; the number of leaves of a perfect phylogeny with
sample size s, selected uniformly at random. In terms of generating functions B(z) and B(z, u),

E[X] = ZZ:] nbsy” — Zli:l nbsv" . (25)
b [z°] B(z)
In the same manner, because the bivariate generating function has [z°] B(z, u) = Y, _, bs nu",
B = oz Dot _ 1B 1) (26)
bs (z°] B(z)
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We let B(z, u) = F(z, B(z, u), u), so that in Eq. (23),

uz 1 1
F(z,y,u) = —— + —y?> + =B(z?, u?).
.y u)=— + oy + B )
We treat B(z2, u?) as a known function in z and u, because it is analytic in the region with |z| < /7 and |u| < 1, where
r ~ 0.3068 is the constant that specifies the region of convergence for B(z).
We now verify the conditions. For condition 1, we can write F(z, y, u) = > oo > o Fs m(u) 2°y™ by setting Fo »(u) = %
and for all m # 2, Fy n(u) = 0. For s > 1, we set

u, odds > 1,
F; 0(“) = (27)
’ u+ 1302 by, evens > 2.

Fors > 1and m > 1, F;m(u) = 0. We see that F(z, y, u) is analytic around (0, 0,0) a y is entire, “%Z is analytic

1
everywhere except at z = 1, and B(z?, u?) is analytic for |z| < /T and |u| < 1.

For condition 2, we have defined the coefficients F; ,(u) in verifying condition 1; all are real and non-negative in
Eq. (27) at u = 1 because b; , > 0 for all s, n.

For condition 3, we note that F(z,y, 1) = & + 1y* 4+ 1B(z?) = H(z,y) and Fy(z,y, 1) = H,(z,y) where H(z,y) is
the function defined in the proof of Theorem 5 (with variable y here in place of w previously). In that proof, we found
the solution (z,y) = (z0,y0) = (r, 1) that satisfies F(z,y, 1) = y and F,(z,y,1) = 1: zp = r ~ 0.306760104888 and
yo = 1, where r is the radius of convergence of B(z). We also have F,(z,y,u) = u/(1—2z)* + ;;’ZB(Z u?), so that
F,(z0,¥0,1) = F(r,1,1) = 1/(1 — r)> + rB'(r?) # 0, because all coefficients for B(z) are non-negative so that B'(r?)
is non-negative, and 1/(1 —r)? is positive. Finally, F,,(zo, Yo, 1) = Fy(r, 1, 1) = 1 # 0.

With the conditions of the theorem verified, we approximate p and o2. Because |u| < 1and |z| < < 1 in the region
where B(z, u) converges, we can approximate B(z?, u?) by its first terms:

1
B(z?, u?) ~ 5[(uz)z2 + (u? + ub)zt + @® + vt + u®)Z® + (1 + 2u® + 20 + 20878
+ W +2u* 4+ 4u® + 4 +3u'%)2'% + (u® + 3u® + 6u® + 10u® + 9u'® + 6u'?)z"?], (28)

making use of terms b, that represent the coefficients of u"z* from Table 2.

We approximate B(z?) & 214 i(Z%) = 12% 4+ 2z* + 325 + 728 + - . + 109419228 with the first 14 terms as in the
proof of Theorem 5. We then compute approximations to the derlvatlves
u

1
F N ———— + —B(Z%)2
2(2,y,u) a-22 2 (%) 2z,

2u 1,
Falz.y. W)~ 5w + 5 [B'@*12° + 28(2),

Fuz,y,u)~ 17+7[(2u)z + (2u + 4u®)z* + (2u + 4u® + 6u°)Z8
+ (2u + 8u® + 12u° + 16u”)z® + (2u + 8u® + 24u° + 32u” 4 30u®)z'°
+ (2u 4+ 1203 + 36u° + 80u” + 90u® + 72u'")z'?],

1
Fu(z,y, u) ~ 5[2z2 + (2 + 12u)2* + (2 4+ 120% + 30u)Z® + (2 + 24u% + 60u* + 112u8)28

+ (2 + 24u* + 120u” 4 224u° + 270u8)z1°
+ (2 + 36u® + 180u” 4 560u® + 810u® + 792u'%)z1?],

1 1
Fu(z,y,u) ¥ ——— + =[(4u)z + (2u + 4u°)4z> + (2u + 4u’ + 6u°)62°

1-2) 2
+ (2u 4 8u® + 12u° + 16u”)8z + (2u + 8u® + 24u° + 32u” + 30u®)102°
+ (2u + 120 + 36u° + 80u’ + 90u® + 72u'")12z'),

Fyz(zv% u) =0,

Fyu(z,y, u) =0,

Fy(z,y,u)=1.

We then approximate the derivatives of F at z =2zy=T, y Yo = 1,and u = 1, where B/(r?) is approximated as in Eq. (8)
in the proof of Theorem 5, and B”(r?) & Z i(i — 1)bi(r?)—2.

We obtain F,(r, 1, 1) ~ 2.5370, F,,(r, 1, 1) ~ 8.7686, F,(r, 1,1) ~ 0.5701, Fu(r, 1,1) ~ 0.1854, and Fp(r,1,1) ~
3.1929. Then u = Fu(r, 1, 1)/[rE,(r, 1, 1)] &~ 0.7326, and simplifying Eq. (24) with F, = 0, F,, = 0, and F, = 1, we
obtain 02 = p + pu? + (F2Fy — 2F,FyFyy + F2F,)/(20F2) ~ 0.2325. O
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We note a minor technicality. The statement of Theorem 2.23 of [5] includes an additional condition, namely
F(0,y, u) = 0, which does not hold in our scenario, as F(0,y, u) = 3¥* + B(0, u?) = 1y? # 0. However, this condition is
used only to guarantee the existence of a solution y = y(z, u) to y = F(z, y, u) with non-negative Taylor coefficients (see
the beginning of the proof of Remark 2.20 of [5]). In our setting, this existence is guaranteed, as we defined F(z, y, u) to
be the implicit generating function B(z, u) = F(z, B(z, u), u), where B(z, u) = Y oo, > > | bs nz°u™ and the coefficients by
are counts that are necessarily nonnegative for all s, n.

Theorem 2.23 of [5] also states the condition F(z,0,u) # 0. It is not clear where this condition is required for
obtaining the conclusions of the theorem, but in any case, in our situation, it is straightforward to verify, as F(z, 0, u) =
4 1B (2%, u?) #£0.

Computmg from Table 2 the sequence of values /s describing the mean number of leaves in perfect phylogenies of
sizes,weobtain 1,2, 2, 13, 23 2 319 641 107 11808 18253 13457 and 35327 fors = 1,2, ..., 12, 13. The numerical value
ats = 13 is approximately 0.7208, close to the limiting value of approximately 0.7326. The sequence of approximate values
of o2 /s gives 0, 0.125, 0.222, 0.265, 0.278, 0.281, 0.268, 0.265, 0.257, 0.254, 0.250, 0.248, and 0.246 fors = 1, 2, ..., 12, 13,
nearing the limit of approximately 0.2325.

5. Rooted binary perfect phylogenies with a caterpillar shape

We have counted perfect phylogenies with sample size s, and with sample size s and number of leaves n. Each perfect
phylogeny has an associated unlabeled tree shape; we now count the perfect phylogenies with sample size s and a
caterpillar shape (with n leaves).

5.1. Enumeration

A caterpillar tree with n > 2 leaves has exactly 1 cherry node. In other words, for n > 3, a caterpillar tree is constructed
by adjoining a caterpillar tree with n — 1 leaves and a single-leaf tree to a shared root. Denote by g, the number of
caterpillar rooted binary phylogenies with sample size s and n > 2 leaves. We set g, = 0ifs <n(ors ¢ N, orn ¢ N).

Proposition 14. The number g; , of rooted binary perfect phylogenies with caterpillar shape, sample size s, and n leaves,
2 < n <s, satisfies

(i) g2 = L3] forall s > 2.
(ii) For (s,n) withs > n > 3,

— i1—1 in—g—1ip_3—1
P ST Sl SIS z{

i=n—1 i1=n—1iy=n-2 in—3=3ip_p=2

J (29)

Proof. (i) Recognizing that the only tree shape with n = 2 leaves is the 2-leaf caterpillar tree, we see that we already
proved this result in Corollary 7.

(ii) For n > 3, the left subtree of a caterpillar of size n is a caterpillar of size n — 1. We assign sample size i to the left
subtree,n— 1 <i<s—1, and s — i to the leaf in the right subtree:

s—1 s—1
8s;n = Z Zin—1bs_i1 = Z 8in—-1- (30)

i=n—1 i=n—1
Proceeding iteratively, we have

— ip—1 s—1

-1 n_3—1
&s,n = Zgnnl— Z Zglzn 2= "= Z Z Zgin_z,Z-

iy=n—1 iy=n—1i=n-2 ij=n—1i=n-2 — in_p=2
We apply the base case of n = 2 to complete the proof. O

We can apply Proposition 14 with specific small values of n, completing the sum in Eq. (29). The case of n = 3 was
obtained in Corollary 8, and we will write its solution in a different form. We proceed via calculations similar to those
performed in obtaining Corollaries 7-9.

We use an approach that avoids summations that include floor and ceiling functions, as appeared in the proofs of
Corollaries 8 and 9. Separating the n = 2 result g, = L | (Corollary 7) into cases for odd and even s, we can increase n
incrementally, observing from Eq. (30) that for fixed n, gS n as a function of s can be written with odd and even cases, each
consisting of a polynomial of degree n — 1 in s. It is convenient to instead define the cases in terms of odd and even s — n.
In particular, for s — n even, we define f¢, to be the polynomial describing the number of caterpillar perfect phylogenies
with sample size s and n leaves. For s—n odd, we define f?, as the corresponding polynomial for the number of caterpillar
perfect phylogenies with sample size s and n leaves. Note that both polynomials are functions that can be calculated for
all (s, n) with s > n > 2; however, each represents the number of caterpillar perfect phylogenies only in its associated
case. With these definitions, the number of caterpillar perfect phylogenies g; , can be written in a form that is convenient
for computation, containing only a single floor function.
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Proposition 15. For (s, n) with n > 2 and s > n, the number of caterpillar perfect phylogenies with n leaves and sample size

s is
&s.n = {(Z in— 1>_52n_?J~ (31)

i=n—1

The proposition relies on a lemma.

Lemma 16. For (s,n) withn > 2 and s > n,
e (0] ]
fs,n “Jsn = on—1" (32)
Proof. We proceed by induction on n. For the base case, n = 2, by Corollary 7, we have g;, = L%J. Thus for s even,
. = 3, and for s odd, g = 5 — 3. In other words, we have f¢, = § and f?, = 3. It follows that f¢, — f°, = 3.
For the inductive step, suppose forn > 3 thatf;’nq — S‘?n71 =1/2" 2 Ifs—(n—1)is even, thenf;’nq is an integer, with
&s,n—1 :f;nq = Lfs noq ). If instead s —(n — 1) is odd, then fs(,Jn—l = g n—1 IS an integer, and by the inductive hypothesis,
seinfljz se:n ]—1/2” 2= sn 1°

By Eq. (30) and the inductive hypothesis, using 1y, = 1 if x holds and 1(,; = 0 otherwise,

s—1 s—1
8&s.n = Z 8in-1= Z |fi,en_1J

i=n—1 i=n—1
1 s—1
(Z in— 1) o2 Z L{i—(n—1) is odd}-
i=n—1 i=n—1
We then use that
i Z 52, s —n even,
L{i—(n—1) is odd} Lii is odd) =
i=n—1 = (” s==1) " 5 _ p odd.

We then obtain expressions for g , in the case of even s —n and odd s —n. Because g , = f¢, for evens—n and g, = f?,
for odd s — n, we have

(Z in— 1) n— ?’ (33)

i=n—1
—(n-1)
( Z in— 1) o (34)
i=n—1
Now we see that ¢, — f°, = 1/2"!, completing the induction. 0
Proof of Proposition 15. From Lemma 16, for each n > 2, f?, exceeds f, by a quantity that is less than 1. Hence, for

odd s — n, for which g, = f, and f, is an integer, |f, | = f’, = . For even s —n, g, = ¢, and f¢, is an integer, so
that [f5,] = f, = &.n. We conclude in both odd and even cases that g , = [f7, ], with f¢, specified by Eq. (33). O

We can then compute g; , for the smallest n by iteratively summing polynomials to calculate f¢, in Eq. (33), taking the
floor of the output. We present the first several functions g; p.

g2 = B (35)
g3 = =2 (36)
g = = 37)
g5 = L(s—l)(s—i);sz—4s+l)_ (38)
2o = r(s —2)(s — 421(5(5)2 —13s + 16)_ (39)
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Table 3
The number g; , of rooted binary perfect phylogenies with sample size s and a caterpillar shape with n leaves. Entries are obtained using Proposition
14; the “total” is g, = Zf]:z gs.n. The total follows A000975 (with the index shifted so that term s in AO00975 is gs.1).

Sample size (s) Number of leaves (n) Total
13 12 11 10 9 8 7 6 5 4 3 2

2 1 1

3 1 1 2

4 1 2 2 5

5 1 3 4 2 10

6 1 4 7 6 3 21

7 1 5 11 13 9 3 42

8 1 6 16 24 22 12 4 85

9 1 7 22 40 46 34 16 4 170

10 1 8 29 62 86 80 50 20 5 341

11 1 9 37 91 148 166 130 70 25 5 682

12 1 10 46 128 239 314 296 200 95 30 6 1365

13 1 11 56 174 367 553 610 496 295 125 36 6 2730

(s—1)(s —3)%(s —5)2s* — 125 + 1)

857 = \‘ 2880 J (40)
s(s — 2)(s — 4)(s — 6)(4s® — 50s? + 1765 — 151)

B8 = { 40320 J (41)
(s —1)(s —=3)s —5)s —7)(s* — 165> + 785> — 1125 + 3)

B9 = L 80640 J (42)

The values of g; , for 2 < n < s < 13 appear in Table 3
5.2. Generating function

We next obtain a generating function for the number of perfect phylogenies with the fixed caterpillar shape with n
leaves, as s increases.

Proposition 17. The generating function G,(z) for the number g; , of rooted binary perfect phylogenies with sample size s > n
and the caterpillar topology with n > 2 leaves satisfies
Zn
G(z2) = ————. 43
= G (43)

Proof. We proceed by induction. We obtained the result for n = 2 in Eq. (18), as the caterpillar is the only shape with 2
leaves. Suppose the generating function for the number of rooted binary perfect phylogenies with sample size s and the
n-leaf caterpillar follows Eq. (43). We apply Eq. (30) to obtain the generating function associated with the caterpillar with
n + 1 leaves (propagating b;_; 1 = 1 through the calculation for clarity):

n+1 ng n+lz
o0
= Z(Zgl nDs—i, 1)
O:C _:
Z Z gi, nZ bs_ i,lzs_i)-
s=1 i=n

Because g;, = 0 for 1 <s < n — 1, we add additional zeros and simplify a convolution:

oo s—1

Gnyi(z Z Z g, nZ bs_ i,lZSﬂl)

=1 i=1
n(Z)B (2)
z" z
T-—z2ra+2)1-2z
The induction is complete. O
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Note that g, the total number of caterpillar perfect phylogenies with sample size s, allowing all possible values of n,
2 < n <s, follows the Lichtenberg sequence, OEIS sequence A000975 (the index is shifted, so that if AO00975 is denoted
{as}, then a; = g5, 1). We verify this equivalence by showing an identity of generating functions. Denote the generating
function for the number of caterpillars with sample size s, considering all possible numbers of leaves, by G(z) = Y2, g:z°.
We have that

S
8s = Z 8s.n (44)
n=2

and G,(z) = Z;’in gs.nZ°, and we add zeros to obtain

Gz)=) gz = Z( gs,n>zs = Z( gs,nzs> =Y Gil2).
s=2 2 2

s=2 ‘n= n=2 “s= n=2
By Proposition 17, we then have

o0

Zﬂ
c(z)=;(1_z)n(1+z)
1 1 _zZ 1
_1+z<1—]zz 1-z )

22
= , (45)
(14+2z)(1—2z)1—-2z)
where the summation requires |z| < % The Lichtenberg sequence [12,13] has generating function z/[(14+z)(1—2z)(1—-2z)],
differing only in missing a factor of z, so that its term as accords with our gg, . Using the exact form for the Lichtenberg
sequence [12], we have

25
& = \‘3J (46)

Note that if we were to consider the 1-leaf perfect phylogeny a caterpillar and to allow a trivial perfect phylogeny
with s = 0, then we would obtain a sequence {g;} for the total number of perfect phylogenies with sample size s and
n > 1 leaves; for all s > 0, g; = g; + 1. This sequence, with generating function G(z) + i to account for the extra
perfect phylogeny with 1 leaf (for all s > 1) and the trivial perfect phylogeny (s = 0), accords with A005578, which has
generating function (1 —z — z2)/[(1 4 z)(1 — z)(1 — 22)] = G(z) + 11:

5.3. Asymptotics

We study the asymptotics for g; ,, the number of rooted binary caterpillar perfect phylogenies with sample size s and
n > 2 leaves, similarly to our analysis of general perfect phylogenies.

We quickly obtain a result analogous to Lemma 12 directly from the closed form Gn(z) = Y o0 8sn2° = Y ooy EsnZ° =
Gn(z) =2"/[(1 = 2)"(1 + z)] for n > 2 (Eq. (43)).
Lemma 18. Fix n > 2. Gy(z) ~ h,/(1 —z)" as z — 1 in a A-domain in the neighborhood of z = 1, for a constant hy,.

The constant is h, = % for all n > 2. Applying Corollary 2.16 of [5], we obtain a result similar to Proposition 11.

Proposition 19. As s — oo, for fixed n > 2, the number g, of rooted binary perfect phylogenies with sample size s > n and
the caterpillar topology has asymptotic growth gs, ~ s"~1/[2(n — 1)!].

5.4. Bivariate generating function

The bivariate generating function for the number of rooted binary perfect phylogenies with a caterpillar topology, with
sample size s and n > 2 leaves, also follows from the closed form G,(z) (Eq. (43)). Let G(z, u) = Z;’iz Gn(z)u". Then

[09)

1 u"z"
Gz, u) = —— —_
(2. u) H—z;(l—z)n

1 uz 1 X/ uz \"
- S
1+4z (1-z)(142z) 14z 1-z

n=0

u?z?
T -2 +z)(1-z—uz) (47)
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5.5. Asymptotic normal distribution for the number of leaves

We obtain an asymptotic normal distribution for the number of leaves. The result is obtained from the bivariate
generating function.

Theorem 20. Let Y; denote the random variable describing the number of leaves of a caterpillar perfect phylogeny chosen at
random with sample size s. Then as s grows large,
(i) E[Ys] ~ 3s.
(ii) Var[Ys] ~ 1s.
(iii) The distribution of Y has a limiting normal distribution
— E[Y(]

—_— —
W Var[Ys]
Proof. We refer to Theorem IX.9 in [8] (see also the errata, https://ac.cs.princeton.edu/errata/). Consider a function F(z, u)

that is bivariate analytic at (0, 0) and whose expansion has non-negative coefficients. Suppose F(z, 1) is meromorphic in
|z] < R with a pole at z = p for a positive p < R. Suppose that the following also hold:

N(O, 1).

1. For some ¢ > 0 and r > p (and r < R), we can write F(z,u) = B(z,u)/C(z, u) for (z,u) in some domain
D = {|z| < r} x {lu — 1| < €}, where B(z, u) and C(z, u) are analytic in D with B(p, 1) # 0.
2. The partial derivatives of C satisfy

aC(p, 1) 8C(p, 1)

0.

0z #

3. v(p(u)) # 0, where p(u) is the solution to C(p(u),u) = 0 and p(1) = p, m(f(u)) = 5,((11), and v(f(u)) =
ff((ll)) + f}((;)) (’}(1 ) for a function f analytic at 1 with f(1) # 0.

Then the random variable Ys; with probability generating function ps(u) = [z°]F(z, u)/[z°]F(z, 1), standardized to
(Ys — us)/os, converges in dlstrlbutlon to a standard normal random variable with mean 0 and variance 1, where
ps =m(5) s +0(1) and o7 = v(23) s+ O(1).

We verify the hypotheses of the theorem for the bivariate generating function G(z, u). First, G(z, u) is analytic in both
variables at (0, 0), and its expansion has non-negative coefficients for all (s, n) with s > n > 2 (Eq. (47)).

Next, for a choice of r with % <r < 1, G(z, 1) is meromorphic for |z| < r, with a pole only at z = p for p =
We verify the conditions of the theorem.

1

2 <T.

1. Write G(z, u) = B(z, u)/C(z,u) in D = {|z| < r} x {lu — 1| < €} for B(z, u) = u?z% and C(z, u) = (1 — z)(1 + z)(1 —
z — uz), for small € > 0 and 3 <r < 1. Both B and C are analytic with B(3, 1) = § # 0.

2. The condition on the partial derivatives is satisfied, with p = l:

dC(p, 1) 3C(p, 1)
0z u

3. Given u, the location of pole p as a function of u is z = p(u) = 1+u, S0 that o(1)/p(u) = 1+” . Letting f(u) =
f(u) is analytic at u = 1 with f(1) = 1 # 0. We have m(f(u)) = 1/1 =1 and v(f(v)) = ¢ + 1/2 - (e =1 7& 0

We conclude that for the random variable Y; describing the random number of leaves of a caterpillar perfect phylogeny
with sample size s, with probability generating function ps(u) = [z°]G(z, u)/[z*]G(z, 1), (Ys — us)/os converges in
distribution to a standard normal random variable, with 1es = m(f(u))s 4+ 0(1) = 35+ 0(1) and 62 = v(f(u))s + O(1) =
1

5 +0(1). O

=[23p* —p— Dllplp — 1)p + Nl = — 75 0.

Computing from Table 3 the sequence of values /s describing the mean number of leaves in caterpillars of size s, we
1 5 7 33 13 59 199 881 967 4209 1517 6523 _ . H :

obtain 30 3 16 30" 31° 95* 340" 1530° 1705° 7503’ 930" and 11550 for s = 2 to 13; the last of these values is approximately
0.551, near the limiting value of % Numerical approximations for the corresponding sequence of values o2 /s are 0, 0.083,
0.140, 0.162, 0.193, 0.201, 0.215, 0.219, 0.226, 0.228, 0.231, and 0.232, approaching the limiting value of %.
6. Rooted binary perfect phylogenies with an arbitrary unlabeled shape

For our last analysis, we generalize the argument we have used for recursively counting perfect phylogenies with a
caterpillar tree shape with n leaves (Section 5.1) to an arbitrary tree shape with n leaves, offering some results in the
general case of an arbitrary unlabeled tree shape.

Let T be an unlabeled tree shape with |T| leaves. Tree T has left and right subtrees, T, and T, with |T,| and |T;| leaves.

In sequentially decomposing a tree into its left and right subtrees, eventually a single node is reached. Denote by N r the
number of rooted binary perfect phylogenies with unlabeled tree shape T, where N;t = 0 if s < |T| or s is not an integer.
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Proposition 21. The number N, 1 of rooted binary perfect phylogenies with unlabeled tree shape T and sample size s > |T|
satisfies

(i) Ns7 = 1if T has a single leaf and s > 1.

(ii) For (s, T) with s > |T| > 2,

s—|Tr|
ZNi,T[Ns—i,Tra T, #T;,
i=|Tg|
Ner =1 o (48)
<Z %Ni,TgNs—i,T,—> + %Ns/z,n, T, =T,.
i=|Ty|

Proof. (i) We have discussed the base case of the single-leaf tree in Proposition 6i. (ii) For the general case, a perfect
phylogeny with unlabeled shape T is constructed from perfect phylogenies with unlabeled shapes T, and T,. The minimal
sample size assigned to T, is |T;|, and the minimal sample size assigned to T, is |T;|, so that the maximal sample size for
Ty is s — |Ty|.

If T, # T,, then we sum the product of the number of perfect phylogenies for T, and the number of perfect phylogenies
for T, over all possible values i of the sample size assigned to T,. Because i > |T,| and s —i > |T;|, we have i < s — |T;|.

If T, = T, and sample size i # 3 is assigned to the left subtree, then a factor of % accounts for the fact that each perfect
phylogeny traversed is also obtained for sample size s — i assigned to the left subtree. If T, = T, and i = J (for even s),

then we count the (Ns/;Tf) trees with distinct subtrees and the N> 1, trees with identical subtrees. O

Using Proposition 21, we compute N1 for each unlabeled tree shape with |T| < 8 and |T| < s < 11, presenting
these counts in Tables 4 and 5. For each small value of n, at fixed s > n, we observe that across shapes T with n leaves,
the number of rooted binary perfect phylogenies N, 1 tends to be larger for less balanced shapes T and smaller for more
balanced shapes.

The proposition can be used to obtain a closed form for the number of rooted binary perfect phylogenies for a
fixed shape T as a function of s. For example, suppose T is the 4-leaf symmetric unlabeled shape, with T, and T, both
corresponding to the 2-leaf caterpillar. Proposition 21 yields, for s > 4,

s—2

1 1
Nsr = (Z zgi,zgsi,z) + 585/2.2

i=2

(§1LiJLs—iJ>+ltle

_ il R B 5| 7 |Lfs is even}

,.:22 2 2 2|4
{(sﬂ)(s;;)(s—%, odds > 5,

s(s—1)(s—2) (49)

=2 12], evens >4

Note that the derivation follows the proof of Corollary 9, Egs. (14) and (16).
Recall that there are only two 4-leaf unlabeled topologies, the symmetric shape and the caterpillar. Adding Eq. (49),

counting perfect phylogenies for the symmetric shape, and Eq. (37), for the caterpillar, we obtain Eq. (12), counting all

perfect phylogenies with n = 4 leaves. In particular, for odd s > 5, using Lemma 16 and Proposition 15 to remove the

floor function,

(s+1)s—1)(s—=3) s(s —2)(2s — 5) (s+1)s—1)(s—=3) s(s—2)2s—5) 1
48 + { 24 J - 48 + 24 )

_(s —1)(s—3)5s—1)

= 8 .

For even s > 4, by Proposition 15,

s(s — 1)(s — 2) N 1LSJ N {5(5—2)(25—5)J :s(s— 1)(s—2) N 1LSJ N s(s — 2)(2s — 5)

48 214 24 48 214 24
_s(s—2)(55—11)+ 1| s
o 48 214

Subtracting Eq. (49), the number of perfect phylogenies for the symmetric shape, from Eq. (37), the corresponding
number for the caterpillar, we can quickly demonstrate that for s > 5, the caterpillar possesses more perfect phylogenies
with sample size s. In particular, for odd s > 5,

s(s—2)2s—5) 1 (s+1s—=1)(—-3) (—173s—-23) 0
_—_— - = = > U.
24 8 48 16
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Table 4

The number of rooted binary perfect phylogenies N(T,s) that have sample size s and a given
unlabeled topology T with n leaves, for small n (1 <n <7) and s. N(T, s) is calculated according
to Proposition 21.

Number of Topology T' Sample size s

leaves (n) 1 2 3 4 5 6 7 8 9 10 11
1 1 1111 1 1 1 1 1
2 SN - 11 22 3 3 4 4 5 5
3 AN - -1 2 4 6 9 12 16 20 25
4 AN - - - 1 3 7 13 22 34 50 70
4 > - - 21103 4 8 10 16 20
5 AN - - - -1 4 11 24 46 80 130
5 SN - - - -1 2 5 9 1T 27 43
5 LS - - - - 1.3 8 16 30 50 80
6 - - - - - 1 5 16 40 86 166
6 AN - - - - -1 3 8 1T 34 61
6 A - - - - -1 4 12 28 58 108
6 AL - oo o o1 4 12 28 58 108
6 SN - - - - -1 2 6 11 23 38
6 L - o - - -1 2 7T 14 31 54
7 AL - - - - - -1 6 2 62 148
7 AAXWO - - - - o -1 4 12 29 63
7 AN - - - - - -1 5 17 45 103
7 AN - - - - o o1 5 1T 45 103
7 A - - - - - -1 3 9 20 43
7 AN - - - - - -1 3 10 24 55
7 AL - - - - - o1 5 1T 45 103
7 AW - - - - o213 9 20 43
7 LS - oo - o o1 413 32 T
7 Lo - - - - - - 1 5 17 45 103
7 S>> - - o - - 1 3 9 2 43

For even s > 4,

s(s—2)2s—5) s(s—1)(s—2) 1|s s(s—2)(s—3) 1]s
24 B 48 Bl ELZJ - 16 B ELZJ
- s(s—2)(s—3) s
= 16 -8
_ s(s—1)(s—4) -0
16 -

with equality if and only if s = 4.
7. Discussion

We have studied the enumerative combinatorics of rooted binary perfect phylogenies. We have provided a recursive
formula to enumerate the rooted binary perfect phylogenies with a given sample size s via Eq. (3), and we have provided
an asymptotic approximation in Eq. (6). We have also refined the enumeration, counting rooted binary perfect phylogenies
for a given sample size s separately for each possible value of the number of leaves n via Eq. (9). We have counted rooted
binary perfect phylogenies associated with specific shapes (Eq. (48)), notably a caterpillar shape (Eq. (29)). A summary of
results appears in Table 6.
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Table 5

The number of rooted binary perfect phylogenies N(T,s) that have sample size s and a
given unlabeled topology T with n leaves, for small n (n = 8) and s. N(T, s) is calculated
according to Proposition 21.

Number of Topology T Sample size s
leaves (n) 1 2 3 4 5 6 7 8 9 10 11
8 - - - - - -1 7 2 91
8 AANO- - - - - - 115 17 46
8 AN - - - - - - -1 6 23 68
8 AN - - - - - - 216 23 68
8 AN - - - - - - 21 4 13 33
8 AN - - - o o o 114 14 38
8 AN - - - o - - 116 23 68
8 A - - - - - - -1 4 13 33
8 A - - - - - - 21 5 18 50
8 AN - - - - - - -1 6 23 68
8 AN - - - - - - -1 4 13 33
8 A - - - - - o 21 6 23 68
8 A - - - - oo 1 4 13 33
8 AL - - - oo - 115 18 50
8 LSS - - - - oo 215 18 50
8 AN - - - o - - 2103 10 23
8 S I
8 Lo - - o - - o 21 6 23 68
8 AL - - - o - - -1 4 13 33
8 S - - - o - - -1 5 18 50
8 L - - - - - - -1 3 13 34
8 - - o - - o 21 4 13 33
8 L2 - - o - o 2 11 4 7

Table 6

The main results of the paper. We have variously obtained recursions, generating functions, and asymptotics for the
number of rooted binary perfect phylogenies with sample size s: considering all tree shapes, all tree shapes with n
leaves, the n-leaf caterpillar shape, all caterpillar shapes, and a single shape that is specified, but that is arbitrary.

Tree shapes Recursion Generating function Asymptotics
All shapes bs, Proposition 1 B(z), Proposition 2 Theorem 5

All n-leaf shapes bs.n, Proposition 6 Bn(z), Proposition 10 Proposition 11
n-leaf caterpillar £;.n, Proposition 14 Gy(z), Proposition 17 Proposition 19
All caterpillars g, Eq. (44) G(z), Eq. (45) Eq. (46)
Arbitrary shape N;,r, Proposition 21 - -

The enumerations build on the efforts of Palacios et al. [16] to enumerate the labeled and unlabeled topologies and
labeled and unlabeled histories that can be associated with a rooted perfect phylogeny, binary or multifurcating. For rooted
binary perfect phylogenies, we provide enumerations that can be employed as a starting point for the enumerations of
labeled and unlabeled topologies and labeled and unlabeled histories by Palacios et al. [16].

The recurrence for bs, the number of rooted binary perfect phylogenies with sample size s (Eq. (3)), is similar to
the recurrence for the number of rooted binary unlabeled trees (Eq. (1))—except that it requires the addition of a 1
for the single-leaf perfect phylogeny, whereas the recurrence for the rooted binary unlabeled trees does not include a
corresponding possibility. This small difference leads to a large difference in asymptotic growth. Whereas the asymptotic
growth of the rooted binary unlabeled trees—the perfect phylogenies with sample size s and s leaves—is approximately
0.3188(2.4833)°s~3/2, the growth of the rooted binary perfect phylogenies with sample size s is substantially larger,
approximately 0.3519(3.2599)°s~3/2 (Eq. (6)).
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Some of our results produce known integer sequences. The sequences for b (OEIS A113822) and b1 s (OEIS A085748)
have been reported but little studied; bs. s counts rooted binary labeled trees with s leaves in which all leaves except
one are labeled “1” and the last leaf is labeled “2”; equivalently, it is the number of rooted binary trees that are unlabeled
except that one leaf is given a label. Sequence b 3 follows OEIS A002620 (Corollary 8), the “quarter-squares”. The number
of ways to place a given sample size across some caterpillar shape (Table 3) follows OEIS A000975, a sequence well studied
in other contexts.

Interestingly, we observed that across all rooted binary unlabeled trees T with a fixed number of leaves n, the number
of rooted binary perfect phylogenies for a fixed s appears to be largest for the caterpillar tree shape. For the case of n = 4,
we proved this result, showing that for sample size s > 5, the caterpillar shape has more perfect phylogenies than the
symmetric shape (Section 6). Informally, the number of rooted binary perfect phylogenies for fixed s and n, with only
the tree shape changing, appears to decrease with increasing tree balance. The symmetry introduced by replacement
of an asymmetric internal node by a symmetric internal node decreases the number of perfect phylogenies; it will be
informative to systematically examine the number of perfect phylogenies in relation to tree balance indices such as the
symmetry nodes index [14].

In accord with the result that caterpillars appear to possess larger numbers of perfect phylogenies, asymptotically as
s grows large, whereas the mean number of leaves in a rooted binary perfect phylogeny selected at random grows with
approximately 0.7326s (Theorem 13), the mean number of leaves in a rooted binary perfect phylogeny with caterpillar
shape grows only with %s (Theorem 20). The smaller value for the case of caterpillars reflects the fact that a caterpillar
possesses only one symmetric node—its cherry—so that many distinct perfect phylogenies can be constructed with sample
size s and a fixed small caterpillar size.

Perfect phylogenies have applications in multiple biological settings. They appear in problems concerning DNA
sequences descended in a population from an ancestral sequence by a process with little or no genetic recombina-
tion [1,2,10, pp. 460-462]; a classic family of “perfect phylogeny problems” seeks to find algorithms for constructing
perfect phylogenies from sets of sequences in this context. Recently, perfect phylogenies have also been considered in
problems with cell lineages and tumors [6,18]. Our enumerative results assist in characterizing the sizes and combinatorial
properties of sets of perfect phylogenies relevant to the various biological applications.

The binary perfect phylogenies are closely related to the rooted multi-labeled binary trees [4]. In a rooted multi-labeled
binary tree, a shared label can be assigned to multiple leaves. Czabarka et al. [4] report the number ry = 'y m,,...,
rooted multi-labeled binary trees, each of which is labeled by a given set of “multi-labels” {A1, A, ..., Ar}, where label
Aj appears m; times.

Consider the integers at the leaves of a perfect phylogeny as “labels.” A perfect phylogeny with sample size s and
n leaves has integer labels s = (s1, s, ..., Sp). The number of unique integer labels that appear in s is denoted k, and
those integer labels appear m = (m;,, my,, ..., my) times, where the t; are the k distinct integer labels represented in
s, my; represents the number of leaves labeled by integer t;, Z]":] my =n, and Zj'fﬁ timy = s. For example, the perfect
phylogenies with labels s = (5, 4,4, 1, 1) and n = 5 leaves correspond to the multi-labeled binary trees with 5 leaves
and k = 3 multi-labels (“1”, “4”, and “5”) and label multiplicities m = (my, my, ms) = (2, 2, 1) (and (¢4, t2, t3) = (1, 4, 5)).
Through the correspondence with multi-labeled trees, perfect phylogenies can potentially also be enumerated by summing
enumerations for relevant sets of multi-labeled trees.

From the perspective of the lattice formulation for perfect phylogenies (Fig. 2), we have counted the (non-empty)
elements of the lattice, b, and b ,,, the number of elements that lie s —n + 1 “steps” from the minimal element ¢ to the
maximal element, a single leaf. However, in describing lattices of binary perfect phylogenies, we have left a number of
questions unanswered. In how many ways can the lattice be traversed—via the order relation—between the minimal
and maximal perfect phylogenies? How many perfect phylogenies exist with specified features, perhaps concerning
numbers of nodes with different numbers of descendants or leaves with specified multiplicities? Applications of the lattice
formulation may provide further insights.
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