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Replication of Genetic Associations as Pseudoreplication due
to Shared Genealogy
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The genotypes of individuals in replicate genetic association studies have some level of correlation due to shared descent in
the complete pedigree of all living humans. As a result of this genealogical sharing, replicate studies that search for
genotype-phenotype associations using linkage disequilibrium between marker loci and disease-susceptibility loci can be
considered as ‘‘pseudoreplicates’’ rather than true replicates. We examine the size of the pseudoreplication effect in
association studies simulated from evolutionary models of the history of a population, evaluating the excess probability that
both of a pair of studies detect a disease association compared to the probability expected under the assumption that the
two studies are independent. Each of nine combinations of a demographic model and a penetrance model leads to a
detectable pseudoreplication effect, suggesting that the degree of support that can be attributed to a replicated genetic
association result is less than that which can be attributed to a replicated result in a context of true independence. Genet.
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INTRODUCTION

Genetic case-control association studies seek to identify
statistical associations between genotype and disease
status in samples of unrelated individuals with and
without a disease phenotype. Recently, the case-control
association design has become common as an approach to
the search for susceptibility loci that underlie complex
genetic diseases.

As case-control genetic association studies proliferate, it
is important to understand the factors that affect the
replicability of association results. General acceptance of
the importance of an observed association typically
requires that the association be detected in additional data
sets beyond the one that provided the initial finding.
However, many associations identified in one study are
not identified in subsequent studies [Ioannidis et al., 2001;
Hirschhorn et al., 2002; Lohmueller et al., 2003]. While
false positives in the initial studies likely contribute to a
large fraction of nonreplications, it is also likely that some
nonreplications represent true susceptibility loci that
replication studies fail to detect [Gorroochurn et al., 2007;
Ioannidis, 2007; Zöllner and Pritchard, 2007; McCarthy
et al., 2008; Moonesinghe et al., 2008].

The typical difficulties involved in interpreting the
replication or nonreplication of any type of statistical

finding are compounded in the genetic case-control
context by the indirect nature of many genetic association
studies. Rather than searching directly for true causal loci,
indirect association studies seek to identify markers whose
genotypes are correlated both with genotypes at (un-
known) causal loci and with disease status [Kruglyak,
1999; Pritchard and Przeworski, 2001; Neale and Sham,
2004; Zondervan and Cardon, 2004; Hirschhorn and Daly,
2005]. These studies derive their utility from the fact that
due to shared descent from a common ancestor, disease-
affected individuals will often possess both a disease
mutation and neighboring marker alleles that were present
in the ancestor in whom the disease mutation originally
occurred. Thus, identification of a marker associated with
disease status can indicate the likely presence on the
genome of a nearby causal susceptibility locus.

Indirect associations between a marker and a disease
influenced by a nearby susceptibility locus exist as the
outcome of a complex stochastic process of mutations,
recombinations, and divergences of genealogical lineages
that have occurred since the time of the first individual
who carried the causal variant [Ardlie et al., 2002;
Nordborg and Tavaré, 2002; Balding, 2006; Slatkin, 2008].
Disease associations in a population are therefore influ-
enced by the properties of the genetic history of the
population since the time of the disease mutation. We
argue that this history can also affect the relationship
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between the outcomes of multiple association studies
performed in the population.

Consider a hypothetical scenario illustrating the effect of
history on the correlation of outcomes of replicate studies
in a single population. Suppose two similar association
studies are performed in the population. The samples in
the two studies will likely have some degree of shared
genealogy, as many individuals from the history of the
population are likely to appear in the ancestries of
members of both samples. Suppose further that a true
causal mutation has given rise to increased disease risk in
the population. As a result, certain mutations, recombina-
tions, and divergences of genealogical lineages will occur
in the ancestries of many of the individuals who carry both
the disease and the causal mutation. Consequently, some
of the same events that have led in one sample to the
production of an indirect association between a marker
and the disease will also have led to an indirect association
in a second sample from the population. An example of
this correlation in outcomes due to shared genealogy is
shown in Figure 1.

We can compare the genetic association context to the
scenario of a coin toss. Suppose an unfair coin has
probability P 6¼ 0:5 of landing ‘‘heads.’’ We perform two
separate experiments, in each of which we flip the coin k
times and test the null hypothesis that the coin has a fair
probability of 0.5. Because the two experiments are
independent, the probability that both experiments will
reject the null hypothesis is the square of the probability
that the first of the studies will reject the null hypothesis.
In the case-control setting, however, because of shared
ancestry of the individuals in two studies, the outcomes of
the studies are not strictly independent, and the prob-
ability that both studies will produce a given outcome is
greater than the square of the probability that the first
study will produce the outcome. Due to the dependence of
multiple studies on the same past events, a replication
study in a genetic association context can be more
accurately described as a form of pseudoreplication study.
This term is borrowed from the context of ecological field
experiments, in which one of its uses is for describing
situations where treatment units within an experiment are
not truly independent but are viewed as such during
statistical analysis [Hurlbert, 1984; Heffner et al., 1996].

The issue of genetic pseudoreplication—the correlation
of replicate association studies due to shared genealo-
gies—is important because if correlation among studies is
considerable, then it might be inappropriate to regard a
replicated genetic association result as having the same
level of support as that attributed to a replication in a
setting with true independence. Although statistical
properties of replication in genetic association studies
have frequently been investigated [Clarke et al., 2007;
Gorroochurn et al., 2007; Sullivan, 2007; Zöllner and
Pritchard, 2007; Moonesinghe et al., 2008], it has typically
been assumed that separate studies have independent
outcomes, and the issue of pseudoreplication has not
been included in discussions about replication [Vieland,
2001; Hirschhorn and Altshuler, 2002; Hirschhorn
et al., 2002; Colhoun et al., 2003; Redden and Allison,
2003; Ott, 2004; Ioannidis, 2007; NCI-NHGRI Working
Group on Replication in Association Studies, 2007;
McCarthy et al., 2008]. Note that the phenomenon that
we term as ‘‘pseudoreplication’’ is distinct from the
phenomenon termed by Gorroochurn et al. [2007] as

‘‘pseudo-failures to replicate.’’ Whereas Gorroochurn et al.
[2007] studied replication failures that occurred due to
underpowered replication studies, our concern is with the
way in which replication of an association result is
influenced by the shared descent of the individuals in
replicate samples. Our interest is in the relationship
between the outcomes of separate studies of the same
marker in different sets of individuals, rather than on
forms of replication that involve joint analysis of data
pooled across studies [Skol et al., 2006].

To quantitatively evaluate the phenomenon of pseudor-
eplication in simulated genetic association studies, we
consider pairs of indirect association studies performed in
the same simulated populations. This strategy is similar to
that of Ewens et al. [2007], who examined the relationship
between estimates of the levels of genetic variation
observed in two separate samples from the same popula-
tion. We use a coalescent method to simulate the pair of
studies conditional on assumptions about the demo-
graphic history of the population; our approach is related
to that of Sullivan [2007], who investigated replication
using a data-based simulation approach [Wright et al.,
2007] rather than using an explicit evolutionary model.
Our focus is on pseudoreplication in pairs of studies that
both have the same underlying disease effect, and we
evaluate the excess probability that both studies detect an
indirect association compared to the probability expected
under the assumption that the two studies are indepen-
dent. Although we find that the outcomes of the two
studies are often close to independent, we also observe
that under the conditions simulated, a pseudoreplication
effect does exist, in that replicate studies can have a
noticeably higher probability of finding a disease locus
than is expected under independence. A consequence of
this pseudoreplication effect is that under the conditions
simulated, ‘‘flip-flop’’ associations, in which two studies
find associations involving opposite variants at the same
marker [Lin et al., 2007, 2008; Zaykin and Shibata, 2008],
are relatively unlikely to occur at a marker closely linked
to a true susceptibility locus.

METHODS

We simulated pairs of indirect association studies in
simulated populations. Each pair of association studies
involved two loci—an unknown disease locus and a
nearby marker locus tested for association with disease
status in both studies. For each pair of simulated studies,
we recorded whether both studies, one study, or neither
study detected association between the marker and
disease status. Our simulation approach was designed to
balance the competing issues of providing generally
reasonable parameter values, generating enough accepta-
ble simulations quickly, and satisfying the assumption of
coalescent methods that relatively few haplotypes are
simulated compared to the population size. As the
simulations were intended to reflect a scenario of a
complex disease with multiple underlying risk factors,
high-risk genotypes at the single disease locus simulated
were given incomplete penetrance, so that the remaining
components of the disease risk due to other variables were
not explicitly modeled.

The simulations considered three demographic models
of the history of a population. The models were selected as
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representative among recent coalescent-based approaches
to demographic modeling of human population history
[Marth et al., 2004; Schaffner et al., 2005; Voight et al., 2005;
Plagnol and Wall, 2006; Fagundes et al., 2007]. Each model
simulates mutation, recombination, and coalescence of
genetic lineages backward in time from the present,
conditional on assumptions about the history of the

population size. Model 1 involved a constant-sized
population of �10; 000 diploid individuals, a value with
similar magnitude to that reported by studies of various
subsets of the human population [Takahata, 1993; Har-
pending et al., 1998; Yu et al., 2001; Tenesa et al., 2007].
Viewed forward in time, Model 2, based on a study of
European variation [Marth et al., 2004], involved a

AA AA AA AA AA AA AA Aa aa
BB BB BB BB BB BB Bb Bb bb

AA AA AA Aa Aa Aa aa aa aa
BB BB Bb BB Bb Bb bb bb bb

AA AA AA AA AA AA AA Aa Aa
BB BB BB BB BB BB BB BB Bb

AA AA AA AA Aa Aa Aa aa aa
BB BB Bb Bb Bb Bb Bb Bb bb

Diseased Non-diseased

Study 1

Diseased Non-diseased

Study 2

AB

Ab

aB

ab

Fig. 1. Schematic of two association studies performed in the same diploid population. Two loci are considered, a disease-susceptibility

locus with alleles A and a and a marker locus with alleles B and b. The genealogy of sampled copies of the susceptibility locus in two

association studies is shown. The most recent common ancestor of the sampled copies has haplotype ab. Open diamonds represent

recombinations, the closed diamond represents a mutation, and distinct colors represent distinct two-locus haplotypes. The A allele is a
true disease-susceptibility allele; allele B is indirectly associated as it lies on the haplotype on which the first A mutation occurred.

Gray lines represent the pairing of haplotypes to form diploid individuals. For the purpose of illustration with a small sample size as

shown in the figure, disease status is assigned to individuals according to a multiplicative model with penetrance 1/6 for low-risk aa
homozygotes and relative risk 2 for heterozygotes. The figure shows that both association studies performed in the population reflect
disease associations with allele B. The genealogies at the bottom represent the subgenealogies for the individuals included in the two

separate studies. They display a high degree of correlation in the history of events responsible for indirect associations between B and

disease.

481Pseudoreplication of Genetic Associations

Genet. Epidemiol.



population of constant size of �10; 000 diploid individuals
until �2; 000 generations in the past, at which point an
instantaneous jump occurred to size 1:4� 105; Model 3,
based on African variation [Plagnol and Wall, 2006],
involved a constant size of �10; 000 diploid individuals
until 4,280 generations in the past followed by exponential
growth to a current size of 106.

For each demographic model, we considered three
penetrance models for the disease locus—recessive,
additive, and dominant. For each of the nine combinations
of a demographic model and a penetrance model, we
simulated 100,000 pairs of indirect association studies,
each with a disease locus and a nearby marker locus that
was tested for disease association. To simulate pairs of
studies, we first independently selected a recombination
rate per base pair r, a mutation rate per base pair m, a
probability of disease PL for the low-risk homozygous
genotype at the disease locus, a probability of disease PH

for the high-risk homozygous genotype at the disease
locus, and a population disease frequency PD. Values for
these parameters were selected uniformly within specified
ranges: ½5� 10�9; 2:75� 10�8� for r, ½1� 10�9; 2� 10�8� for
m, ½0; 0:4� for PL, ½0:4; 1� for PH, and ½0:15; 0:4� for PD.

Given the demographic model, recombination rate, and
mutation rate, we used the ms coalescent simulator
[Hudson, 2002] to simulate 4,000 haplotypes, each of
length s ¼ 300; 001 base pairs. The ms approach simulates
an infinitely many-sites model in which ms is a mutation
rate for a whole sequence and in which recurrent
mutations are not allowed at individual sites. For the
population mutation and recombination parameters,
we used y ¼ 4Nms and r ¼ 4Nrðs� 1Þ, where N was
the present population size for the appropriate
model (104 for Model 1, 1:4� 105 for Model 2, and 106

for Model 3).
The ms command to generate one simulation of Model 1

was ms 4000 1 �t y �r r 300001, where y and r were
random values based on simulated choices of m and r. The
command for Model 2 was ms 4000 1 �t y �r r 300001
�eN 0.00357 0.07143; the value 0.00357 represents the time
at which the population size changed (in units of 4N), and
0.07143 represents the ancient population size (in units of
N). The command for Model 3 was ms 4000 1 �t y �r r
300001 �G 4303.9 �eG 0.00107 0.0. The value 4303.9
represents the exponential population growth rate (popu-
lation size at time t measured in units of 4N generations is
given by Ne�ð4303:9Þt), 0.00107 represents the time of onset
of growth in units of 4N generations, and 0.0 indicates a
constant size in the period prior to growth.

The 4,000 simulated haplotypes were paired randomly
to obtain 2,000 diploid individuals. Scanning from left to
right, polymorphic sites were tested as potential disease
loci, choosing the derived allele as the high-risk allele. For
a given site, treating the site as the disease locus, disease
status was simulated for each of the 2,000 individuals
based on the genotype of the individual and the
probabilities PL and PH, using the penetrance model to
determine the probability of disease for heterozygotes (PL

for the recessive model, PL=2þ PH=2 for the additive
model, and PH for the dominant model). If the fraction of
affected individuals was found to lie in the interval
½PD � 0:01;PD þ 0:01�, then the site was chosen as the
disease locus. If no suitable disease locus was found in the
simulated 300 kb region, then the simulation was dis-
carded and a new simulation was generated.

Once the disease status was specified for each indivi-
dual, two disjoint case-control samples, representing two
association studies, were selected randomly from the
individuals, without replacement. Each sample included
100 cases and 100 controls (each simulation generated
enough cases and controls such that two disjoint samples
could always be selected). All sites with minor allele
frequency greater than or equal to 0.05 in the full set of
2,000 simulated individuals were then identified as
potential marker loci (excluding the disease locus as a
possible marker locus). If more than 150 such loci were
produced in a single simulation, then 150 of the possible
marker loci were selected at random (possibly fewer than
150 for the last simulation, as the target number of pairs of
association studies was reached). For each marker locus,
contingency tables involving the three possible marker
genotypes and case/control status were generated sepa-
rately in both simulated studies. A 3� 2 G test statistic for
association [Sokal and Rohlf, 1995] was then calculated for
each study, and associations significant at the 0.05 level
were identified based on the w2 distribution with two
degrees of freedom (cutoff of 5.991, henceforth denoted by
c). Denoting the entries in the contingency table by m00,
m01, and m11 for the numbers of occurrences of the three
genotypes in cases (where ‘‘1’’ represents the derived allele
at the marker locus and ‘‘0’’ is the ancestral allele) and n00,
n01, and n11 for the corresponding values in controls, we
identified marker allele 0 as disease-associated if we
observed n00 þ n01om00 þm01 and n01 þ n114m01 þm11,
marker allele 1 as disease-associated if n00 þ n014m00 þ

m01 and n01 þ n11om01 þm11, and neither allele as disease-
associated otherwise. We recorded the parameters for the
simulated scenario, the allele more strongly associated
with disease in each of the two studies, and the G statistics
for the two studies (G1 for one study arbitrarily labeled as
the first study, and G2 for the other study).

The process of simulating populations using ms,
choosing a disease locus, sampling two sets of cases and
controls, and choosing one or more marker loci was
repeated until 100,000 pairs of association studies—each
pair involving the same population, the same disease
locus, and the same marker locus, but different indivi-
duals—were obtained. Under the assumption that two
studies of the same disease and marker locus in the same
population are independent, the probability that both
studies produce significant associations is the product of
the probability that the first study produces a significant
association and the probability that the second study
produces a significant association. Thus, under this
hypothesis, our simulations would be expected to produce
Pr½G14c and G24c� ¼ Pr½G14c� Pr½G24c�, and our pri-
mary interest was in evaluating the excess probability
Pr½G14c and G24c� � Pr½G14c� Pr½G24c� attributable to
pseudoreplication. We also evaluated the excess using
Pr½G14c and G24c�=ðPr½G14c� Pr½G24c�Þ, the ratio of the
conditional probability Pr½G24c jG14c� to the uncondi-
tional Pr½G24c�. To assist in interpreting the pseudorepli-
cation effect, we also examined Pr½G14c�,
Pr½G14c and G24c�, and Pr½G14c� Pr½G24c�.

RESULTS

The nine models tended to produce similar results for
Pr½G14c�, the power to detect association in a single study,
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though they varied in the distance over which power was
reasonably high (Fig. 2). These differences among models
in the distance over which association was detectable
likely result from the difference across models in the
extent of allelic association. As expected based on previous
theoretical and simulation-based predictions [Slatkin,
1994; Kruglyak, 1999; Zöllner and von Haeseler, 2000;
McVean, 2002], the constant model (Model 1) produced a
greater extent of association along the genome than did the
instantaneous expansion and exponential expansion mod-
els (Models 2 and 3).

For each of the nine models, power Pr½G14c� depended
in a sensible way on the various parameters, as can be seen
for the role of the distance between the marker and the
disease locus in Figure 2. The effects of the other
parameters for a representative model, demographic
Model 2 with a recessive disease effect, are shown in
Figure 3. Lower recombination rate led to increased power,
reflecting the greater level of association produced

between the marker and the disease locus when their
recombination distance was smaller. Mutation rate had
little impact on Pr½G14c�, as the effect of mutation rate
was mainly to influence the speed at which suitable
disease and marker loci were simulated, rather than to
substantially influence the properties of the scenarios that
were ultimately accepted. Disease frequency also had
relatively little effect in most simulated models. However,
power increased with decreasing penetrance PL for the
low-risk homozygous genotype, with increasing pene-
trance PH for the high-risk homozygous genotype, and
with increasing relative risk PH=PL.

Considering Pr½G14c and G24c� and Pr½G14c� Pr½G24c�,
similar effects of the various parameters are observed
(Fig. 4). However, comparing the top two rows of Figure 4,
it is apparent that Pr½G14c and G24c� is typically
greater than Pr½G14c� Pr½G24c�. The bottom two rows
of Figure 4 demonstrate that Pr½G14c and G24c� �
Pr½G14c� Pr½G24c� is almost always positive and that
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Pr½G14c and G24c�=ðPr½G14c� Pr½G24c�Þ is almost always
greater than 1. Particularly for the scenarios with the highest
power—small r, small PL, large PH, large PH=PL, and
small distance between the marker and the disease locus—
the pseudoreplication effect Pr½G14c and G24c� �
Pr½G14c� Pr½G24c� is noticeably greater than zero.
Considering Pr½G14c and G24c�=ðPr½G14c� Pr½G24c�Þ, the
power to detect association in the second study when
conditioning on having detected association in the first study
is often magnified by a factor of 2–5 compared to the
unconditional power. A generally similar magnitude of the
pseudoreplication effect is observed in all nine models,
extending over a longer distance in the constant-sized Model
1 compared to instantaneous expansion Model 2 and
exponential expansion Model 3 (Fig. 5).

Only a very small number of pairs of studies with G14c
and G24c had the property that opposite high-risk alleles
were identified at the marker locus in the two studies. For
each of the nine models, the fraction of pairs of studies
with G14c and G24c and opposite high-risk alleles was
less than 5� 10�4; considering only those studies with
G14c and G24c, in each of the nine models the fraction of
studies with opposite high-risk alleles was less than 1%.

This result has the consequence that the excess observed
in Figure 4 for Pr½G14c and G24c� compared to
Pr½G14c� Pr½G24c� is due to genuine pseudoreplication
of associations with the same marker allele, rather than to
scenarios in which opposite alleles at the marker locus
were associated with disease in the two separate studies.

DISCUSSION

In simulations of pairs of association studies performed
in the same population, we have observed the existence of
a noticeable ‘‘pseudoreplication’’ effect, in which the
shared ancestry of individuals in two different association
studies of the same genomic region induces a correlation
in the outcomes of the two studies. We have found that the
pseudoreplication effect sometimes produces a consider-
able magnification of the power to detect association in a
second study when conditioning on having detected it in
an initial study, and that the excess probability that two
studies identify a disease association is greater in scenarios
with higher power to detect true disease associations. The
excess probability of replication of a disease association
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homozygous genotype (PH), relative risk (PH=PL), and distance between the marker and the disease locus. For each of these variables,

the 100,000 simulated pairs of studies were binned into 100 groups each consisting of 1,000 pairs. The quantities evaluated from the
studies in a bin are plotted at the mean of the 1,000 values placed in the bin. The plots are based on demographic Model 2 with the

recessive disease model.
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was greatest at short distances between the marker tested
and the disease locus, and for disease alleles with high
relative risk. Small populations have more genealogical
sharing among individuals than do large populations;
thus, the pseudoreplication effect was greatest for the
scenario with the smallest population size (Model 1), in
which the set of cases included in the two replicate studies
comprised a substantial fraction of affected individuals in
the full population.

The occurrence of genealogical correlation between
studies might have contributed to a low probability for
‘‘flip-flop’’ associations when disease loci were truly
present. As we have observed, genealogical correlation
leads to increased probability that two association studies
of the same marker and disease will produce the same
outcome in the same population, thereby decreasing the
probability of divergent outcomes. Although recent stu-
dies have shown that flip-flop associations can indeed
occur in the presence of true disease associations [Lin
et al., 2007, 2008; Zaykin and Shibata, 2008], our simula-
tions suggest that the scenarios that produce such flip-
flops near a disease locus might be quite rare.

The pseudoreplication phenomenon has the conse-
quence that the level of statistical support provided by
genetic association replications is less than that provided
by truly independent replicates, an important result for the
practice of association meta-analyses. Thus, the existence
of pseudoreplication suggests that new strategies should
be developed for estimating the degree of correlation
between pseudoreplicated genetic association experi-
ments, and for taking this correlation into account when
agglomerating the results of separate studies. To minimize
the correlation, it may also be advisable to focus on larger
populations, for which the pseudoreplication effect is
expected to be smallest.

It is worthwhile to note, however, that our simulations
differed in various ways from common practices in
replication studies. To match our simulations to the typical

setting in which a derived disease allele arises on an
existing haplotypic background, we chose the derived
allele for the disease variant, so that the results are not
directly applicable to the fraction of situations in which
disease alleles are ancestral. Loci were simulated under
selective neutrality, so that potentially important scenarios
with deleterious disease alleles were not considered. To
utilize the demographic models chosen with a coalescent
simulation approach, the sample size in our simulated
studies was small compared to that of studies of typical
magnitude, as was the power to detect disease association.
However, the main effect of an increase in sample size is
an increase in statistical power, and conditions that we
have simulated that have different power levels suggest
that the pseudoreplication effect is most easily observed
when power is high.

An additional limitation is that we considered replica-
tion in the same population, whereas replication studies
are often performed in a separate population. Due to a
smaller degree of genealogical sharing for individuals
from separate populations compared to individuals from
the same population, the degree of correlation between
studies is likely to be smaller than for pairs of studies in
the same population. However, the use of different
populations introduces the possibility that the history of
mutations, recombinations, and divergences of genealogi-
cal lineages might differ between populations; for a true
disease mutation in two populations, the power to detect
the mutation via indirect association studies might vary
between the two populations due to differences in their
linkage disequilibrium histories [Fig. 6; Hirschhorn et al.,
2002; Colhoun et al., 2003; Ioannidis, 2007].

Also unlike many situations in practice, the choice to
perform a second study in our simulations was not made
conditional on the outcome of the first study. Thus, our
framework did not take into account issues such as the
potential for overestimation of effect size in the initial
study and the consequent potential for overestimation of
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power in the replication study—the ‘‘winner’s curse’’
[Gorroochurn et al., 2007; Yu et al., 2007; Zöllner and
Pritchard, 2007]. Our simulations also only considered the
genealogical aspects of the properties of replication studies
in unstructured populations; other factors—such as
population structure, difference in sample sizes, hetero-
geneity of mechanisms that produce the same disease,
differences in phenotyping, and gene-gene and gene-
environment interactions—also influence outcomes of
replication studies, as do differences in markers geno-
typed or other differences in the genotyping procedure.
An evaluation of the comparative magnitude of the
pseudoreplication phenomenon in conjunction with an
investigation of the effects of these various other factors
remains to be performed.

Lastly, we note that our simulations focused only on
pseudoreplication for marker loci closely linked to true
disease loci. What about pseudoreplication of false
positives, at markers not located near a causal locus?
Suppose that a true disease mutation exists somewhere in
the genome. Because many affected individuals in the
population possess the disease mutation, ‘‘cryptic related-
ness’’ [Devlin and Roeder, 1999; Voight and Pritchard,
2005] might exist, in which pairs of affected individuals
would share a greater degree of recent ancestry compared
to pairs in which one or both individuals were unaffected.
As a result, a second sample of cases might contain more
individuals from a part of the population pedigree that
was overrrepresented in an initial sample. Because of
shared ancestry between the two sets of cases, alleles at
sites distant from the disease locus that had high
frequencies in the first sample would be more likely to
have high frequencies in the second sample. Thus, in
principle, a false-positive finding might be replicated in a
second study; similar to the scenario of pseudoreplication
of true positives, shared genealogy might contribute to
pseudoreplication of false positives. It is therefore possible
that because of pseudoreplication resulting from cryptic
relatedness across samples, false-positive findings might
recur in separate studies more often than is generally
appreciated. Simulations of distant markers or whole
genomes rather than the single short region considered

here will be required for quantitative examination of this
potentially important phenomenon.
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We thank S. Zöllner and two reviewers for the
comments on a draft of the manuscript and M. Slatkin
for the comments and for suggesting the use of the term
‘‘pseudoreplication.’’ This work was supported by NIH
grants R01 GM081441, R01 HL090564, and T32 HG00040,
by a Burroughs Wellcome Fund Career Award in the
Biomedical Sciences, and by an Alfred P. Sloan Research
Fellowship.

REFERENCES
Ardlie KG, Kruglyak L, Seielstad M. 2002. Patterns of linkage

disequilibrium in the human genome. Nat Rev Genet 3:299–309.

Balding DJ. 2006. A tutorial on statistical methods for population

association studies. Nat Rev Genet 7:781–791.

Clarke GM, Carter KW, Palmer LJ, Morris AP, Cardon LR. 2007. Fine

mapping versus replication in whole-genome association studies.

Am J Hum Genet 81:995–1005.

Colhoun HM, McKeigue PM, Smith GD. 2003. Problems of reporting

genetic associations with complex outcomes. Lancet 361:865–872.

Devlin B, Roeder K. 1999. Genomic control for association studies.

Biometrics 55:997–1004.

Ewens WJ, Roy Choudhury A, Lewontin RC, Wiuf C. 2007. Two

variance results in population genetics theory. Math Popul Stud

14:93–110.

Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM,

Bonatto SL, Excoffier L. 2007. Statistical evaluation of alternative

models of human evolution. Proc Natl Acad Sci USA

45:17614–17619.

Gorroochurn P, Hodge SE, Heiman GA, Durner M, Greenberg DA.

2007. Non-replication of association studies: ‘‘pseudo-failures’’ to

replicate? Genet Med 9:325–331.

Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry

ST. 1998. Genetic traces of ancient demography. Proc Natl Acad Sci

USA 95:1961–1967.

Heffner RA, Butler IV MJ, Reilly CK. 1996. Pseudoreplication

revisited. Ecology 77:2558–2562.

Population 2Population 1

Fig. 6. Schematic of a possible pattern of linkage disequilibrium in two populations. A disease mutation (orange) occurs on an ancestral

chromosome that contains several marker alleles (green, purple, blue, and yellow). Over time, recombination events (open diamonds)

break down the correlations between the disease mutation and the marker alleles. However, the recombination history is different for

populations 1 and 2, separated by a barrier to gene flow (brown vertical line). Consequently, if the purple or blue allele were examined
in population 1, then a disease association might be found, but it might not be replicated in population 2. A similar situation applies for

the yellow allele, with the roles of the populations reversed.

486 Rosenberg and VanLiere

Genet. Epidemiol.



Hirschhorn JN, Altshuler D. 2002. Once and again—issues surround-

ing replication in genetic association studies. J Clin Endocrinol

Metab 87:4438–4441.

Hirschhorn JN, Daly MJ. 2005. Genome-wide association studies for

common diseases and complex traits. Nat Rev Genet 6:95–108.

Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. 2002. A

comprehensive review of genetic association studies. Genet Med

4:45–61.

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral

model of genetic variation. Bioinformatics 18:337–338.

Hurlbert SH. 1984. Pseudoreplication and the design of ecological

field experiments. Ecol Monogr 54:187–211.
Ioannidis JPA. 2007. Non-replication and inconsistency in the genome-

wide association setting. Hum Hered 64:203–213.

Ioannidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG.

2001. Replication validity of genetic association studies. Nat Genet

29:306–309.

Kruglyak L. 1999. Prospects for whole-genome linkage disequilibrium

mapping of common disease genes. Nat Genet 22:139–144.

Lin P-I, Vance JM, Pericak-Vance MA, Martin ER. 2007. No gene is an

island: the flip-flop phenomenon. Am J Hum Genet 80:531–538.

Lin P-I, Vance JM, Pericak-Vance MA, Martin ER. 2008. Response to

Zaykin and Shibata. Am J Hum Genet 82:796–797.
Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. 2003.

Meta-analysis of genetic association studies supports a contribu-

tion of common variants to susceptibility to common disease. Nat

Genet 33:177–182.

Marth GT, Czabarka E, Murvai J, Sherry ST. 2004. The allele frequency

spectrum in genome-wide human variation data reveals signals of

differential demographic history in three large world populations.

Genetics 166:351–372.

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J,

Ioannidis JPA, Hirschhorn JN. 2008. Genome-wide association

studies for complex traits: consensus, uncertainty and challenges.

Nat Rev Genet 9:356–369.

McVean GAT. 2002. A genealogical interpretation of linkage disequili-

brium. Genetics 162:987–991.

Moonesinghe R, Khoury MJ, Liu T, Ioannidis JPA. 2008. Required

sample size and nonreplicability thresholds for heterogeneous

genetic associations. Proc Natl Acad Sci USA 105:617–622.

NCI-NHGRI Working Group on Replication in Association Studies.

2007. Replicating genotype-phenotype associations. Nature

447:655–660.

Neale BM, Sham PC. 2004. The future of association studies: gene-

based analysis and replication. Am J Hum Genet 75:353–362.
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