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1. Introduction

The study of evolutionary trees makes a distinction between species trees, trees that
describe relationships among sets of species, and gene trees, trees that describe relation-
ships among genetic lineages of members of those species [3,11,12]. In considering the
evolution of gene trees in relation to species trees, a variety of new types of combinatorial
structures have emerged, each specifying some feature of the relationship between the
branching patterns of gene trees and those of species trees [2,4,5,11,17,19,21,22].

Coalescent histories are prominent among the structures useful in the study of gene
trees and species trees. For a given gene tree and species tree, a coalescent history
describes an evolutionary scenario for gene lineage evolution on the branches of the
species tree. More formally, viewing a rooted binary tree “backward in time” from the
leaves to the root, each internal node of the tree, including the root node, represents a
coalescence: an instance at which lineages represented by a set of leaves find common
ancestors. We term a node or edge v of a tree an ancestor of a node or edge u if u lies
on a path from v to a leaf; u is said to be a descendant of v. Trivially, v is an ancestor
or descendant of itself. We then have the following definition.

Definition 1. Consider a rooted binary leaf-labeled tree G (the “gene tree topology”) and
a rooted binary leaf-labeled tree S (the “species tree topology”), labeled by the same set
of mutually distinct leaf labels. A coalescent history f associates with each coalescence
v in G an edge f(v) in S, such that two properties are satisfied.

(i) For each gene tree coalescence v in G, the species tree edge f(v) in S is ancestral
to each leaf node of S that shares a label with a leaf that descends from v.

(ii) For each pair of gene tree coalescences u, v with the property that v is ancestral
to win G, f(v) is ancestral to f(u) in S.

Treating a gene tree as evolving on the branches of a species tree, coalescent histories
describe permissible lists of edges of the species tree—including as a possibility an edge
ancestral to its root—where the coalescences of the gene tree can take place [5,14]. From
a biological perspective, the pair of constraints in the definition encodes the rules that (i)
a set of gene lineages can coalesce only in a branch of the species tree that is possible for
them all to reach, and (ii) ancestors can coalesce no more recently than their descendants

(Fig. 1).

Gene tree topology G Species tree topology S

A B CDETFG A B CDETFG

Fig. 1. A coalescent history for a labeled gene tree topology G and labeled species tree topology S. Gray
lines represent the mapping of coalescences of the gene tree to edges of the species tree.
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Species tree topology S

ABCD

Fig. 2. The number of coalescent histories for pairs (G, S) consisting of a 4-taxon labeled gene tree topology
G and labeled species tree topology S. All 15 labeled gene tree topologies appear for representative labelings
of the two unlabeled species tree shapes. Pairs with 1 coalescent history are the lonely pairs. The values
are obtained by counting coalescent histories in Tables 4 and 5 of [13].

Given G and S, different coalescent histories f;, fo are distinguished by having one
or more coalescences v in G for which f;(v) # f2(v) in S. It is natural to enumerate the
coalescent histories associated with a pair (G,.S), and several studies have contributed
to enumerative investigations of coalescent histories [1,5,7,8,14-16,20].

Most enumerative results to date have focused on cases with many coalescent histo-
ries. Particularly for matching gene trees and species trees—that is, when G and S have
the same labeled topology—gene lineages have multiple ways of traveling through the
species tree to reach a common ancestor. The first studies exhibited tree families with
G = S for which the number of coalescent histories has exponential growth [5,14]. For
matching caterpillar gene tree and species tree labeled topologies with n leaves, coa-
lescent histories can be identified with monotonic paths that do not cross the diagonal
of an (n — 1) x (n — 1) square lattice [1]. Such paths are enumerated by the Catalan

n— 2) /m, which by Stirling’s approximation have asymptotic growth

numbers C,,_1 = (
C, ~ 4™/(n*/?\/7). Subsequent work has demonstrated exponential growth for other
“caterpillar-like” families [8,15], and super-exponential growth in one case, that of the
“lodgepole” trees [7].

For non-matching gene tree and species tree labeled topologies (G, S), with G # S,
the number of coalescent histories can also be large [16,20]. For example, when S is a
caterpillar labeled topology with n > 7 leaves, a labeled topology G # S exists for which
the pair (G, S) has more coalescent histories than (5,.5) [16]. However, for fixed small
species tree labeled topologies S, a salient feature of the distribution of the number of
coalescent histories across labeled gene tree topologies G is the many gene trees that
produce only 1 coalescent history [16, Table 1]. For a 4-taxon caterpillar species tree,
6 of 15 gene tree topologies produce only 1 coalescent history, and for a 4-taxon balanced
species tree, 10 of 15 have this property (Fig. 2).

Given a rooted binary leaf-labeled gene tree topology G and species tree topology
S with the same label set, we term the pair (G, S) lonely if and only if the number of
coalescent histories for the pair is exactly 1. Here, we characterize the set of lonely pairs
of labeled topologies with n leaves, exhibiting a formula for their enumeration. We also
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Table 1
The number of labeled topologies with n > 2 leaves divided at the root into
subtrees of size p and n — p leaves, 1 < p < [n/2], for small n.

p
n 1 2 3 4 5 Total
2 1 1
3 3 3
4 12 3 15
5 75 30 105
6 630 225 90 945
7 6615 2205 1575 10395
8 83160 26460 17640 7875 135135
9 1216215 374220 238140 198450 2027025

10 20270250 6081075 3742200 2976750 1389150 34459425

The table is computed using values of L,, ,, from eq. (2). The column on the right
gives T, from eq. (1).

characterize the set of pairs of unlabeled tree shapes (g, s) at least one of whose labelings
gives a lonely pair.

2. Preliminaries

We consider all trees to be rooted and binary. Trees are leaf-labeled, except where
specified. For convenience, a “tree” refers to a rooted binary leaf-labeled topology, ex-
cept where specified. All trees with n leaves, or taxa, are assumed to have n distinct
labels taken bijectively from a shared set of n labels. In particular, for leaf-labeled n-leaf
rooted binary trees G and S representing a gene tree and species tree, respectively, this
assumption corresponds to an assumption that for a fixed species tree S, we examine
gene trees GG that consider one gene lineage per species.

The number of labeled topologies with n > 2 leaves is [18, eq. 2.2]

_ (2n=2)!
T, = P (1)

The number of labeled topologies with n > 2 leaves that are divided at the root into
subtrees of size p and n — p leaves, 1 < p < [n/2], is

T, T,
Loy = 05T, o)

where ¢ is the Kronecker delta [10, section 2.1]. For small n, L,, ,, appears in Table 1.
The number of unlabeled tree shapes with n > 2 leaves is given by the recursion

(n=1)/2
S tytnp, n odd
p=1
n/2—1
bnallayatl) o 21 tptn—p, m even,
=



N.A. Rosenberg / Advances in Applied Mathematics 102 (2019) 1-17 5

Table 2

The number of unlabeled tree shapes with n > 2 leaves
divided at the root into subtrees of size p and n — p
leaves, 1 < p < [n/2], for small n.

P

n 1 2 3 4 5 Total
2 1 1
3 1 1
4 1 1 2
5 2 1 3
6 3 2 1 6
7 6 3 2 11
8 11 6 3 3 23
9 23 11 6 6 46
10 46 23 11 12 6 98

The table is computed using values of £, , from eq. (4).
The column on the right gives t,, from eq. (3).

starting with ¢; = 1 [10, section 2.2]. The number of unlabeled tree shapes that have
n > 2 leaves and that are divided at the root into subtrees of size p and n — p leaves,
1<p<[n/2],is

t
en,p = tptn—p — 51)77119(21))' (4)

This result follows by extracting the term of the recursive eq. 3 corresponding to the
decomposition of unlabeled tree shapes at the root into subtrees of size p and n — p
leaves, using the Kronecker delta to combine the cases of n odd and n even into a single
equation. For small n, ¢, ,, appears in Table 2.

3. Enumerative results

Recall that we are in the setting in which G and S represent rooted binary leaf-
labeled trees of size n > 2 leaves, each considering the same bijectively associated leaf
set. We consider ordered pairs (G,S) and associated ordered pairs of unlabeled tree
shapes (g, s). For convenience, we identify leaves with their labels. We also denote the
two subtrees immediately descended from the root of S by Sp and Sg respectively,
without loss of generality considering the “right” subtree Sk to have at least as many
leaves as the “left” subtree S. We label the edge ancestral to the root node of S by
e (S).

3.1. Antipodal cherries
A cherry node of a rooted binary tree, labeled or unlabeled, or a cherry for short, is an

internal node with exactly two descendant leaves. A key concept needed for characterizing
lonely pairs (G, S) of size n > 2 leaves is the idea of an antipodal cherry (Fig. 3).
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Gene tree topology G Species tree topology S
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Fig. 3. Antipodal cherries. For labeled gene tree topology G, cherries (A, B) and (F, G) are antipodal cherries
with respect to labeled species tree topology S. Cherry (D, E) of G is not antipodal with respect to S.

Definition 2. An antipodal cherry for a labeled topology G with respect to another labeled
topology S is a cherry v of G in which the subtrees Sy and Sr immediately descended
from the root of S each contain exactly one leaf descended from v in G.

Theorem 3. A pair of labeled topologies (G, S) is lonely if and only if each cherry of G
is antipodal with respect to S.

Proof. Suppose each cherry v of G is antipodal with respect to S. Each internal node of
G is either a cherry node or a non-cherry node. By part (i) of the definition of coalescent
histories, each coalescent history f for (G,S) must map v to e.(5), as e,(5) is the only
edge of S ancestral to both leaves of S that correspond to the leaves of an antipodal
cherry of G. Each non-cherry internal node w of G must be ancestral to a cherry node
of G; because all cherries of G are antipodal with respect to S, w must be ancestral to
some antipodal cherry v*. Hence, by part (ii) of the definition of coalescent histories,
because f(v*) = e,.(S), f must also associate w with e,.(S). We have therefore shown
that f associates all internal nodes of G with e,(S), so that (G,.S) has only a single
coalescent history: the coalescent history associating all internal nodes of G with e,.(.5).
Hence, (G, S) is a lonely pair.

For the converse, suppose at least one cherry v of G is not antipodal with respect to S.
Then there exists a non-root edge e of S ancestral in S to both leaves descended from v
in G. (G, S) then has at least two coalescent histories: one that associates v with e, and
one that associates v with e,(S). O

The theorem provides a simple condition on (G, S) that indicates if (G, S) is a lonely
pair: it suffices to examine the cherries of G to determine if they are all antipodal with
respect to S.

3.2. Lonely-generating pairs of unlabeled tree shapes

To count the number of lonely pairs (G, .S) of labeled topologies of size n > 2 leaves,
we count the number of pairs (G, .S) in which each cherry of G is antipodal with respect
to S. Suppose the two subtrees of S descended from the root have sizes p and n — p,
with 1 < p < [n/2]. For each cherry of G to be antipodal with respect to S, it must be
possible to choose the pair of leaves of the cherry by selecting one leaf from among the
p leaves of Sy, and the other leaf from among the n — p leaves of Sg. Thus, for (G, S) to
be lonely, the number of cherries k of G must satisfy 1 < k < p.
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Definition 4. A pair of unlabeled tree shapes (g, s) is said to be lonely-generating if and
only if (g, s) admits a labeling (G, S) such that (G, .S) is lonely.

Proposition 5. A pair of unlabeled tree shapes (g, s) is lonely-generating if and only if the
number of cherries k of g is less than or equal to the number of leaves p in the smaller
of the two subtrees immediately descended from the root of s.

Proof. Suppose the number of cherries k of g is less than or equal to the number of
leaves p in sy, the smaller of the two subtrees immediately descended from the root of
s. We assign labels of G and S. For each cherry v of g, identify one of the labels of
its descendant leaves with a label for one of the p leaves in sy ; because k < p, such
identifications can be simultaneously made for all cherries. Identify the label of the other
descendant leaf of v with a label for one of the n — p leaves in si. Assign the n — 2k
remaining labels of G and S arbitrarily. Each cherry of the labeled tree G is antipodal
with respect to S. By Theorem 3, (G, S) is lonely, so that (g, s) is lonely-generating.
Now suppose k > p, and consider an arbitrary labeling G of g and an arbitrary labeling
S of s. Then there exists at least one cherry of G both of whose leaves lie in Sg, the
larger subtree of the root of S. This cherry of G is not antipodal with respect to S, so
that by Theorem 3, (G, S) is not lonely, and hence (g, s) is not lonely-generating. O

To count lonely-generating pairs (g, s), we require a lemma concerning cherries.

Lemma 6. For n > 2 leaves and 1 < k < |n/2], the number of unlabeled tree shapes that
have exactly k cherries is

[n/2] Lp/2]
Un,k = Z |:(1 - 6p,n—p)< Z Up,ivn—p,k—i)
1=0

p=1
min{|p/2],|k/2]} v -
+ dpn—p [ ZO (Up,ivnp,ki — 04 k—i < ;Z>>” , (5)

where we define vi9g =v21 =1 and v, 0 =0 for alln > 2.

Proof. We consider a decomposition of unlabeled tree shapes at the root, placing i > 0
cherries into the subtree of size p leaves and k — ¢ cherries into the subtree of size n — p
leaves. The 1-leaf unlabeled tree shape has 0 cherries, and each shape with n > 2 leaves
has at least 1 cherry.

For odd n and for even n with p < n/2, the two subtrees of the root have distinct
unlabeled shapes, and we tabulate vy, ;v,—p r—; unlabeled tree shapes with exactly k
cherries, ¢ in the subtree of size p and k — i in the subtree of size n — p.

For even n with p = n/2, the two subtrees of the root have the same size. To avoid
double-counting, ¢ must be bounded above by |k/2] as well as by |p/2]. If i < k/2, then
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Table 3
The number of unlabeled tree shapes with n > 2 leaves
and 1 < k < [n/2] cherries, for small n.

k

n 1 2 3 4 5 Total
2 1 1
3 1 1
4 1 1 2
5 1 2 3
6 1 4 1 6
7 1 6 4 11
8 1 9 11 2 23
9 1 12 24 9 46
10 1 16 46 32 3 98

The table is computed using values of v, from
Lemma 6. The column on the right gives ¢, from
eq. (3).

the two subtrees continue to have distinct unlabeled shapes, and we still have v, ;v —p k—s
shapes for the desired quantity.

For even n with p = n/2 and i = k/2, the subtrees at the root might not have distinct
unlabeled shapes. If the shapes are identical, then the number of unlabeled shapes with
k cherries is v, /2 /2. If they are distinct, then the number of unlabeled shapes with k
cherries is (”"/ Ea 2). The total number of unlabeled shapes with k cherries is then equal
t0 Vo k2 T (“”/3”“/2) for even n with p =n/2 and i = k/2. We use the Kronecker delta
to obtain one equation that combines all cases. O

For small n, values of vy, j, appear in Table 3.

Proposition 7. The number of lonely-generating pairs of unlabeled tree shapes (g,s) for
n > 2 leaves is

Ln/2] P

Zn = Z En,pzvn,k- (6)
p=1 k=1

Proof. By Proposition 5, we must count the number of pairs (g, s) for which the number
of cherries k of g is less than or equal to the number of leaves p of the smaller of the two
subtrees of s. Considering the results of eq. (4) and Lemma 6 for all possible (p, k) with
k < p, we obtain the result. O

Note that by reversing the order of the summation, the quantity in Proposition 7
can be written Zki/fj Un, k Z}Lf;/k% £y, p. It is convenient to report the marginal sums in

Proposition 7 as corollaries.

Corollary 8. For a given unlabeled tree shape g with n > 2 leaves and k cherries, 1 <
k < |n/2], the number of unlabeled tree shapes s for which (g,s) is lonely-generating is

n/2
Yn,k = ZIL):/]CJ lnp-
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Table 4

For a given unlabeled species tree shape s with
n > 2 leaves divided at the root into subtrees of
size p and n—p leaves, 1 < p < |n/2], the num-
ber of unlabeled gene tree shapes g for which
(g, s) is lonely-generating, for small n.

p

n 1 2 3 4 5

2 1

3 1

4 1 2

5 1 3

6 1 5 6

7 1 7 11

8 1 10 21 23

9 1 13 37 46

10 1 17 63 95 98
The table is computed using values of x,,, , from
Corollary 9.

Table 5

For a given unlabeled gene tree shape g
with n > 2 leaves and 1 < k < |n/2]
cherries, the number of unlabeled species
tree shapes s for which (g,s) is lonely-
generating, for small n.

k
n 1 2 3 4 5
2 1
3 1
4 2 1
5 3 1
6 6 3 1
7 11 5 2
8 23 12 6 3
9 46 23 12 6
10 98 52 29 18 6

The table is computed using values of y, &
from Corollary 8.

Corollary 9. For a given unlabeled tree shape s with n > 2 leaves that is divided at the
root into subtrees of size p and n— p leaves, 1 < p < |n/2], the number of unlabeled tree
shapes g for which (g, s) is lonely-generating is Tnp = > p_q Un k-

For small n, the quantities x,, , and ¥y, appear in Tables 4 and 5, respectively.
8.8. Lonely pairs of labeled topologies

To enumerate lonely pairs of labeled topologies (G, S), we next need a pair of lemmas
that count labeled topologies satisfying conditions concerning cherries.

Lemma 10. For n > 2 leaves and 1 < k < |n/2], the number of labeled topologies that
have exactly k cherries is

V. n!(n —2)!

BT 92k T(n — 2k) k! (k — 1)1 Q
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Table 6
The number of labeled topologies with n > 2 leaves and 1 < k < |[n/2]
cherries, for small n.

k
n 1 2 3 4 5 Total
2 1 1
3 3 3
4 12 3 15
5 60 45 105
6 360 540 45 945
7 2520 6300 1575 10395
8 20160 75600 37800 1575 135135
9 181440 952560 793800 99225 2027025

10 1814400 12700800 15876000 3969000 99225 34459425

The table is computed using values of V, j from Lemma 10. The column on
the right gives T), from eq. (1).

Proof. This result follows by multiplying the probability that a labeled topology cho-
sen uniformly at random has k cherries (Theorem 6 of [23]) by the number of labeled
topologies T;, (eq. (1)). O

For small n, values of V,, ;. appear in Table 6.

Lemma 11. For n > 2 leaves and 1 < k < |n/2], the number of labeled topologies that
have exactly k cherries, the leaf pairings of which are specified, is

k

- 2 .
Proof. Lemma 10 gives the number of labeled topologies that have exactly k cherries, or
Vi k- Each of these labeled topologies has a set of leaf pairings for the k cherries, each
of which appears in the same number of labeled topologies. The number of possible sets
of leaf pairings is (5;)Tk4+1 = n!/[2"(n — 2k)! k!], where () is the number of ways of
choosing 2k leaves to place in the k cherries, and Ty41 (eq. (1)) gives the number of
perfect matchings placing 2k elements into k pairs [6]. We divide the number of labeled
topologies with exactly k cherries, V,, ;, by the number of sets of leaf pairings for the k

cherries to obtain the result. O

Lemma 12. For a given labeled topology S with n > 2 leaves that is divided at the Toot
into subtrees of size p and n — p leaves, 1 < p < Ln/?J, the number of labeled topologies
G for which (G, S) is lonely is

- pt(n—p)'(n—2)!
;2’“ Kl (p—EkN(n—p—Fk)! (k-1 ©)

Proof. By Theorem 3, we must count labeled topologies G all of whose cherries are
antipodal with respect to S. The number of cherries k satisfies 1 < k < p, or else at least
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one cherry of G will have both its leaves in the larger subtree Si of S and will not be an
antipodal cherry with respect to S. Each antipodal cherry contains one of the p leaves
of Sy, and one of the n — p leaves of Sg.

Given k with 1 < k < p, the number of ways that k of the p leaves in S}, can be
chosen for placement in cherries of G, each in a different cherry, is (g) Once these k
leaves have been selected, the number of ways that they can be paired with k leaves from
Sk to produce k cherriesis (n—p)(n—p—1)---(n—p—k+1)=(n—-p)l/(n—p—k)!,
sequentially choosing without replacement among leaves of Si to form the cherries.

We must then multiply the product (})(n — p)!/(n — p — k)!, describing the number
of ways of selecting the k leaf pairs for the k cherries, by W, ;, the number of labeled
topologies that contain & specific cherries, and no other cherries (Lemma 11). We obtain
the result by simplifying the expression

Lemma 13. For a given labeled topology G with n > 2 leaves and k cherries, 1 < k <
[n/2], the number of labeled topologies S for which (G,S) is lonely is

[n/2]

. (n—2k)! (2n —2p —2)! (2p — 2)! 1\ %pn—r
Y””“‘Z2n-k-2<p—k>!<n—p—k)!(n—p—1)!@-1)!(2) - 10

p=k

Proof. By Theorem 3, we must count labeled topologies S with respect to which all & of
the cherries of G are antipodal. The number of leaves p in the smaller subtree Sy, of S
must be at least k, or else at least one cherry of G will not be an antipodal cherry with
respect to S.

Given p with k£ < p < [n/2], the number of ways of placing one leaf of each of the k
cherries of G in S, and the other leaf in Sg is 28=9.n-». The Kronecker delta reflects
the fact that if p = n — p, then each assignment of the leaves of the cherries to subtrees
of S is counted twice, once when a set of leaves from the k cherries of G is chosen for
placement in S, and once when its complement with respect to the set of 2k leaves in
the k cherries is chosen for placement in S;,. For each assignment of the leaves of the k

cherries to Sy, and Sg, the number of ways of choosing leaves of G for placement among

—2k
ok
We must then multiply the product 2 ~.n—r (" - ~2%), describing the number of ways of

the p leaves in subtree Sy, is ( ), as n — 2k leaves of S lie outside the k cherries.
assigning the p and n —p leaves to the subtrees of S, by the number of labeled topologies
with each assignment. This quantity is T7,7,—p,, where T}, gives the number of labeled
topologies with a specified set of n leaves (eq. (1)). We obtain the result by simplifying
the expression

/2]

—2
PR Mo, o
p=k p-k
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Table 7

For a given labeled species tree topology S with n > 2 leaves divided at
the root into subtrees of size p and n — p leaves, 1 < p < |n/2], the
number of labeled gene tree topologies G for which (G, S) is lonely, for

small n.
p
n 1 2 3 4 5
2 1
3 2
4 6 10
5 24 54
6 120 336 450
7 720 2400 3960
8 5040 19440 37800 46440
9 40320 176400 393120 567000
10 362880 1774080 4445280 7318080 8580600

The table is computed using values of X, , from Lemma 12.

Table 8

For a given labeled gene tree topology G with n > 2 leaves and 1 < k <
[n/2] cherries, the number of labeled species tree topologies S for which
(G, S) is lonely, for small n.

k
n 1 2 3 4 5
2 1
3 2
4 8 2
5 48 12
6 384 96 36
7 3840 960 360
8 46080 11520 4320 1800
9 645120 161280 60480 25200
10 10321920 2580480 967680 403200 176400

The table is computed using values of Y,,  from Lemma 13.

For small n, the quantities X,, , and Y}, ; appear in Tables 7 and 8, respectively.

Theorem 14. The number of lonely pairs of labeled topologies (G, S) for n = 2 leaves is

[n/2] p Spim;

B (2n—2p—2)! (2p — 2)!n! (n —2)! 1\™»nr

Zn = ; ; 2tk =S3(p— k) (n—p—K)!(n—p—!(p— 1k (k—1)! (5) '
(11)

Proof. For a fixed labeled topology G with n > 2 leaves and k cherries, 1 < k < |n/2],
Lemma 13 gives the number of labeled topologies S for which (G, S) is lonely. We sum

the result of Lemma 13 over all possible labeled topologies G. In particular, the number
of labeled topologies G with k cherries is V,, ;, (Lemma 10). To obtain the result, we
simplify the sum ZIEZ/EJ VokYng. O

Note that we can prove Theorem 14 by using Lemma 12 instead of Lemma 13. For a
fixed labeled topology S with n leaves that is divided at the root into subtrees of size p
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Table 9
The number of lonely pairs for small n.
Number of Number Number Number of Number of
leaves n of unlabeled  of labeled lonely-generating lonely pairs Z,,
tree shapes topologies pairs z,, (Theorem 14)
tn (eq. (3)) T, (eq. (1))  (Proposition 7)
2 1 1 1 1
3 1 3 1 [
4 2 15 3 102
5 3 105 5 3420
6 6 945 19 191700
7 11 10395 49 16291800
8 23 135135 203 1966015800
9 46 2027025 664 321188943600
10 98 34459425 2858 68482943802000

and n — p leaves, 1 < p < |n/2], we sum the result of Lemma 12 over all possible values
of p, noting that the number of labeled topologies .S divided at the root into subtrees of
size p and n — p leaves is L, (eq. (2)). We obtain the same expression in eq. (11) by
simplifying the sum ZZL)Z/E Ly pXnp-

In Theorem 14 as well as in Lemmas 12 and 13, some terms can be factored out of the
summand; the formulas are written with all terms inside the sum to highlight that the
sum can proceed in the reverse order, with ZIEZ/EJ ZZL)Z/;J in place of ZZL:;/IQJ > oh_,in
eq. (11). For small n, we report values of z,, the number of lonely-generating unlabeled
pairs, and Z,,, the number of lonely pairs, in Table 9.

4. Probabilities

Until this point, our results have been stated as enumerations. We convert them to
probabilities that choices of unlabeled or labeled trees give rise to lonely-generating or
lonely pairs by dividing by the sizes of associated classes of trees. These probabilities
follow from results 7-9 and 12-14 (Table 10).

Fig. 4A plots the probability z,/t2 that an unlabeled pair (g,s) chosen uniformly
at random is lonely-generating. The plot illustrates a decline in the probability as n
increases, with fewer than 10% of pairs at n = 40 being lonely-generating. In other
words, as n increases, it is observed that the probability decreases that the random
unlabeled species tree shape s is divided at the root into subtrees with size p and n — p,
1 < p < |n/2], such that p is greater than or equal to the number of cherries k in an
unlabeled gene tree shape g also chosen uniformly at random.

Examining the probability y, i/t, that an unlabeled pair (g, s) is lonely-generating
when g is fixed and has k cherries, we observe that for fixed k, y, r/t, generally in-
creases for increasing n (Fig. 4B). It is trivial to demonstrate that for fixed n, yn k/tn
decreases monotonically from y,1/t, = 1 as k increases from 1 to |n/2]; as k in-
creases, fewer terms ¢, , are summed in the formula y, ; = ZIL)Z/;J Ly p, so that yp 1
is smaller.
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Table 10

Probabilities for lonely-generating and lonely pairs of trees.
Quantity Quantity Condition Number of Number of Probability
that is being whose choices satisfying possible
fixed selected probability is the condition choices

at random  being
calculated

- (g9,5) (g,s) is LG zn, (Proposition 7)  t2 (eq. (3)) zn /t2 (Fig. 4A)
Unlabeled g s (g,s) is LG Yn,k (Corollary 8) tn (eq. (3)) Yn,k/tn (Fig. 4B)
Unlabeled s g (g,s) is LG Zy,p (Corollary 9)  t, (eq. (3)) ZTn,p/tn (Fig. 4C)
- (G, S) (G, S) is lonely  Z,, (Theorem 14) T2 (eq. (1))  Z,/T? (Fig. 4D)
Labeled G S (G, S) is lonely Y, (Lemma 13) T, (eq. (1)) Y, /T, (Fig. 4E)
Labeled S G (G, S) is lonely X, p (Lemma 12) T, (eq. (1)) Xp,p/Thn (Fig. 4F)

Fixed gene trees g and G are assumed to have 1 < k < [n/2] cherries. Fixed species trees s and S are as-
sumed to be divided at the root into subtrees with p and n—p leaves, 1 < p < |n/2]. LG, lonely-generating.

The effects seen for y,, i /t,, are reversed for x,, ,/ty, the probability that an unlabeled
pair (g, s) is lonely-generating when s is fixed and divided at the root into subtrees with
size pand n—p, 1 < p < |n/2] (Fig. 4C). The figure illustrates a decrease of z,, ,/t,, with
n for fixed p, starting from xg, ,/t2, = 1. For fixed n, z, ,/t, increases monotonically to
T, |n /2] /tn, =1, as p increases and more terms are incorporated into z,, , = 22:1 Un, k-

For labeled trees, the probability Z,, /T2 that a labeled pair (G, S) chosen uniformly
at random is lonely is seen to decrease with n, faster than the decay of z,/t2 (Fig. 4D).
The computation of Z,, /T,, tabulates lonely pairs (G, S), whereas z,/t, tabulates pairs
(g, s) that are only required to be lonely-generating; each lonely pair (G, S) represents a
labeling of a lonely-generating pair (g, s), but not every labeling of a lonely-generating
pair (g, s) produces a lonely pair (G, S).

The probability Y;, » /T, that a labeled pair (G, S) is lonely when G is fixed and has k
cherries (Fig. 4E), and the probability X,, ,/T;, that a labeled pair (G, S) is lonely when
S is fixed and is divided at the root into subtrees with size p and n —p, 1 < p < |[n/2]
(Fig. 4F), are observed to have somewhat similar behavior to the corresponding unlabeled
quantities y, x/tn and z, ,/t,, but with smaller values. Like vy, 1 /tn, Yn 1 /Ty is seen to
decrease with k for fixed n, and like x,, ,/t,, X, p/T, is observed to decrease with n
for fixed p and to increase with p for fixed n. One difference is that whereas vy, 1 /t, is
seen to increase with n for fixed k, Y,, /T, is seen to decrease with n for fixed k. This
result has the interpretation that whereas the fraction of unlabeled tree shapes s whose
smaller subtree at the root has size at least k increases, the fraction decreases that a
labeled tree topology S both has a divide at the root with a smaller subtree of size at
least k and satisfies the restriction that its labeling causes all cherries for a fixed labeled
tree topology G to be antipodal with respect to S.

5. Discussion
This study has examined the features of pairs consisting of a gene tree and a species

tree, characterizing the lonely-generating unlabeled pairs (Proposition 5) and the lonely
labeled pairs (Theorem 3). The condition that causes loneliness is that all cherries of the
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Fig. 4. Probabilities that tree pairs are lonely-generating or lonely, for 2 < n < 40. (A) Probability zn/ti that
an unlabeled pair (g, s) chosen uniformly at random is lonely-generating. (B) Probability vy, x/t, that an
unlabeled pair (g, s) is lonely-generating when g is fixed with k cherries and s is chosen uniformly at random.
(C) Probability =, ,/t, that an unlabeled pair (g, s) is lonely-generating when s is fixed and divided at
the root into subtrees with p and n — p leaves and g is chosen uniformly at random. (D) Probability Z,, /T2
that a labeled pair (G, S) chosen uniformly at random is lonely. (E) Probability Y, /T, that a labeled
pair (G, S) is lonely when G is fixed with k cherries and S is chosen uniformly at random. (F) Probability
Xn,p/Tn that a labeled pair (G, S) is lonely when S is fixed and divided at the root into subtrees with p
and n — p leaves and G is chosen uniformly at random. In (B), (C), (E), and (F), the first three curves are
labeled, and subsequent curves for values of k and p up to 20 follow in sequential order.

gene tree are antipodal with respect to the species tree. Application of this condition
enables an enumeration of lonely-generating pairs via a recursive formula (Proposition 7)
and of lonely pairs via a summation (Theorem 14).
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The key feature of a gene tree that influences its potential to produce lonely pairs is
its number of cherries: because each additional cherry is less likely to be antipodal in a
gene tree with a larger number of cherries, gene trees with more cherries appear in fewer
lonely pairs (Lemma 13). The key feature of a species tree is the pair of sizes for the
two subtrees immediately descended from the root (Lemma 12): because species trees for
which the root node is more balanced can accommodate more antipodal cherries, species
trees that are more balanced at the root appear in more lonely pairs.

Gene trees and species trees in lonely pairs are “distant” in the sense that the
cherries of the gene tree are antipodal with respect to the species tree. However,
the characterization of lonely pairs via antipodal cherries has the consequence that
other ways of examining differences between gene trees and species trees need not
be closely related to loneliness. For example, for the Robinson-Foulds (RF) distance,
counting splits that appear in one but not the other of a pair of trees [18, p. 25|, a
pair with a relatively large value need not be lonely—as is seen for the 4-leaf trees
G=((A,0),(B,D)) and S = (((4, B),C), D) in Fig. 2, with 2 coalescent histories and
RF distance 2. A pair with minimal Robinson-Foulds distance can be lonely, such as
for G = (((C,D),A),B) and S = (((4,B),C),D), with 1 coalescent history and RF
distance 0.

Recall that the interest in lonely pairs arises from the importance of coalescent histo-
ries to combinatorial and probabilistic features of gene trees and species trees. While a
recursive computation can give the number of coalescent histories for an arbitrary pair
consisting of a gene tree and a species tree [14], in demonstrating that a simple condition
characterizes the set of lonely pairs, we have found a way of obtaining the number of
coalescent histories for such pairs that is simpler than the recursive computation. The
condition of Theorem 3 can be checked; if it holds, then the number of coalescent histories
is equal to 1, and only if it fails is the recursive computation necessary.

A second setting in which lonely pairs have appeared is in the analysis of compact
coalescent histories. A compact coalescent history groups into one equivalence class all
coalescent histories that for each species tree edge have the same numbers of coales-
cences. For several families of gene trees and species trees of increasing size, the number
of compact coalescent histories grows exponentially slower with the number of leaves
than the number of coalescent histories [9]. The lonely pairs, however, with only one co-
alescent history, also have only one compact coalescent history, illustrating that compact
coalescent histories need not be less numerous than coalescent histories.

Although many enumerative studies of coalescent histories have now been performed,
focusing on enumerating the coalescent histories of various families of matching and
non-matching shapes [1,5,7,8,14-16,20], this analysis is the first to begin from a value
for the number of coalescent histories, namely 1, and to characterize all pairs consisting
of a gene tree and a species tree whose number of coalescent histories is equal to that
value. It will be of interest to determine if similar results can be obtained for the pairs
that produce other specified values for the number of coalescent histories.



N.A. Rosenberg / Advances in Applied Mathematics 102 (2019) 1-17 17

Acknowledgments

I thank an anonymous reviewer for helpful comments. Support was provided by NIH
grant RO1 GM117590.

References

[1] J.H. Degnan, Gene Tree Distributions Under the Coalescent Process, PhD thesis, University of New
Mexico, Albuquerque, 2005.

[2] J.H. Degnan, J.A. Rhodes, There are no caterpillars in a wicked forest, Theor. Popul. Biol. 105
(2015) 17-23.

[3] J.H. Degnan, N.A. Rosenberg, Gene tree discordance, phylogenetic inference and the multispecies
coalescent, Trends Ecol. Evol. 24 (2009) 332-340.

[4] J.H. Degnan, N.A. Rosenberg, T. Stadler, The probability distribution of ranked gene trees on a
species tree, Math. Biosci. 235 (2012) 45-55.

[5] J.H. Degnan, L.A. Salter, Gene tree distributions under the coalescent process, Evolution 59 (2005)
24-37.

[6] P.W. Diaconis, S.P. Holmes, Matchings and phylogenetic trees, Proc. Natl. Acad. Sci. USA 95 (1998)
14600-14602.

[7] F. Disanto, N.A. Rosenberg, Coalescent histories for lodgepole species trees, J. Comput. Biol. 22
(2015) 918-929.

[8] F. Disanto, N.A. Rosenberg, Asymptotic properties of the number of matching coalescent histories
for caterpillar-like families of species trees, IEEE/ACM Trans. Comput. Biol. Bioinform. 13 (2016)
913-925.

[9] F. Disanto, N.A. Rosenberg, Enumeration of compact coalescent histories for matching gene trees
and species trees, J. Math. Biol. (2019), https://doi.org/10.1007/s00285-018-1271-5.

[10] E.F. Harding, The probabilities of rooted tree-shapes generated by random bifurcation, Adv. in
Appl. Probab. 3 (1971) 44-77.

[11] W.P. Maddison, Gene trees in species trees, Syst. Biol. 46 (1997) 523-536.

[12] P. Pamilo, M. Nei, Relationships between gene trees and species trees, Mol. Biol. Evol. 5 (1988)
568-583.

[13] N.A. Rosenberg, The probability of topological concordance of gene trees and species trees, Theor.
Popul. Biol. 61 (2002) 225-247.

[14] N.A. Rosenberg, Counting coalescent histories, J. Comput. Biol. 14 (2007) 360-377.

[15] N.A. Rosenberg, Coalescent histories for caterpillar-like families, [IEEE/ACM Trans. Comput. Biol.
Bioinform. 10 (2013) 1253-1262.

[16] N.A. Rosenberg, J.H. Degnan, Coalescent histories for discordant gene trees and species trees, Theor.
Popul. Biol. 77 (2010) 145-151.

[17] N.A. Rosenberg, R. Tao, Discordance of species trees with their most likely gene trees: the case of
five taxa, Syst. Biol. 57 (2008) 131-140.

[18] M. Steel, Phylogeny: Discrete and Random Processes in Evolution, Society for Industrial and Ap-
plied Mathematics, Philadelphia, 2016.

[19] C. Than, L. Nakhleh, Species tree inference by minimizing deep coalescences, PLoS Comput. Biol.
5 (2009) €1000501.

[20] C. Than, D. Ruths, H. Innan, L. Nakhleh, Confounding factors in HGT detection: statistical error,
coalescent effects, and multiple solutions, J. Comput. Biol. 14 (2007) 517-535.

[21] Y. Wu, Coalescent-based species tree inference from gene tree topologies under incomplete lineage
sorting by maximum likelihood, Evolution 66 (2012) 763-775.

[22] Y. Wu, An algorithm for computing the gene tree probability under the multispecies coalescent and
its application in the inference of population tree, Bioinformatics 32 (2016), i225-i233.

[23] T. Wu, K.P. Choi, On joint subtree distributions under two evolutionary models, Theor. Popul.
Biol. 108 (2016) 13-23.


http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E3035s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E3035s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E6452686F6465733135s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E6452686F6465733135s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E64526F73656E626572673039s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E64526F73656E626572673039s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E4574416C31323A6D61746862696F736369s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E4574416C31323A6D61746862696F736369s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E6453616C7465723035s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4465676E616E416E6453616C7465723035s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446961636F6E6973416E64486F6C6D65733938s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446961636F6E6973416E64486F6C6D65733938s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446973616E746F416E64526F73656E626572673135s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446973616E746F416E64526F73656E626572673135s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446973616E746F416E64526F73656E626572673136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446973616E746F416E64526F73656E626572673136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib446973616E746F416E64526F73656E626572673136s1
https://doi.org/10.1007/s00285-018-1271-5
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib48617264696E673731s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib48617264696E673731s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib4D61646469736F6E3937s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib50616D696C6F416E644E65693838s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib50616D696C6F416E644E65693838s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E626572673032s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E626572673032s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E6265726730373A6A6362s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E6265726731333A74636262s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E6265726731333A74636262s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E62657267416E644465676E616E3130s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E62657267416E644465676E616E3130s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E62657267416E6454616F3038s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib526F73656E62657267416E6454616F3038s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib537465656C3136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib537465656C3136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5468616E416E644E616B686C65683039s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5468616E416E644E616B686C65683039s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5468616E4574416C3037s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5468616E4574416C3037s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib57753132s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib57753132s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib57753136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib57753136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5775416E6443686F693136s1
http://refhub.elsevier.com/S0196-8858(18)30097-6/bib5775416E6443686F693136s1

	Enumeration of lonely pairs of gene trees and species trees by means of antipodal cherries
	1 Introduction
	2 Preliminaries
	3 Enumerative results
	3.1 Antipodal cherries
	3.2 Lonely-generating pairs of unlabeled tree shapes
	3.3 Lonely pairs of labeled topologies

	4 Probabilities
	5 Discussion
	Acknowledgments
	References


