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Abstract—A coalescent history is an assignment of branches of a gene tree to branches of a species tree on which coalescences in

the gene tree occur. The number of coalescent histories for a pair consisting of a labeled gene tree topology and a labeled species

tree topology is important in gene tree probability computations, and more generally, in studying evolutionary possibilities for gene

trees on species trees. Defining the Tr-caterpillar-like family as a sequence of n-taxon trees constructed by replacing the r-taxon

subtree of n-taxon caterpillars by a specific r-taxon labeled topology Tr, we examine the number of coalescent histories for caterpillar-

like families with matching gene tree and species tree labeled topologies. For each Tr with size r � 8, we compute the number of

coalescent histories for n-taxon trees in the Tr-caterpillar-like family. Next, as n!1, we find that the limiting ratio of the numbers of

coalescent histories for the Tr family and caterpillars themselves is correlated with the number of labeled histories for Tr. The results

support a view that large numbers of coalescent histories occur when a tree has both a relatively balanced subtree and a high tree

depth, contributing to deeper understanding of the combinatorics of gene trees and species trees.

Index Terms—Combinatorial identities, labeled histories, labeled topologies, lineage sorting, phylogenetics

Ç

1 INTRODUCTION

A coalescent history is a list of edges of a species tree
topology on which the coalescences in a gene tree

topology take place. A pair consisting of a labeled gene
tree topology G and a labeled species tree topology S, both
with n leaves, specifies a set of possible coalescent histories,
each of which gives a distinct pairing of coalescences in G
with edges of S (see Fig. 1). Each pairing must satisfy a
series of rules that constrain the evolution of gene trees
conditional on species trees.

Coalescent histories arise in the study of the combina-
torics of gene trees and species trees. A key result is that
under the “multispecies coalescent” [1], a standard prob-
ability model for genealogical evolution, the probability
conditional on a species tree � with labeled topology S and
branch lengths � that the labeled topology G of a random
gene tree is g can be written as

IP�½G ¼ g� ¼
X

h2HðG;SÞ
IP�½G ¼ g; h�; ð1Þ

where HðG;SÞ denotes the set of coalescent histories for the
pair ðG;SÞ [2]. The use of coalescent histories separates the
evaluation of the marginal probability IP�½G ¼ g� into two
problems: the simpler computation of the joint probability
IP�½G ¼ g; h�, and the enumeration of the coalescent
histories in HðG;SÞ.

As a central component of the mathematical relationship
between gene trees and species trees, coalescent histories
have been important in a variety of contexts. Owing to
the structure of (1), the number of coalescent histories

influences the computational complexity of the evaluation of
the probability of a labeled gene tree topology [2], [3], [4].
The collection of joint probabilities IP�½G ¼ g; h�, obtained
using an enumeration of coalescent histories, assists in
numerical characterizations of features of gene tree prob-
ability distributions [5]. Coalescent histories have been
employed as part of proofs for properties of algorithms that
infer species trees from gene trees [6], [7]. They can describe
a state space for models that examine changes in gene tree
topologies along a genome [8], [9], [10]. Finally, they appear
in studies of hybridization detection, where they are defined
in relation to species networks rather than trees [11].

In introducing coalescent histories, Degnan and Salter [2]
obtained the set HðG;SÞ by exhaustively considering
elements of a larger superset that encoded a collection of
constraints weaker than those that characterize gene tree
evolution. Rosenberg [3] and Than et al. [4] then reported
faster enumeration algorithms by precisely identifying the
set of coalescent histories without requiring examination of
the larger superset. These studies have shown that the
number of coalescent histories associated with a labeled
gene tree topology G and labeled species tree topology S

can be counted using a recursive formula [3]. Investigation
of this recursion then provides a basis for analysis of the
mathematical properties of the number of coalescent
histories [3], [4], [12].

Of particular interest are families of pairs ðG;SÞ for
which the recursion is solvable exactly, so that the number
of coalescent histories can be studied nonrecursively. When
G ¼ S and both G and S have an n-taxon caterpillar
shape—a topology that possesses one internal node des-
cended from all other internal nodes (see Fig. 2A)—Degnan
[13] demonstrated that the number of coalescent histories is
the Catalan number Cn�1 ¼ 2n�2

n�1

� �
=n. Rosenberg [3] further

showed that the corresponding number of coalescent
histories for an n-taxon pseudocaterpillar—a topology with
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a four-taxon symmetric subtree whose root descends from
all internal nodes that are not part of the subtree (see
Fig. 2B)—is ð5n� 12ÞCn�1=ð4n� 6Þ. As n!1, the ratio
of the numbers of coalescent histories for n-taxon pseudo-
caterpillars and caterpillars approaches 5=4.

This result illustrates a principle that a large number of
coalescent histories can be produced when multiple
sequences of coalescences are permitted, and when many
branches exist on which those coalescences can occur [3],
[12]. A pseudocaterpillar has two possible sequences of
coalescences—either one pair of lineages forming a cherry
coalesces first, or the other does—whereas a caterpillar has
only one possible coalescence sequence. However, the
depth of an n-taxon caterpillar—the greatest distance from
a leaf to the root—exceeds that of an n-taxon pseudoca-
terpillar by 1. As n becomes large, the increase in the
number of coalescent histories owing to the extra coales-
cence sequence for a pseudocaterpillar more than compen-
sates for the decrease in coalescent histories caused by its
smaller depth compared to a caterpillar, and the pseudo-
caterpillar has more coalescent histories.

For a fixed n, this example highlights conflicting trends.
Larger numbers of coalescence sequences occur for certain
relatively balanced tree topologies described as maximally
probable by Degnan and Rosenberg [14]. At the same time,
balanced trees are not as deep as caterpillars and have
fewer branches on which a typical coalescence can occur.
As n increases, does the larger number of coalescence

sequences for such trees overcome the reduction in depth,
as it does for pseudocaterpillars?

Here, this question is posed for small caterpillar-like
families, with G ¼ S. A Tr-caterpillar-like family of trees
based on labeled r-taxon subtree Tr consists of a sequential
set of labeled trees of size n � r in which the r-taxon
caterpillar subtree of an n-taxon caterpillar is substituted by
Tr (see Fig. 3). The two simplest caterpillar-like families are
the family of caterpillars themselves and the pseudocater-
pillars, in which the r-taxon subtree is a four-taxon
symmetric subtree. All caterpillar-like families in which
the specified subtree Tr has size r � 8 are considered,
and for each family, both a general n-taxon formula for the
number of coalescent histories and the n!1 limit of
the number of coalescent histories in relation to the
Catalan number Cn�1, the number of coalescent histories
for the n-taxon caterpillar, are obtained.

2 PRELIMINARIES

The notation here generally follows Rosenberg [3] and
Rosenberg and Degnan [12]. To formally define a coalescent
history, following Than et al. [4] and Rosenberg and
Degnan [12], consider a binary rooted tree topology T with
n leaves labeled by set X, and with internal edges EðT Þ.
Numbers are assigned to the nodes and edges of T ,
identifying each node with its immediate ancestral edge
(see Fig. 1). These assignments are ordered according to a
postorder traversal, so that the number for a descendant
edge is smaller than the numbers for all its ancestral edges.
Define a partial order �T , by which two distinct edges e1

and e2 satisfy e1 <T e2 if and only if e2 is ancestral to e1 in T .
For each internal edge e in EðT Þ, including the edge
ancestral to the root, let cTe denote the cluster of T identified
with edge e. This cluster consists of the set of labels in X for
all leaves descended from e. The set of clusters in T ,
fcTe : e 2 EðT Þg, is denoted CT . Any pair of distinct clusters
is either disjoint or nested, such that one is a supercluster
and the other is a subcluster.

Definition 1. For a labeled gene tree topology G and a labeled
species tree topology S with the same set of leaf labels, a
coalescent history is a mapping � : CG ! EðSÞ such that
1) for each Y 2 CG, Y � cS�ðY Þ, and 2) for each e1; e2 2 EðGÞ,
if e1 <G e2, then �ðe1Þ �S �ðe2Þ.
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Fig. 2. Caterpillar and pseudocaterpillar labeled topologies with n ¼ 8
leaves. (A) A caterpillar tree. (B) A pseudocaterpillar tree.

Fig. 3. Tr-caterpillar-like families. T5 represents a choice of labeled
topology Tr with r ¼ 5 leaves, and Tn represents a caterpillar tree with its
five-taxon subtree replaced by T5.

Fig. 1. A coalescent history for a five-taxon labeled gene tree topology
and labeled species tree topology. Internal nodes of the species tree are
numbered according to a postorder traversal, and the edge above a
node is identified with the node. The species tree, represented by thick
lines, and the gene tree, represented by thin lines, both have labeled
topology (((A,B),C),(D,E)). Coalescences (A,B), ((A,B),C), (D,E), and
(((A,B),C),(D,E)) occur on edges 2, 4, 3, and 4, respectively. The
coalescent history shown is one of 10 possible for the given gene tree
and species tree labeled topologies.



The first condition specifies that in a coalescent history,

each cluster Y of the gene tree topology coalesces at the

most recent common ancestor (MRCA) of Y in the species

tree topology, or deeper than this MRCA. The second

condition specifies that cluster Y cannot find its MRCA on

an edge deeper than an edge on which one of its super-

clusters finds its MRCA.
An m-extended coalescent history for a labeled gene tree

topology and labeled species tree topology is a coalescent

history for the gene tree topology and species tree topology

when the edge above the root of the species tree topology is

subdivided into m components (see Fig. 4). Denote the

number of m-extended coalescent histories for a gene tree

topology G and a species tree topology S, when G ¼ S, by

AS;m. According to [3, Theorem 3.1], AS;m can be obtained

by a recursion:

AS;m ¼
Xmþ1

k¼2

ASL;kASR;k; ð2Þ

where for all m � 1, AS;m ¼ 1 if S has only one taxon. In the

recursion, SL and SR represent the “left” and “right”

subtrees of S. By convention, choose SL and SR such that

the number of leaves of SL is greater than or equal to that of

SR. The number of coalescent histories when the gene tree

and species tree both have labeled topology S, or AS;1, is

obtained as the m ¼ 1 case of the number of m-extended

coalescent histories.
If S is part of the same caterpillar-like family as SL,

then SR has one taxon, and ASR;k ¼ 1 for all k. Conse-

quently, for successive trees in the same caterpillar-like

family, (2) simplifies. Consider a Tr-caterpillar-like family,

where Tr is a labeled topology with r taxa. Denote the

members of this family by fTngn�r. For each n > r, the left

subtree of Tn is Tn�1, and the right subtree of Tn has only

one taxon. By (2),

ATn;m ¼
Xmþ1

k¼2

ATn�1;k: ð3Þ

The base case of this recursion is a condition that specifies
the values of ATr;m for all m. By iterating (2), Rosenberg [3]
obtained formulas for AS;m for all labeled topologies S with
n � 9 taxa. Thus, for each Tr with r � 9, the base case ATr;m

is reported in [3, Tables 1, 2, 3, and 4].
For the two simplest Tr-caterpillar-like families—cater-

pillars and pseudocaterpillars—Rosenberg [3] used (3) to
compute the number of m-extended coalescent histories for
n-taxon Tr-caterpillar-like trees. For caterpillars, r ¼ 2, and
for n � 2 and m � 1 [3, Theorem 3.4],

ATn;m ¼
m

ðn� 1Þ!
ðmþ 2n� 3Þ!
ðmþ n� 1Þ! : ð4Þ

In the pseudocaterpillar case, r ¼ 4, and for n � 5 and
m � 1 [3, Theorem 3.7],

ATn;m ¼
m

ðn� 1Þ!
ðmþ 2n� 5Þ!
ðmþ n� 1Þ! ½2m

2

þ ð5n� 11Þmþ ð5n2 � 22nþ 21Þ�:
ð5Þ

As in [3] and [12], without loss of generality, a single
labeling is taken here as representative of each unlabeled
species tree topology. Thus, it is possible to study the
caterpillar and pseudocaterpillar families by considering
an arbitrary labeling in each family, with each successive
taxon in the family providing an additional taxon label.
When the labeling is not needed, the arbitrarily labeled
species tree topology is abbreviated by its unlabeled
shape, and the labeled and unlabeled topologies are
considered interchangeably.

We examine properties of the number of coalescent
histories in a Tr-caterpillar-like family in relation to two
aspects of Tr. The first is its rank, which for a given
unlabeled binary tree shape is its position in an enumera-
tion of all unlabeled binary tree shapes with r taxa. In the
enumerated list of shapes in canonical form, for each
internal node, at least as many taxa appear in the left
subtree of the root as in the right subtree. Shapes with more
taxa in their left subtrees have lower rank than do shapes
with fewer taxa in their left subtrees. For two shapes with
equally many taxa in their left subtrees, the rank is smaller
for the shape whose left subtree has a lower rank; if the left
subtrees are identical, then the rank is smaller for the shape
whose right subtree has a lower rank. In each shape in
canonical form, when the two subtrees of a node have
equally many leaves but are not identical, the left subtree
has lower rank. The caterpillar shape has rank 1, and
balanced shapes tend to have high rank. This ranking
scheme is equivalent to that of Furnas [15, Section 2.5.1.1],
except that its canonical form places more taxa in the left
rather than the right subtree.

The second variable is the number of coalescence
sequences, or labeled histories, for labeled topology Tr, where
in distinct labeled histories, the coalescences in the labeled
topology are identical, but when the topology is viewed as
having been generated temporally, from the leaves toward
the root, the coalescences occur in a different order. The
number of labeled histories for Tr is
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Fig. 4. An m-extended species tree topology for which the edge
above the root is artificially divided into m edges. The numbers
denote labels for the edges. If the gene tree topology is
(((A,B),C),(D,E)), then an m-extended coalescent history involves a
coalescence of ((A,B),C) and (D,E) on an edge k in f4; . . . ;mþ 3g,
a coalescence of D and E on an edge in f3; . . . ; kg, a coalescence of
(A,B) and C on an edge ‘1 in f2; 4; . . . ; kg, and a coalescence of A
and B on an edge ‘2 in f1; 2; 4; . . . ; kg satisfying ‘2 � ‘1. If m ¼ 1, then
the edge above the root is not subdivided, and m-extended
coalescent histories are equivalent to coalescent histories.



NðTrÞ ¼
ðr� 1Þ!Qr

j¼3ðj� 1ÞdjðTrÞ
; ð6Þ

where djðTrÞ is the number of internal nodes of Tr from

which exactly j leaves descend [16], [17]. It can now be

stated that Tr is an r-maximally probable labeled topology if

NðTrÞ � NðT 0rÞ for all labeled topologies T 0r that also have

r taxa. Letting z ¼ 1þ blog2½ðr� 1Þ=3Þ�c, the r-maximally

probable topologies can be characterized recursively as

those topologies whose two subtrees immediately des-

cended from the root are 2z- and ðr� 2zÞ-maximally

probable [18], [19], [20]. For fixed r, a caterpillar Tr has

the fewest coalescence sequences, NðTrÞ ¼ 1, and labeled

topologies Tr with balanced shapes tend to have high NðTrÞ.

3 RESULTS

Generalizing the approach used previously for obtaining (4)

and (5), we establish a procedure for obtaining the number

of m-extended coalescent histories for Tr-caterpillar-like

trees with a given choice of Tr (see Section 3.1). We next

illustrate this procedure with a specific Tr (see Section 3.2).

By applying the procedure, we compute the number of m-

extended coalescent histories for all choices of Tr with r � 8

(see Section 3.3). For each Tr, by setting m ¼ 1, the number

of coalescent histories is obtained, and the ratio of this

quantity to the number of coalescent histories for an n-taxon

caterpillar is used to relate the number of coalescent

histories for the Tr-caterpillar-like family to that of the

caterpillar family.

3.1 The General Procedure

Consider some Tr with r � 2 taxa. If r ¼ 2, then Tr is the first

member of the caterpillar family (it is convenient to begin at

r ¼ 2 rather than at the trivial case of r ¼ 1). Otherwise, if the

right subtree of Tr has exactly one taxon, then Tr and Tr�1 are

in the same family, and the Tr-caterpillar-like family is a

subset of the Tr�1-caterpillar-like family. We can then

consider the Tr�1-caterpillar-like family in place of the

family that starts with Tr. Once the minimal element of

a Tr-caterpillar-like family is identified, we perform the

following series of steps.

1. ATr;m is obtained by iteration of (2). For r � 9, ATr;m

has already been reported in [3, Tables 1, 2, 3, and 4].
2. Equation (3) is iterated approximately 2r times to

obtain formulas for ATrþ1;m; ATrþ2;m; . . . . The number
of iterations is chosen to be sufficient to identify a
general pattern in the formulas.

3. Using the formulas obtained in Step 2, a pattern is
suggested for the general formula for ATn;m, where
n � n0 for some n0 � r.

4. Induction is used to prove that the pattern in Step 3
is correct.

5. In the formula for ATn;m, m is set to 1 to obtain the
number of coalescent histories ATn;1.

6. To obtain the limiting ratio of the numbers of
coalescent histories for the Tr-caterpillar-like family
and the caterpillar family itself, limn!1ðATn;1=Cn�1Þ
is computed.

Two of the steps are nontrivial. First, in Step 3, a pattern

must be suggested for ATn;m. For each of the choices of Tr
that I have considered (all Tr with r � 8), I have found by

application of Step 2 that there exists n0 � r such that for all

n � n0, the formula for ATn;m can be written

ATn;m ¼
m

ðn� 1Þ!
ðmþ 2n� cÞ!
ðmþ n� 1Þ!

Xc�3

i¼0

ac�3�iðnÞmi: ð7Þ

Here, c � n0 þ 1 is an integer and aiðnÞ represents a

polynomial of degree i in n. We will see for a particular Tr
in the next section how such a formula can be proposed, with

c and the aiðnÞ specified. Note that because a polynomial

aiðnÞ of degree c� 3� i is uniquely determined by c� 2� i
points ðn1; aiðn1ÞÞ; ðn2; aiðn2ÞÞ; . . . ; ðnc�2�i; aiðnc�2�iÞÞ, to

propose a general pattern for ac�3�i, we require ATn;m to be

computed for each n from n0 to n0 þ c� 3� i. For the

polynomial that requires the largest n for proposing this

pattern, namely the i ¼ 0 case, the largest n required is

n0 þ c� 3. For each Tr with r � 8, I have observed that

n0 þ c� 3 � 3r, so that in all cases I have examined, at most

2r iterations are sufficient in Step 2 to propose the general

formula in Step 3—and often, the number of iterations

required is closer to r than to 2r.
In Step 4, the proposed formula forATn;m must be verified

by induction. By construction, c and the aiðnÞ are chosen

such that the proposal is correct in the base case of n ¼ n0. It

only remains to show that if the formula is correct for a

given n, then it is also correct for nþ 1. Using (3), we must

show that for ATn;m according to (7), ATnþ1;m ¼
Pmþ1

k¼2 ATn;k.

We now demonstrate that the sum
Pmþ1

k¼2 ATn;k can be

simplified into a closed form, reducing the problem to

verifying the algebraic equivalence of ATnþ1;m according to

(7) and the closed form for the sum.
We begin from (7) and denote by ai;j the coefficient of nj

in aiðnÞ:

Xmþ1

k¼2

ATn;k ¼
Xmþ1

k¼2

ðkþ 2n� cÞ!
ðn� 1Þ!ðkþ n� 1Þ!

�
Xc�3

i¼0

Xc�3�i

j¼0

ac�3�i;jk
iþ1nj:

ð8Þ

Recalling that c � n0 þ 1 � nþ 1, so that n� cþ 1 � 0, we

multiply the right-hand side by ðn� cþ 1Þ!=ðn� cþ 1Þ!
to obtain

Xmþ1

k¼2

ATn;k ¼
ðn� cþ 1Þ!
ðn� 1Þ!

Xmþ1

k¼2

kþ 2n� c
n� cþ 1

� �

�
Xc�3

i¼0

Xc�3�i

j¼0

ac�3�i;jk
iþ1nj:

ð9Þ

By repeated application of polynomial long division,Pc�3
i¼0

Pc�3�i
j¼0 ac�3�i;jk

iþ1nj, treated as a polynomial of

degree c� 2 in k, can be written in terms of ðkþ 2n �
cþ 1Þðkþ 2n� cþ 2Þ � � � ðkþ 2n� 2Þ, ðkþ 2n� cþ 1Þ ðk þ
2n � c þ 2Þ � � � ðkþ 2n� 3Þ; . . . ; ðkþ 2n� cþ 1Þ ðkþ 2n �
cþ 2Þ, kþ 2n� cþ 1. In other words, we can write

1256 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2013



Xc�3

i¼0

Xc�3�i

j¼0

ac�3�i;jk
iþ1nj ¼

Xc�2

i¼0

ðkþ 2n� cþ iÞ!
ðkþ 2n� cÞ! biðnÞ; ð10Þ

where biðnÞ is a polynomial in n of degree at most c� 2 that
is computed through the long division process. Inserting
(10) into (9), we then have

Xmþ1

k¼2

ATn;k ¼
Xc�2

i¼0

giðnÞ
Xmþ1

k¼2

kþ 2n� cþ i
n� cþ iþ 1

� �
; ð11Þ

where giðnÞ ¼ ðn� cþ iþ 1Þ! biðnÞ=ðn� 1Þ! is a rational
function of n. The inner sum can be evaluated by a
standard identity, reproduced as [3, Lemma 3.6], by which
for m;n1; n2 � 0,

Xm
k¼0

kþ n1

n2

� �
¼ mþ n1 þ 1

n2 þ 1

� �
� n1

n2 þ 1

� �
: ð12Þ

Using this identity,

Xmþ1

k¼0

kþ 2n� cþ i
n� cþ iþ 1

� �
¼ mþ 2n� cþ iþ 2

n� cþ iþ 2

� �

� 2n� cþ i
n� cþ iþ 2

� �
:

ð13Þ

Subtracting the k ¼ 0 and k ¼ 1 terms from both sides and
applying the identity n

k

� �
þ n

kþ1

� �
¼ nþ1

kþ1

� �
twice, we obtain

Xmþ1

k¼2

kþ 2n� cþ i
n� cþ iþ 1

� �
¼ mþ 2n� cþ iþ 2

n� cþ iþ 2

� �

� 2n� cþ iþ 2

n� cþ iþ 2

� �
:

ð14Þ

Application of this formula enables us to eliminate the inner
sum in (11) so that

Xmþ1

k¼2

ATn;k ¼
Xc�2

i¼0

giðnÞ
�
mþ 2n� cþ iþ 2

n� cþ iþ 2

� �

� 2n� cþ iþ 2

n� cþ iþ 2

� �	
:

ð15Þ

The index k has been eliminated from the sum, and it only

remains to show that the right-hand side of (15) is

equivalent to ATnþ1;k computed according to (7). This last

step requires no summations, and after inserting the

quantities obtained for giðnÞ, it is straightforward to

complete algebraically.

3.2 Example: A Five-Taxon Case

We illustrate the approach using the T5-caterpillar family in

which the number of taxa in the left subtree of T5 is 3 and

the number in the right subtree is . For Step 1, the

number of m-extended coalescent histories, as reported in

[3, Table 1], is

AT5;m ¼
1

8
mðm3 þ 10m2 þ 31mþ 38Þ: ð16Þ

For Step 2, by iterating (3), we obtain ATn;m for n ¼
6,7,8,9,10, as reported in Table 1.

The formulas for ATn;m for n ¼ 6; 7; 8; 9; 10 are sufficient

to propose the general pattern in Step 3 (n0 ¼ 6, c ¼ 7, and

n0 þ c� 3 ¼ 10). We see that each of these five formulas is a

product of three components: a term m=ðn� 1Þ!, a term

ðmþ 2n� 7Þ!=ðmþ n� 1Þ!, and a polynomial of degree 4 in

m. In this polynomial, we observe that the m4 term has a

constant coefficient of 3, the m3 term is linearly increasing in

n, the m2 term is quadratically increasing in n, and so on.

For each value of i from 0 to 4, 5� i values of n are required

for identifying the unique polynomial of degree 4� i in n

that passes through the coefficients of mi for n ¼ 6;

7; . . . ; 6þ ð4� iÞ. For each of the terms mi, we determine

this polynomial in n, proposing a general formula for ATn;m:

ATn;m ¼
m

ðn� 1Þ!
ðmþ 2n� 7Þ!
ðmþ n� 1Þ! ½3m

4 þ ð18n� 48Þm3

þ ð41n2 � 219nþ 283Þm2 þ ð46n3 � 369n2

þ 947n� 774Þmþ ð23n4 � 246n3 þ 947n2

� 1548nþ 896Þ�:

ð17Þ

That c ¼ 7 is apparent from the formula.
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TABLE 1
Number of m-Extended Coalescent Histories for the T5-Caterpillar-Like Family, Where T5

Is a Five-Taxon Tree with Three Taxa on One Side of the Root and Two on the Other



For Step 4, to prove that the formula is correct, we must

verify the proposed formula for ATn;m by induction. The

polynomial that plays the role of
Pc�3

i¼0

Pc�3�i
j¼0 ac�3�i;jk

iþ1nj

is 3k5 þ ð18n� 48Þk4 þ ð41n2 � 219n þ 283Þk3 þ ð46n3 �
369n2 þ 947n� 774Þk2 þ ð23n4 � 246n3 þ 947n2 � 1548n þ
896Þk. Applying polynomial long division, this quantity

can be rewritten as

1

ðkþ 2n� 7Þ! ½3ðkþ 2n� 2Þ!� 12ðn� 1Þðkþ 2n� 3Þ!

þ 17ðn� 1Þðn� 2Þðkþ 2n� 4Þ!
� 8ðn� 1Þðn� 2Þðn� 3Þðkþ 2n� 5Þ!
� 5ðn� 1Þðn� 2Þðn� 3Þðn� 4Þðkþ 2n� 6Þ!
þ 2ðn� 1Þðn� 2Þðn� 3Þðn� 4Þðn� 5Þðkþ 2n� 7Þ!�:

We can then write the proposed formula for ATn;k as a sum

3
kþ 2n� 2

n� 1

� �
� 12

kþ 2n� 3

n� 2

� �
þ 17

kþ 2n� 4

n� 3

� �

� 8
kþ 2n� 5

n� 4

� �
� 5

kþ 2n� 6

n� 5

� �
þ 2

kþ 2n� 7

n� 6

� �
:

Using (14) to sum ATn;k from k ¼ 2 to mþ 1, we have

Xmþ1

k¼2

ATn;k ¼ 3
mþ 2n

n

� �
� 3

2n

n

� �

� 12
mþ 2n� 1

n� 1

� �
þ 12

2n� 1

n� 1

� �

þ 17
mþ 2n� 2

n� 2

� �
� 17

2n� 2

n� 2

� �

� 8
mþ 2n� 3

n� 3

� �
þ 8

2n� 3

n� 3

� �

� 5
mþ 2n� 4

n� 4

� �
þ 5

2n� 4

n� 4

� �

þ 2
mþ 2n� 5

n� 5

� �
� 2

2n� 5

n� 5

� �
:

It is then a matter of algebra to verify that this sum,

equal to ATnþ1;m by (3), is equal to the formula obtained

from (17) by replacing n with nþ 1. Thus, the induction

is complete, and (17) is established as the formula

for the number of m-extended coalescent histories for

the T5-caterpillar-like family. Completing Steps 5 and 6 is

then straightforward, producing

ATn;1 ¼
23n2 � 131nþ 180

4ð2n� 3Þð2n� 5Þ Cn�1; ð18Þ

and

lim
n!1

ATn;1

Cn�1
¼ 23

16
: ð19Þ

3.3 All Choices of TrTr with r � 8r � 8 Taxa

For each Tr with r � 8, I have employed the approach used

in the five-taxon example together with the Tr-caterpillar-

like family to propose a corresponding general formula for

ATn;m. As computer algebra can often be employed to verify

binomial identities [21] and the primary interest here is in

comparing properties of the formulas for ATn;m rather than
in the proofs, I have verified by computer algebra rather
than induction that ATnþ1;m ¼

Pmþ1
k¼2 ATn;k for each choice of

Tr with r � 8.
For r � 7, the formula determined in Step 3 for the number

of m-extended coalescent histories appears in Table 2, and
the number of coalescent histories and its limit appear in
Table 3. As the formula for the number of m-extended
coalescent histories is unwieldy for each Tr with r ¼ 8 and
our main interest is in m ¼ 1, the formula for arbitrary m is
omitted, and only the formula for the number of coalescent
histories and the asymptotic limit are shown. For each Tr
with r ¼ 8, the number of coalescence sequences NðT8Þ for
the labeled topology T8 is also provided. In each case,
n0 � 12.

Examining the limits limn!1ðATn;1=Cn�1Þ, we can see that
for each r from 4 to 8, the largest value occurs when the
topology is r-maximally probable. For r ¼ 8, Fig. 5 plots the
limit as a function of the rank for topologies Tr. When Tr is
not the minimal member of a caterpillar-like family, the
limit for the appropriate minimal member with a lesser
value of r is plotted. As each Tr with smaller r has some T8

in its family, the plot can be viewed as illustrating the limits
limn!1ðATn;1=Cn�1Þ for all Tr with r � 8. For a given r, it is
in this sense of extending families whose minimal member
has size less than r to r that the largest value for the limit
occurs when the topology is r-maximally probable.

Considering all 23 choices of Tr with r ¼ 8, the limit is
correlated with the rank, with correlation coefficient 0.846.
It has local maxima at ranks 5 and 11, corresponding to the
Tr-caterpillar-like trees in the families of the r-maximally
probable topologies with r ¼ 6 and r ¼ 7. Additional local
maxima occur at rank 9, where the left subtree has a five-
maximally probable topology as one of its subtrees, and
ranks 16 and 20, where the left subtrees are six- and five-
maximally probable, respectively.

The limit limn!1ðATn;1=Cn�1Þ is even more strongly
correlated with the number of coalescence sequences
NðT8Þ, with correlation coefficient 0.967. To transform
NðT8Þ, which ranges from 1 to 80, to a comparable scale
to limn!1ðATn;1=Cn�1Þ, which ranges from 1 to 	5:39, Fig. 5
examines 1þ lnNðT8Þ for each T8. This quantity and
limn!1ðATn;1=Cn�1Þ are identical at the left endpoint of the
plot (rank 1) and nearly identical at the right endpoint
(rank 23), with 1þ lnNðT8Þ exceeding limn!1ðATn;1=Cn�1Þ
by a mean of 0.834 across all ranks. The two quantities have
the same pattern of increases and decreases, so that if
limn!1ðATn;1=Cn�1Þ increases from rank i to rank iþ 1, then
NðT8Þ also increases, and if limn!1ðATn;1=Cn�1Þ decreases
from rank i to rank iþ 1, so does NðT8Þ.

3.4 Corollaries

Rosenberg [3] obtained a lower bound on the ratio of the
largest and smallest numbers of coalescent histories for
matching gene tree and species tree labeled topologies with
n leaves. That lower bound relied on the use of the n-taxon
pseudocaterpillar as the tree with the largest known
number of coalescent histories. As we have now established
that for sufficiently large n, the n-taxon T8-caterpillar-like
tree using the eight-taxon symmetric tree as T8 has a
larger number of coalescent histories, we can replace the
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ð5n� 12Þ=ð4n� 6Þ in the formula in [3, Theorem 3.18] with
the corresponding term from the formula for the eight-
taxon symmetric tree (see Table 3), or

1;381n4 � 30;042n3 þ 244;979n2 � 888;318nþ 1;209;600

16ð2n� 3Þð2n� 5Þð2n� 7Þð2n� 9Þ :

For large n, this result increases the upper bound in the

ratio by a factor of ð1;381=256Þ=ð5=4Þ ¼ 1;381=320 
 4:32.
Because AS;1 ¼ ASL;2ASR;2 by (2), it is straightforward to

calculate the number of coalescent histories for any tree S

whose subtrees SL and SR both have a form for which the

general formula for the number of m-extended coalescent
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TABLE 2
Number of m-Extended Coalescent Histories for Tr-Caterpillar-Like Families with r � 7



histories is known. Rosenberg [3] examined bicaterpillars,

shapes in which the subtrees on both sides of the root are

caterpillars, finding that for an n-taxon bicaterpillar with

caterpillar subtrees of sizes ‘ and n� ‘, AS;1 ¼ C‘Cn�‘.
Generalizing this result, if for an n-taxon topology S, SL is

the ‘-taxon topology in the caterpillar-like family starting at

Tr and SR is the ðn� ‘Þ-taxon topology in the caterpillar-like

family starting at T 0r0 , then by (2),

AS;1 ¼ AT‘;2AT 0
n�‘;2
¼ AT‘þ1;1

AT 0
n�‘þ1

;1: ð20Þ

Thus, for anyS,AS;1 can be viewed in terms of the caterpillar-
like families to which its left and right subtrees belong. Note

that it immediately follows that if S is the minimal element in
a (noncaterpillar) caterpillar-like-family—that is, if the two
subtrees of the root of S each have two or more taxa—then
AS;1 is not a prime number, as it is a product of the numbers
of coalescent histories for two trees of size 3 or more.

4 DISCUSSION

We have evaluated the number of coalescent histories for
cases in which the gene tree and species tree have the same
labeled topology, belonging to a Tr-caterpillar-like family in
which the subtree Tr has r ¼ 8 or fewer leaves. For each Tr,
we have obtained the result by following a general
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TABLE 3
Number of Coalescent Histories for Tr-Caterpillar-Like Families with r � 8



procedure that extends a method previously used to obtain
the number of coalescent histories in the caterpillar and
pseudocaterpillar cases. This general procedure enables a
formula to be proposed for the number of m-extended
coalescent histories for Tr-caterpillar-like families, and then
proven. While it has not been demonstrated that for any Tr,
the procedure necessarily produces a general formula, in
each of the small-r cases that have been examined, a
formula that accurately reproduces values obtained accord-
ing to the recursive equation (3) has been reported.

The numerical results support a previous claim that the
number of coalescent histories for matching gene tree and
species tree labeled topologies is large when the topology
has both a large and relatively symmetric subtree and a
high depth. The subtree generates a large number of
sequences by which coalescences on the species tree can
produce the gene tree, and the high tree depth provides a
large number of branches on which those coalescences can
occur. Among all T8-caterpillar-like families, the largest
number of coalescent histories occurs when T8 is the fully
symmetric eight-taxon subtree, approaching a limit of
1;381=256 in relation to the number of coalescent histories
for the n-taxon caterpillar. The results enable an answer to
the question posed in Section 1, illustrating that the
increased number of coalescence sequences when Tr is
symmetric does compensate for the smaller depth of these
trees: like the pseudocaterpillars, other Tr-caterpillar-like
families have more coalescent histories than do caterpillars.
The limiting number of coalescent histories at r ¼ 8
generally increases with the rank of Tr, but an even more
remarkable correlation is observed with the number of
coalescence sequences NðTrÞ. This relationship suggests
that features of the number of coalescence sequences for a
labeled topology, a quantity that has been studied for some
time [16], [17], [18], [19], [20], [22], can provide an informal
guide to properties of the limiting number of coalescent
histories for caterpillar-like families.

It is important to clarify what has and what has not been
shown. While each small Tr-caterpillar-like family studied
led to a formula for the number of m-extended coalescent

histories in the form given in (7), it has not been
demonstrated that all Tr-caterpillar-like families have such
a formula. It has, however, been shown, that if a formula
can be proposed in the form presented in (7), then a
general strategy exists for proving the formula by induc-
tion. This strategy of proof has been applied in full for one
example case beyond the caterpillar and pseudocaterpillar
cases that have been previously examined, and computer
algebra has been used to verify the formulas in the
remaining 20 cases.

The results provide a contribution to the study of gene
trees and species trees, adding to the set of shapes for which
detailed information is available about the number of
coalescent histories. They will assist in relating the complex-
ity of algorithms for computing gene tree probabilities
based on coalescent histories to those that use a recursive
evaluation based on a different class of objects, the
“ancestral configurations” of Wu [23]. To more completely
understand the properties of coalescent histories with
n taxa, it will be of interest to extend beyond caterpillar-
like families to obtain further results on the number of
coalescent histories for trees of arbitrary shape.
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