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Abstract
The measurement of diversity is a central component of studies in ecology and
evolution, with broad uses spanning multiple biological scales. Studies of diversity
conducted in population genetics and ecology make use of analogous concepts and
even employ equivalent mathematical formulas. For the Shannon entropy statistic,
recent developments in the mathematics of diversity in population genetics have pro-
duced mathematical constraints on the statistic in relation to the frequency of the most
frequent allele. These results have characterized the ways in which standard measures
depend on the highest-frequency class in a discrete probability distribution. Here,
we extend mathematical constraints on the Shannon entropy in relation to entries in
specific positions in a vector of species abundances, listed in decreasing order. We
illustrate the new mathematical results using abundance data from examples involv-
ing coral reefs and sponge microbiomes. The new results update the understanding of
the relationship of a standard measure to the abundance vectors fromwhich it is calcu-
lated, potentially contributing to improved interpretation of numerical measurements
of biodiversity.

Keywords Biodiversity · Diversity indices · Majorization · Shannon entropy ·
Species richness

Mathematics Subject Classification 92D40 · 94A17 · 92D10

1 Introduction

The quantitative measurement of features of biological diversity is central to ecology.
Over decades of analysis, many statistics have been proposed as diversity measures,
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and their mathematical properties have been studied (Pielou 1975; Magurran 2004;
Leinster 2021).

Among the enduring measures of diversity in ecology is the Shannon entropy,
first borrowed in the 1950s from the formula’s origins with Shannon’s information
theory (Shannon 1948), and variously known as the Shannon diversity, Shannon
index, Shannon-Weaver index, or Shannon-Wiener index (Spellerberg and Fedor
2003; Rodríguez et al. 2016; Sherwin and Fornells 2019). For a frequency vector
p = (p1, p2, . . . , pn), the Shannon entropy is

H(p) = −
n∑

i=1

pi log pi =
n∑

i=1

h(pi ), (1)

where each pi is a non-negative quantity that, in biodiversity measurement, repre-
sents the relative abundance of species i in a community. The pi sum to 1 and
h(pi ) = −pi log pi . We use the base-e logarithm and adopt the convention of defining
−0 log 0 = 0 (Leinster 2021, pp. 39-40).

Shannon entropy has a number of convenient mathematical properties as a diversity
measure for the species in a community. Considering all possible frequency vectors, it
reaches its minimum of 0 when the vector has only one non-zero entry with frequency
1. Its maximum of log n is reached when the distribution of probabilities across n
categories is uniform; the upper bound therefore increases with the vector length
n (Leinster 2021, pp. 41-42). In the language of biodiversity, Shannon entropy is large
when a community contains many equally common species, and it is minimal when
the community has only one species. The Shannon entropy can be linked to broader
families of statistics, such as the Rényi entropies (Rényi 1961), for which it can be
regarded as a limiting case, and the Hill numbers (Hill 1973; Jost 2006; Leinster and
Cobbold 2012; Chao et al. 2014), for which its exponential eH is a special case.

With its long-standing role as a popular diversity statistic, Shannon entropy is
ubiquitous in biodiversity studies (Pielou 1975; Magurran 2004; Sherwin and Fornells
2019; Cushman 2021). Hence, new mathematical results concerning its behavior have
the potential to assist in understanding features of numerous ecological communities,
both in ongoing studies and in previously reported analyses that have relied upon this
index.

A general aspect of diversitymeasurement is that a diversity statistic computed from
frequency vectors, each representing the relative abundances of species in a commu-
nity, can reach similar values for quite different species relative abundances. Consider
two communities with different values for the Shannon entropy. Is the difference
driven by abundance differences in one or two dominant species, or by differences in
many less common species? Consider also two communities that have similar Shannon
entropy values and whose abundances are similar only for the few dominant species
that have the strongest influence on the numerical value of the statistic. Is the similarity
meaningful in light of abundance differences among the rarer species?

We seek to provide insight on such questions by exploring the mathematical con-
straints, or bounds, imposed on Shannon entropy by the i th-most abundant species.
That is, if we fix the frequency of the i th-most abundant species in a community but
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leave other frequencies free to vary, what are the largest and smallest possible values
of Shannon entropy?

Working with the case of i = 1 in a population genetics context mathematically
identical to that used in ecological diversity computations, Aw and Rosenberg (2018)
noted that if the frequency p1 of the largest value in a frequency vector is fixed, then
Shannon entropy is bounded above both by log n and by a tighter bound, a certain
function of p1. Further, the value of p1 produces a certain lower bound on Shannon
entropy. Thus, with p1 specified, Shannon entropy is constrained more tightly than the
interval [0, log n]. If the Shannon entropy is computed in a community that possesses
a single dominant species, then the placement of the Shannon entropy with respect to
this tighter interval conditional on the abundance of the dominant species is perhaps a
more meaningful value than its placement with respect to [0, log n]. To better inform
comparisons of biodiversitymeasurement among communities, the boundswe provide
on Shannon entropy in relation to the frequency of the i th-most abundant species
clarify the dependence of Shannon entropy on the relative abundances of the various
species—not only the most abundant one.

2 Bounds on Shannon entropy: themost abundant species

Similar values of Shannon entropy can be generated by quite different species com-
position vectors. For example, consider two communities, each with ten species in
total. Community A has two moderately common species and eight rare species: one
species at abundance 0.5, another at abundance 0.492, and eight rare species at abun-
dance 0.001 each. Community B is dominated by a single species at abundance 0.85,
with the remaining nine species each having abundance 1

60 . These communities both
have Shannon entropy H ≈ 0.75 despite having quite different composition. One way
to contextualize the Shannon entropies of these two communities is to look at them in
light of the upper and lower bounds on Shannon entropy conditional on the abundance
of the most abundant species and the total number of species. This approach takes
into account differing most-abundant-species abundances, allowing a researcher to
understand if the values of Shannon entropy are chiefly a byproduct of the abundance
of a single dominant species.

Aw and Rosenberg (2018) established the bounds on Shannon entropy as a function
of the greatest abundance (Corollary 3.16). Without loss of generality, we re-order the
species relative abundance vector p such that p1 � p2 � . . . � pn . The distribution
of abundance across the entries of the vector is constrained by two requirements: the
entries must sum to 1, and pi � p j if i < j .

Proposition 1 For a fixed value of the frequency p1 of the most abundant species in a
community with n species, the vector maximizing H is p∗, where

p∗ =
(
p1,

1 − p1
n − 1

,
1 − p1
n − 1

, . . . ,
1 − p1
n − 1

)
.
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The upper bound on H is

H(p∗) = Hmax(p1, n) = h(p1) + (n − 1) h
(1 − p1
n − 1

)
. (2)

Proposition 2 For a fixed value of the frequency p1 of the most abundant species in a
community with n species, the vector minimizing H is p∗∗, where

p∗∗ =
(
p1, p1, . . . , p1, 1 −

(⌈ 1

p1

⌉
− 1

)
p1, 0, . . . , 0

)
,

with the first �1/p1� − 1 entries equal to p1. The lower bound on H is

H(p∗∗) = Hmin(p1, n) =
(⌈ 1

p1

⌉
− 1

)
h(p1) + h

(
1 −

(⌈ 1

p1

⌉
− 1

)
p1

)
. (3)

In general, Shannon entropy is greatest when the distribution of species is as “even”
as possible, reaching its maximum log n across all n-species abundance distributions
if the n species each have abundance 1

n . In Proposition 1, if p1 is fixed, then Shannon
entropy is maximized when the remaining abundance, 1− p1, is spread evenly across
all n − 1 remaining species.

On the other hand, Shannon entropy is smallest when the distribution of species is
as “uneven” as possible. Across all n-species abundance distributions, this minimum
is obtained if a single species has abundance 1 and all other species have abundance
0. In Proposition 2, for fixed p1, Shannon entropy is minimized when the remaining
abundance, 1 − p1, is distributed across as few species as possible. If p1 � 1

2 , then
this minimizing vector is simply (p1, 1 − p1, 0, . . . , 0). If, instead, p1 < 1

2 , then the
condition p1 � p2 � . . . � pn requires that none of the subsequent vector entries
exceed p1. The largest abundancewe can assign to any one species is p1, andwe repeat
this assignment as many times as possible before assigning all remaining abundance
to (at most) one last species.

The upper and lower bounds on Shannon entropy are plotted as a function of p1
for varying values of n, the number of species, in Fig. 1. Both bounds decrease with
increasing p1; the lower bound has a piecewise structure, reflecting the fact that fewer
species have non-zero abundance as p1 increases. Across panels with increasing n,
the upper bound increases; the lower bound for a given p1 remains the same, except
that its domain grows with n.

To compare Communities A and B, we direct our attention to the vertical cross
sections at p1 = 0.5 and p1 = 0.85 of Fig. 1G, which shows the bounds on Shannon
entropy conditional on p1 for communities with n = 10 species. The large space
between the upper and lower boundswhen p1 = 0.5 suggests that the value of Shannon
entropy for Community A is not tightly constrained by its most abundant species. On
the other hand, Community B, with a single dominant species, falls towards the right-
hand side of Fig. 1G, with p1 = 0.85. In general, large values of p1 tightly constrain
Shannon entropy; for each n � 3 in Fig. 1, the space between the upper and lower
bounds at p1 = 0.5 is larger than at p1 = 0.85. Thus, because Community B has
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Fig. 1 Upper and lower bounds on Shannon entropy as functions of the abundance of the most abundant
species, p1, for varying species richness, n. A n = 2. B n = 3. C n = 4. D n = 5. E n = 6. F n = 7.
G n = 10. H n = 100. I n = 10,000. For fixed n, H is maximized when p = ( 1n , 1

n , . . . , 1
n ), with

H( 1n , 1
n , . . . , 1

n ) = log n. As the number of entries, n, increases, this upper bound, log n, increases, so the
range of the y-axis increases. The bounds are taken from Propositions 1 and 2. Note that panels H and I
have y-axis scales that differ from those of the other panels

one dominant species, its Shannon entropy is almost exclusively determined by the
relative abundance of that species, and the abundances of rarer species could change
without substantially influencing the Shannon entropy. This effect—that the Shannon
entropy is constrained by a dominant species—is most pronounced with small species
richness n.

3 Bounds on Shannon entropy: the ith-most abundant species

Now consider a community with multiple dominant species, rather than just one. How
do the values of the second, third, or, in general, i th-most abundant species constrain
Shannon entropy?

We now present our new bounds on Shannon entropy as a function of the i th-
greatest species abundance. We saw in the i = 1 case that entropy is maximized when
abundances are as evenly distributed across the entries of the vector as possible. We
construct the maximizing vector for i � 2 similarly, setting every species abundance
before or after the i th equal to pi ; whether entries before or after the i th one equal pi
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Fig. 2 Upper and lower bounds on Shannon entropy from Theorems 3 and 4 as functions of the abundance
of the second-most abundant species, p2, for fixed n. A n = 2. B n = 3. C n = 4. D n = 5. E n = 6.
F n = 7. G n = 10. H n = 100. I n = 10,000. For fixed n, H is maximized when p = ( 1n , 1

n , . . . , 1
n ),

giving H( 1n , 1
n , . . . , 1

n ) = log n. Thus, the point on every plot with the highest Shannon entropy lies at

( 1n , log n). Because p2 is the second-most abundant species, it cannot exceed 1
2 . Note that panels H and I

have y-axis scales that differ from those of the other panels

depends on the length of the vector and the value of pi , since the vector’s sum cannot
be greater than 1. All remaining vector entries are set equal to each other.

In the i = 1 case, we observed that entropy is minimized when as few species as
possible possess non-zero abundances. We thus construct the minimizing vector by
setting the abundances of the second through the i th species equal to pi , placing all
remaining weight in the first species.

The bounds are proven in Appendix A.

Theorem 3 For a fixed value pi of the frequency of the i th-most abundant species in
a community with n species, with i � 2, the vector maximizing H is p′, where

p′ =
⎧
⎨

⎩

(
pi , pi , . . . , pi ,

1−i pi
n−i ,

1−i pi
n−i , . . . ,

1−i pi
n−i

)
, pi � 1

n ,(
1−(n−i+1)pi

i−1 ,
1−(n−i+1)pi

i−1 , . . . ,
1−(n−i+1)pi

i−1 , pi , pi , . . . , pi
)

, pi < 1
n .

In the pi � 1
n case, i entries equal pi . In the pi < 1

n case, i − 1 entries equal
1−(n−i+1)pi

i−1 .
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The upper bound on H is

H(p′) = Hmax(pi , n) =
⎧
⎨

⎩
ih(pi ) + (n − i) h

(
1−i pi
n−i

)
, pi � 1

n ,

(i − 1) h
(
1−(n−i+1)pi

i−1

)
+ (n − i + 1) h(pi ), pi < 1

n .

(4)

Theorem 4 For a fixed value pi of the frequency of the i th-most abundant species in
a community with n species, with i � 2, the vector minimizing H is p′′, where

p′′ = (
1 − (i − 1)pi , pi , pi , . . . , pi , 0, 0, . . . , 0

)
,

and i − 1 entries equal pi . The lower bound on H is

H(p′′) = Hmin(pi , n) = h
(
1 − (i − 1)pi

) + (i − 1) h(pi ). (5)

We explore these bounds visually in Figs. 2 and 3. Figure2 gives the upper and lower
bounds on Shannon entropy as a function of p2, the abundance of the second-most
abundant species, for varying vector lengths n. As in Fig. 1, the upper bound increases
with increasing n, and the lower bound remains the same irrespective of the value of
n. As p2 increases toward its maximum of 1

2 , the Shannon entropy becomes tightly
constrained, with the upper and lower bounds approaching the same point ( 12 , log 2).

We examine the bounds on Shannon entropy conditional on the i th-largest entry for
vectors of length n = 2, 3, 4, and 5 in Fig. 3. For all four panels, the shapes outlined
by the bounds for fixed p1 are identical to the corresponding panels in Fig. 1, and the
shapes outlined by the bounds for fixed p2 match corresponding panels in Fig. 2. For
all i , as n increases from n = i , the upper bound on H with respect to pi increases;
the lower bound remains the same.

Examining the regions between the upper and lower bounds in the (pi , H)-plane
for distinct values of i with fixed n, we observe a number of patterns. For n = 2, the
regions overlap only trivially, at the point ( 12 , log 2) in Fig. 3A (Proposition B.1). For
n = 3, the overlap is also trivial, occurring along a curve; for n = 3, the upper bound
on Shannon entropy given p2 overlaps exactly with the lower bound on Shannon
entropy conditional on p3 from 0 to 1

3 , then with the lower bound given p1 from 1
3 to

1
2 (Fig. 3B, upper bound of the turquoise region; Proposition B.2). For fixed n � 4,
regions for differing i begin to have nontrivial overlap. For 2 � i � n − 2, the region
between the bounds conditional on pi overlaps with the region between the bounds
conditional on p1 (Fig. 3D, the turquoise and yellow regions overlap the navy region;
Proposition B.6). The upper bound conditional on pn−1 exactly overlaps with the
lower bound conditional on p1 for a small interval from 1

n to 1
n−1 (Fig. 3D, the orange

upper bound and the navy lower bound overlap between 1
5 and 1

4 ; Proposition B.7).
On the left-hand side of each panel, we can see that when pi = 0, the intervals
of possible Shannon entropy values for each pair of indices i1, i2 � 2 overlap for
n � 3; the overlap has nonzero length at pi = 0, except that for the pair of values
(i1, i2) = (2, n), the intervals overlap only at a single point (Proposition B.8). This
overlap of the intervals for a pair of indices continues as pi increases; for the pair
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Fig. 3 Upper and lower bounds on Shannon entropy as functions of the abundance of the i th-most abundant
species, pi , for fixed n. A n = 2. B n = 3. C n = 4. D n = 5. Lines give the upper and lower bounds from
Theorems 3 and 4, colored according to which abundance, pi , is fixed. The space between the upper and
lower bounds for a given i is shaded based on the color used for the associated bounds

(i1, i2) = (2, n), it is a curve rather than a region of nonzero area (Proposition B.9).
We explain these observations mathematically in Appendix B.

4 Data analysis

Having established upper and lower bounds on Shannon entropy as functions of the
abundance of the i th-most abundant species, we turn to two data sets in order to explore
applications of the bounds to communities with vastly differing numbers of taxa: one
example has dozens of taxa, the other has tens of thousands.We then compare diversity
between the two examples, exploring the extent to which knowledge of the bounds
helps to inform comparisons of diversity between communities occupying different
regions of the space of possible taxon abundances.

4.1 Coral reefs

Wong et al. (2018) analyzed 25 coral reef communities sampled off the southern coast
of Singapore. Among the communities, 18 are “fringe” reefs that border 11 offshore
islands, 5 are offshore “patch” reefs that are exposed at low tide, and 2 are “regrowth”
reefs growing on artificial structures. At each site, Wong et al. (2018) sampled five 20-
meter transects, for each transect generating a vector of observed species abundances.
The 25 × 5 = 125 vectors can each be normalized to produce relative abundance
vectors that sum to 1. Across the 125 transects, 138 species were observed.
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Fig. 4 Distributions of Shannon entropy for three coral reef types. Each point represents a relative abundance
vector of coral species along one transect. For each of 25 study sites, 5 transects were measured. The 25
sites include 18 “fringe” sites that border offshore islands, 5 offshore “patch” sites that are exposed at low
tide, and 2 “regrowth” sites growing on artificial structures. Accordingly, there are 18× 5 = 90 fringe data
points, 5 × 5 = 25 patch data points, and 2 × 5 = 10 regrowth data points. The three distributions differ
in Shannon entropy (Kruskal–Wallis test, P = 0.037). Regrowth reefs have significantly higher values of
Shannon entropy than fringe or patch reefs (Wilcoxon rank sum test, P < 0.05)

The species richness of transects varies from 6 to 31, with mean 15.3, median
14, and standard deviation 6.1. To compare the species diversity across transects, we
computed the Shannon entropy of each transect’s species relative abundance vector.
The Shannon entropy ranges from 1.1 to 3.2 across transects, with mean 2.2, median
2.2, and standard deviation 0.4. We observe in Fig. 4 that the regrowth reefs have
significantly higher Shannon entropy than the patch reefs and fringe reefs (Wilcoxon
rank sum test, two-tailed P = 0.028 for regrowth vs. patch, P = 0.034 for regrowth
vs. fringe). No significant difference exists for patch and fringe reefs (P = 0.183).

We saw previously that the Shannon entropy of a species composition vector is
influenced by many features of the vector, including the species richness and the even-
ness of the community composition. For example, if a community has one abundant
species, then its Shannon entropy is strongly constrained by the abundance of that
species. What drives the elevated diversity of the regrowth reef community when
compared to the other two reef types?

Figure5 depicts the relationship between each community’s Shannon entropy and
the bounds on Shannon entropy conditional on various species abundances. Inspection
of these relationships reveals a visual difference among the three reef types. Regrowth
reefs appear to have lower abundances for more common species such as the 1st, 2nd,
and 3rdmost abundant (Fig. 5A–C) and higher abundances for rarer species such as the
10th, 14th, and 18thmost abundant (Fig. 5D–F), allowing for higher values of Shannon
entropy. A statistical test verifies this visual observation: comparing the abundance of
the i th-most abundant species in regrowth reefs to that of non-regrowth reefs, we find
that the frequencies of the 1st through 3rd most abundant species in regrowth reefs
are lower than those in non-regrowth reefs (Wilcoxon rank sum test, P = 0.029 for
i = 1, P = 0.064 for i = 2, P = 0.036 for i = 3), whereas the 9th through 19th
most abundant species are significantly greater in regrowth than non-regrowth reefs
(Wilcoxon rank sum test, P � 0.05; Figure S1). This result suggests that the regrowth
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Fig. 5 Upper and lower bounds on Shannon entropy for coral communities, as functions of the abundance
of the i th-most abundant species. A i = 1. B i = 2. C i = 3. D i = 10. E i = 14. F i = 18. The bounds
assume n = 31, as 31 was the largest number of species observed across the 125 transects (mean 15.3,
median 14, standard deviation 6.1, minimum 6). Bounds are computed according to Theorems 3 and 4.
Each point represents one transect; points are colored according to reef type. As in Fig. 4, each panel shows
90 fringe data points, 25 patch data points, and 10 regrowth data points

reefs have higher Shannon entropy values than the patch or fringe reefs in part because
of their lower abundances of common species and higher abundances of rare species—
which, in turn, owing to higher upper and lower bounds at those abundances, enable
the Shannon entropy to reach higher values. Use of the bounds thus helps to illustrate
that the rare species drive a difference in Shannon entropy across community types.

4.2 Spongemicrobiomes

We next analyzed microbial communities associated with 3533 sea sponges rep-
resenting 24 distinct taxonomic orders, as sampled from 34 countries worldwide
by Moitinho-Silva et al. (2017). For each sponge sample, Moitinho-Silva et al. (2017)
amplified and sequenced the V4 region of the 16s rRNA gene to generate a vector of
abundances of microbial operational taxonomic units (OTUs). As with the coral data,
we normalized each vector to generate relative abundance vectors.

Much variability exists in microbiome composition across the sampled sponges:
OTU richness varies from 1 to 21,595, with mean 2230 and median 1734. We found
a wide distribution of Shannon entropy values across microbiomes, ranging from 0 to
8.1, with mean 3.4, median 3.5, and standard deviation 1.3. In Fig. 6, we plot these
values of Shannon entropy against the abundance of the i th-most abundant OTU for
i = 1, 2, 3, 10, 14, 18.

To explore an application of the bounds on Shannon entropy in which multiple
communities have similar Shannon entropy values rather than values that differ sig-
nificantly, as in the corals, we highlight in Fig. 6 three microbial communities in red,
yellow, and blue. These communities have similar Shannon entropy values: 1.10 for
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Fig. 6 Upper and lower bounds on Shannon entropy for sponge microbiome communities, as functions of
the abundance of the i th-most abundant OTU. A i = 1. B i = 2. C i = 3. D i = 10. E i = 14. F i = 18.
The bounds assume n = 21,595, the largest number of OTUs observed across the 3533 microbiomes (mean
2230, median 1734, standard deviation 2072, minimum 1). Each count in the heat map represents one
sampled sponge microbiome; the heat map summarizes 3533 microbiomes. The three highlighted points
represent similar Shannon entropy (H ≈ 1.1 ≈ log 3) but different evenness. Details on the three points
appear in Table S1

red, 1.11 for yellow, and 1.11 for blue (Table S1)—all near H
(
( 13 ,

1
3 ,

1
3 )

) = log 3 ≈
1.10. Without knowledge of their relative abundance vectors, it is difficult to interpret
the similarity in Shannon entropy: one community could have high evenness and low
richness, another could have high richness but uneven abundances.

Examining H in relation to pi and the bounds on H in terms of pi , we see that the
three communities’ similar values of Shannon entropy are produced by quite different
relative abundance vectors. Figure6A shows that the red community has the lowest
possible value of entropy given the abundance of its most abundant OTU. The yellow
community is similarly positioned near the lower bound. The blue community, on the
other hand, though it has a Shannon entropy that is intermediate between the lower
and upper bounds, has a value of p1 that tightly constrains the Shannon entropy. The
tight constraint suggests that the entropy of the blue community is largely determined
by the most abundant OTU, whereas the red and yellow communities depend on other
entries of the relative abundance vector to keep the entropy near the lower bound.

Which other entries affect the entropy? In Fig. 6B, the horizontal ordering of the
points has changed: the blue community, dominated by one abundant OTU, is near
p2 = 0, whereas the red and yellow communities have p2 ≈ p1. Figure6C identifies
the abundance vector of the red community: the upper and lower bounds on Shannon
entropy as a function of p3 meet at p3 = 1

3 , a point attained by exactly one relative
abundance vector: p = ( 13 ,

1
3 ,

1
3 ). As the red community has p3 = 1

3 , this plot reveals
that the red community has species richness n = 3 and that its sampled community is
evenly distributed. The blue community lies near p3 = 0, and the yellow community
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also lies near p3 = 0, suggesting that its community is largely dominated by just the
first two OTUs.

An investigation of higher values of i (Fig. 6D–F) further illustrates that all three
communities are dominated by their first few entries. The blue community continues
to lie to the right of 0, with p18 > 0 (Fig. 6F). In fact, the blue community has richness
n = 1678, but because p1 is so high, in the part of the domain where Shannon entropy
is tightly constrained, the subsequent entries after the first have little impact on entropy.

Considering the relationship between three vectors with similar Shannon entropy
together with the Shannon entropy bounds as functions of pi has illustrated that the
same Shannon entropy can indicate a low diversity conditional on a specified abun-
dance (p1 or p2 for the red and yellow communities), or a highly constrained diversity
largely determined by the first entry (p1 for the blue community), despite the occur-
rence of many non-zero entries in the vector. Knowledge of the constraints thus aids
with the interpretation of Shannon entropy across communities not only when entropy
values are different, as for the coral example, but also when they are similar.

4.3 Comparing the example data sets

We now illustrate the use of the entropy bounds in comparing communities across the
two examples, as an example of how the bounds make quite different communities
commensurable. Figure7 plots distributions of Shannon entropy across communities
for the two data sets. A simple interpretation of this comparison would conclude that,
in terms of Shannon entropy, the coral communities are on average less diverse than
the sponge microbiome communities, because they have significantly lower Shannon
entropy (Wilcoxon rank sum test, P < 2.2 × 10−16). The richnesses in the two
examples, however, differ by nearly three orders of magnitude (n = 31 for corals,
n = 21,595 for sponge microbiomes). Because the upper bound on entropy as a
function of n is log n, the largest attainable value of entropy for a coral community
is log 31 ≈ 3.4, whereas the corresponding maximum for a sponge microbiome is
log 21,595 ≈ 10.0. How can we compare the entropies of communities that have such
a large difference in taxon richness?

Consider plots of H in relation to pi for both data sets at once, along with the
bounds on entropy with respect to the i th-most abundant taxon (Fig. 8). Although we
see that the points for corals (navy) do have lower values of Shannon entropy than
those for the sponge microbiomes (orange), the interpretation changes substantially.
For the corals, the cloud of points is generally centered in the middle or top of the
space between the bounds, with no points along the lower bound. Conversely, for the
sponge microbiomes, the cloud of points consistently borders the lower bound, with
few points near the upper bound. The sponge microbiome communities, though more
diverse according to H , are not nearly as diverse as they could be given their high
OTU richness; coral communities, on the other hand, are diverse given their relatively
low species richness.

Note, however, that this conclusion is affected by our decision to use the maximal
richness as the value of n for generating the bounds. Because the maximal Shannon
entropy increases with n, many communities with richness less than the maximum
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Fig. 7 Distributions of Shannon entropy for coral (navy) and sponge microbiome communities (orange).
There are 125 total coral communities and 3533 total sponge microbiomes represented. Entropy values
for the coral communities are the same as those presented in Figs. 4 and 5, whereas those for the sponge
microbiomes are the same as those presented in Fig. 6
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Fig. 8 Bounds on Shannon entropy for coral (navy) and sponge microbiome communities (orange), as
functions of the abundance of the i th-most abundant taxon. A i = 1. B i = 2. C i = 3. The coral bounds
assume n = 31, and the sponge bounds assume n = 21,595. Each point represents one sampled relative
abundance vector. The points and bounds are the same as those presented in Fig. 5 for corals and Fig. 6 for
sponge microbiomes

cannot reach the upper bound because such a choice of n sets an upper bound that is
higher than would be possible in those communities. If, on the other hand, we were
to generate the bounds using a value of n that lies below the maximum, then we must
either exclude samples with richnesses above n or truncate and renormalize them.

Toprobe this limitation,weperformed two additional analyses. First,we reproduced
Fig. 8 using the median coral species richness n = 14 instead of the maximum n = 31
and the median sponge microbiome OTU richness n = 1734 instead of the maximum
n = 21,595 (Figure S2).We truncated vectors with more than 14 coral or 1734 sponge
microbiome taxa to the 14 or 1734 most abundant taxa, renormalizing each vector so
that its sum was still 1. Although upper bounds for both communities shift down
slightly, the main observation from Fig. 8 remains visible: coral relative abundance
vectors largely occupy a region squarely between the upper and lower bounds—or
even closer to the upper bound than the lower—whereas sponge microbiome relative
abundance vectors reach the lower but not the upper bound. Thus, evenwith a change in
the way species richness is considered in obtaining the bounds, the coral communities,
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Fig. 9 Shannon entropy for coral (navy) and sponge microbiome communities (orange), normalized in
relation to entropy bounds as functions of the abundance of the i th-most abundant taxon. A i = 1. B i = 2.
C i = 3. Each point represents one sampled relative abundance vector, with Shannon entropy normalized
using Eq. 6
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Fig. 10 Distributions of normalized Shannon entropy for coral (navy) and spongemicrobiome communities
(navy) normalized in relation to entropy bounds as a function of the i th-most abundant species. A i = 1. B
i = 2. C i = 3. The plots summarize the distributions of normalized Shannon entropy presented in Fig. 9

despite lower numerical entropy values, are nearer to their upper bounds on entropy
than are the sponge microbiomes.

For our second approach to addressing the role of species richness in entropy
bounds, we normalized each vector’s entropy using bounds given that vector’s length,
n, and the chosen i :

Hnorm(p, n; i) = H(p) − Hmin(pi , n)

Hmax(pi , n) − Hmin(pi , n)
. (6)

This approach ensures that the bound used for a community is suited to the richness
of that community. It is unsuitable only in rare cases such as the red community in Fig. 6
in which pi = 1

i and the abundance vector of a community is determined by a single
abundance—so that upper and lower bounds are equal and Eq. 6 has denominator zero.
We exclude such communities from our calculation.

Figure9 presents the normalized Shannon entropy of Eq. 6 versus p1, p2, and p3 for
the coral and sponge microbiome data. When each vector is normalized using bounds
that account for that vector’s length, n—and not a possibly larger value chosen to rep-
resent a collection of vectors, as in Fig. 8—the points fall closer to the upper bound. In
particular,manyof the spongemicrobiome relative abundance vectors have normalized
entropy values equal to 1, whereas none reached the upper bound in Fig. 8. Despite
this trend, the coral communities consistently have significantly higher normalized
Shannon entropy than the sponge microbiome communities (Fig. 10; Wilcoxon rank
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sum test, P < 2.2 × 10−16 for normalizations based on p1, p2, or p3), a reversal
of the pattern for unnormalized entropy (Fig. 7). This statistical result formalizes our
observation that, despite having lower absolute values of Shannon entropy than the
sponge microbiome communities, the coral communities’ values of Shannon entropy
lie closer to their upper bounds.

5 Discussion

We have explored the range of Shannon entropy values that can be attained by a
frequency vector of specified length and fixed i th-largest entry—such as a vector of
species relative abundances in a community. Our upper and lower bounds on Shan-
non entropy as a function of the number of species, n, and the abundance of the i th
most common species, pi , characterize the relationship between Shannon entropy and
pi , providing insight into the way in which entropy values are constrained by the
abundances of more abundant or less abundant species.

Our main mathematical results, Theorems 3 and 4, generalize a previous result
of Aw and Rosenberg (2018) on the Shannon entropy bounds with respect to p1,
the abundance of the most abundant species. For each pi , 2 � i � n, the permissible
region given subsequent abundance pi contains points ( 1n , log n) and ( 1i , log i) (Fig. 3).
Unlike for p1, the permissible region for pi , i � 2, contains the origin; the permissible
region for p1 instead contains the point (1, 0) (Fig. 1). The extension to pi for i � 2
characterizes a new set of similar regions—examined in detail in Appendix B—that
differ substantially from the region previously studied for i = 1.

To illustrate the utility of the mathematical results for studies of biodiversity, we
considered them in two data sets. In coral communities, we found that the higher Shan-
non entropy of regrowth reefs, as opposed to patch or fringe reefs (Fig. 4), was driven
by low abundances of common taxa and high abundances of rare taxa (Fig. 5). If p1 is
large, then the upper bound on Shannon entropy given p1 is low, so entropy must be
low (Fig. 1); conversely, if subsequent pi are large, then the lower bound on Shannon
entropy given pi is high, so entropy must be relatively large (Fig. 3D). Because com-
mon species had relatively low abundances in the regrowth reefs, the communities
occupied a region of (pi , H)-space that for small i was not tightly constrained by pi ,
allowing them to achieve high values of entropy (Fig. 5A-C). Similarly, for larger i ,
the relatively large abundances of rare species in the regrowth reefs placed them in
a region of (pi , H)-space with high lower bounds, requiring these communities to
have fairly high entropy (Fig. 5D-F). By visualizing the abundance of a fixed species
in a community in relation to that community’s Shannon entropy and its bounds, we
were able both to identify differences between types of communities and to uncover
properties of the communities that drove the differences.

In our analysis of corals, we considered communities with differing values of
Shannon entropy; our second analysis, examining sponge microbiomes, considered
communities with similar Shannon entropy values, despite quite different taxon abun-
dance distributions. By studying three example communities’ Shannon entropy values
relative to the bounds on entropy, we identified key differences among the abundance
vectors (Fig. 6). Whereas one community’s entropy was strongly constrained by its
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large p1 and lay close to its upper bound, the entropy values of the other two were near
their minima given p1 (Fig. 6A). The similarity of the entropy values in these other
communities was achieved by a low diversity among the subsequent taxa for commu-
nities with relatively low p1, as can be seen from the fact that these communities have
entropy values that are also quite constrained in relation to p2, p3, or both (Fig. 6B,C).
The bounds thus assist in explaining not only differences in entropy values across
communities, but also similarities.

Finally, in our comparative analysis of the two example data sets, we demonstrated
that knowledge of the bounds on entropy was useful for accurately interpreting dif-
ferences in Shannon entropy distributions between the coral and sponge microbiome
communities, which differ greatly in species richness (Fig. 8). A naive comparison of
the Shannon entropies of the two community types suggested that the sponge micro-
biomes were more diverse than the corals (Fig. 7). However, when the bounds were
considered, either visually (Fig. 8) or via normalization of the Shannon entropy by use
of the bounds (Figs. 9 and 10), the coral communities were more diverse given the
constraint of their species richness and the abundances of one of their more abundant
species.

All these analyses address a challenge in comparing the diversity of communities
with different numbers of species. Similarities in a single statistic such as Shannon
entropy can obscure meaningful compositional differences or species richness differ-
ences between communities. Our mathematical results assist in understanding how
Shannon entropy is constrained by individual abundances, enabling comparisons both
through visually analyzing Shannon entropy in relation to the bounds and through
computations of the normalized entropy in Eq. 6 (Fig. 10). In addition to the bounds
of Aw and Rosenberg (2018) on Shannon entropy in terms of p1, the general upper
bound of log n over all abundance vectors has long been used in normalizations (Pielou
1975, p. 15); a special case of a lower bound for all abundance vectors in finite samples
with fixed species richness and sample size has also appeared in a normalization as
well (Beisel andMoreteau 1997). Our normalization uses the tightest possible interval
for any fixed pi , showing that for any pi �= 1

n , Shannon entropy has a tighter upper
bound than log n—and it has a non-zero lower bound as well. The transformation in
Eq. 6 follows a form familiar from other normalizations (e.g. Beisel and Moreteau
1997; Jost 2010).

Because Shannon entropy is used often, mathematical properties of this statis-
tic have implications for many routine ecological analyses. In particular, researchers
reporting Shannon entropy might be advised to report not only the Shannon entropy,
but also its upper and lower bounds in relation to the highest or subsequent abundances,
so that the Shannon entropy value can be further contextualized. Such an approach has
been suggested for a variety of diversity-related statistics in population genetics, for
which mathematical bounds in relation to allele frequencies have been analogously
reported (e.g. Maruki et al. 2012; Jakobsson et al. 2013; Garud and Rosenberg 2015;
Alcala and Rosenberg 2017, 2019, 2022).

Our examples have demonstrated the value of the bounds in understanding the
drivers of empirical differences in biodiversity between communities. However, the
boundsmight also be useful in efforts to test model-based theoretical predictions about
species abundances (e.g. Chave 2004; Rosindell et al. 2011). For example, in tests of
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neutral and other models describing rare taxa in a community (e.g. Magurran and
Henderson 2003), versions of Shannon entropy normalized by the bounds conditional
on the abundances of common taxa could control for those abundances, serving as
biodiversity metrics sensitive to the abundances of rare taxa.

The data analyses in corals and sponge microbiomes follow population-genetic
studies such as Aw and Rosenberg (2018) in treating quantities measured in samples
as parametric. A potential extension could incorporate the fact that both the relative
abundances and the number of distinct species itself are measured in samples. Equa-
tion 12 of Alcala and Rosenberg (2017) described related bounds on an estimated
value of the population-genetic statistic FST in terms of a sample frequency. In that
setting, the number of alleles was fixed at 2, but here, the number of distinct species
in a sample underestimates the number in the full community, so that the permissible
range for the estimated Shannon entropy might systematically expand—due to the
increased number of species—as the sample is enlarged. An extension to the bounds
that incorporates sampling phenomena might make use of approaches to estimation of
Shannon entropy in the setting of species accumulation with increasing sample size
(Chao and Shen 2003; Chao and Jost 2015).

Although our use of Shannon entropy has focused on biodiversitymeasurement, the
mathematical results are broader in scope. First, although we have used the language
of species abundances, the entropy bounds apply to any finite-length vectors of non-
negative elements that sum to 1, and are thus not limited to ecological abundance
data. The bounds could have uses for other settings in which Shannon entropy is used
as a diversity statistic, such as for other taxonomic levels or for population-genetic
data (Sherwin et al. 2006, 2017; Aw and Rosenberg 2018). They contribute to an
interdisciplinary body of work developing bounds on Shannon entropy in various
contexts (e.g. Dembo et al. 1991; Berry and Sanders 2003; Khan et al. 2017).

Second, we have obtained our mathematical bounds on Shannon entropy as a corol-
lary of general theorems that concern statistics with particular convexity properties
(AppendixA).Related statistics such as theRényi entropies orHill numbers (Hill 1973;
Jost 2006; Chao et al. 2014) possess the required properties, so that similar bounds
will follow for these statistics in relation to the abundance of the i th most abundant
species. Extensions could explore constraints on these statistics and the applications
of the constraints to ecological data.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-023-01997-3.

Author Contributions MLM and NAR conceived the ideas and designed methodology; MLM analysed the
data; MLM and NAR wrote the manuscript.

Funding We acknowledge NIH grant No. R01 HG005855 for support.

Data availability The study uses previously published publicly available data. Coral reef data from Wong
et al. (2018) were downloaded from https://zenodo.org/record/1197411. Sponge microbiome data from
Moitinho-Silva et al. (2017) were downloaded from http://gigadb.org/dataset/view/id/100332. An R script
implementing our bounds on Shannon entropy is available at github.com/MaikeMorrison/EntropyBounds.

123

https://doi.org/10.1007/s00285-023-01997-3
https://doi.org/10.1007/s00285-023-01997-3
https://zenodo.org/record/1197411
http://gigadb.org/dataset/view/id/100332
http://github.com/MaikeMorrison/EntropyBounds


   76 Page 18 of 28 M. L. Morrison, N. A. Rosenberg

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

This appendix proves the upper and lower bounds on Shannon entropy as functions
of the i th-largest entry of a vector (Theorems 3 and 4). The proof relies on majoriza-
tion (Marshall et al. 2010), a framework that orders vectors by a sense of their levels
of concentration and that has sometimes been used in an ecological context (Patil and
Taillie 1982; Mosler 2001; Liu et al. 2007).

Definition A.1 Consider two vectors w and v of length n whose elements are in
decreasing order, wi � w j and vi � v j for i < j . Vector w is said to majorize
v if

(i)
∑k

i=1 wi �
∑k

i=1 vi for all k < n, and
(ii)

∑n
i=1 wi = ∑n

i=1 vi .

If w majorizes v, then we write w � v or v ≺ w.

Note that we assume here that entries of w and v are in decreasing order. For two
vectors that are not necessarily in decreasing order, w is also said to majorize v if,
when the vector entries are permuted so that they are in decreasing order, condition
(i) holds for the permuted vectors.

We begin by proving that vector p′ introduced in the statement of Theorem 3 is
majorized by all other vectors with i th-largest entry pi (Lemma A.2). Next, we prove
that the vector p′′ majorizes all other vectorswith i th-largest entry pi (LemmaA.3).We
then need only introduce the idea of functions that preserve order under majorization
before we can quickly obtain Theorems 3 and 4.

Lemma A.2 Consider a non-negative vectorw of length n with (i) entries in decreasing
order, wi � w j for i < j , (ii)

∑n
i=1 wi = 1, and (iii) for some i � 2, the i th largest

entry in w, wi , is equal to pi . Then w majorizes p′.

Proof Let w be a vector of length n whose entries are in decreasing order, the sum of
whose entries is 1, and whose i th component equals pi . Then w j � pi for all j � i ,
w j � pi for all j � i , and wi = pi . Condition (ii) of Definition A.1 is satisfied, as w

and p′ both have sum 1. To verify condition (i), we break the problem into two cases.

(1) Suppose pi � 1
n . Because w j � pi for all j � i , for all k in [1, i], ∑k

j=1 w j �
kpi = ∑k

j=1 p
′
j . It remains to show that for all k in [i + 1, n], ∑k

j=1 w j �
∑k

j=1 p
′
j .
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Suppose for contradiction that some value of k in [i + 1, n − 1] has ∑k
j=1 w j <

∑k
j=1 p

′
j . This k has

k∑

j=1

w j =
( i∑

j=1

w j

)
+

( k∑

j=i+1

w j

)
<

k∑

j=1

p′
j = i pi + (k − i)

(
1 − i pi
n − i

)
.

We have already shown that
∑i

j=1 w j � i pi . We are left with

i pi +
k∑

j=i+1

w j �
( i∑

j=1

w j

)
+

( k∑

j=i+1

w j

)
< i pi + (k − i)

(
1 − i pi
n − i

)
,

which implies that

k∑

j=i+1

w j < (k − i)

(
1 − i pi
n − i

)
.

Dividing by k− i , the mean of thew j for j in [i+1, k] is less than (1− i pi )/(n− i).
Because the w j are in decreasing order, wk , the smallest of the w j for j in [i + 1, k],
satisfies wk < (1 − i pi )/(n − i).

As a result,

n∑

j=k+1

w j < (n − k)

(
1 − i pi
n − i

)
.

It follows that

k∑

j=1

w j = 1 −
n∑

j=k+1

w j > 1 − (n − k)

(
1 − i pi
n − i

)
=

k∑

j=1

p′
j ,

a contradiction of
∑k

j=1 w j <
∑k

j=1 p
′
j . We conclude that for all k in [i + 1, n],

∑k
j=1 w j �

∑k
j=1 p

′
j . As we already showed that

∑k
j=1 w j �

∑k
j=1 p

′
j for all k in

[1, i], we have proven w � p′.

(2) Suppose pi < 1
n . Consider a value k in [1, i − 1]. Suppose for contradiction that

wk <
1−(n−i+1)pi

i−1 . Because wi � w j for i < j , it follows that

k∑

j=1

w j < k

[
1 − (n − i + 1)pi

i − 1

]
=

k∑

j=1

p′
j .
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We also have w j � wk <
1−(n−i+1)pi

i−1 for j in [k + 1, i − 1], and w j � pi for j in
[i, n]. Then

n∑

j=1

w j < (i − 1)

[
1 − (n − i + 1)pi

i − 1

]
+ (n − i + 1)pi = 1,

a contradiction of
∑n

j=1 w j = 1. We have shown that for k in [1, i − 1], wk �
1−(n−i+1)pi

i−1 . Hence,
k∑

j=1

w j �
k∑

j=1

p′
j . (A1)

Setting k = i−1, we addwi = p′
i = pi to both sides of Eq. A1, obtaining

∑i
j=1 w j �

∑i
j=1 p

′
j .

For j in [i + 1, n], p′
j = pi . Hence, for k in [i + 1, n],

k∑

j=1

p′
j = (i − 1)

[
1 − (n − i + 1)pi

i − 1

]
+ (k − i + 1)pi = 1 − (n − k)pi .

Suppose for contradiction that
∑k

j=1 w j <
∑k

j=1 p
′
j for some k in [i + 1, n]. Then

∑k
j=1 w j < 1− (n − k)pi . We then have

∑n
j=k+1 w j = 1− ∑k

j=1 w j > (n − k)pi :
a sum of n − k terms exceeds (n − k)pi , so that the largest of the terms exceeds
pi . We have reached a contradiction of the decreasing order of the entries in w, as
wk+1, wk+2, . . . , wn are all bounded above by wi = pi . We conclude

∑k
j=1 w j �

∑k
j=1 p

′
j for all k in [i + 1, n].

As we already showed that
∑k

j=1 w j �
∑k

j=1 p
′
j for all k in [1, i], we have shown

that for all k in [1, n], ∑k
j=1 w j �

∑k
j=1 p

′
j , and therefore w � p′. 
�

Lemma A.3 Consider a non-negative vector v of length n with (i) entries in decreasing
order, vi � v j for i < j , (ii)

∑n
i=1 vi = 1, and (iii) for some i � 2, the i th-largest

entry in v, vi , is equal to pi . Then v is majorized by p′′.

Proof We first show that p′′
1 = 1 − (i − 1)pi � v1. Because vi = pi , v j � pi for

all j � i and v j � pi for all j � i . Consequently,
∑i

j=2 v j � (i − 1)pi , so that

v1 � 1 − ∑i
j=2 v j � 1 − (i − 1)pi .

Next, suppose for contradiction that for some k in [2, i−1],∑k
j=1 v j >

∑k
j=1 p

′′
j =

1−(i−1)pi +(k−1)pi . We then have
∑i

j=k+1 v j < 1−[1−(i−k)pi ] = (i−k)pi ,
from which the mean of vk+1, vk+2, . . . , vi is less than pi . Because vi is the smallest
of vk+1, vk+2, . . . , vi , we have vi < pi , a contradiction of vi = pi . Therefore, we
have shown that

∑k
j=1 v j �

∑k
j=1 p

′′
j for all k in [1, i − 1].
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For k in [i, n], ∑k
j=1 p

′′
j = 1, so it is trivially true that

∑k
j=1 v j �

∑k
j=1 p

′′
j .

We have thus shown that
∑k

j=1 v j �
∑k

j=1 p
′′
j for all k in [1, n]. We conclude that

v ≺ p′′. 
�
We now apply the lemmas. For convenience, we denote by �n−1 the set of non-

negative vectors of length n with sum equal to 1.

Definition A.4 Consider a function F : �n−1 �→ R so that for all vectors w and v

with w � v, F(w) � F(v). Such a function is said to be Schur-convex. If instead,
for all vectors w and v with w � v, F(w) � F(v), F is said to be Schur-concave.

A Schur-convex function preserves the ordering of the vectors in �n−1 under
majorization. A Schur-concave function reverses the ordering.

Theorem A.5 Consider a function F : �n−1 �→ R. If F is Schur-concave, then the
vector p′ maximizes F over the subset of �n−1 with i th-largest entry equal to pi . If F
is Schur-convex, then p′ minimizes F over the subset of �n−1 with i th-largest entry
equal to pi .

Proof By LemmaA.2, the vector p′ is majorized by every vectorw ∈ �n−1 with fixed
pi . That is, for all w in �n−1 with i th-largest entry equal to pi , w � p′. By definition
of Schur-concavity and Schur-convexity, if F is Schur-concave, then F(w) � F(p′)
for all such w, and p′ maximizes F . If F is Schur-convex, then F(w) � F(p′) for all
such w, and p′ minimizes F . 
�
Theorem A.6 Consider a function F : �n−1 �→ R. If F is Schur-concave, then the
vector p′′ minimizes F over the subset of �n−1 with i th-largest entry equal to pi . If F
is Schur-convex, then p′′ maximizes F over the subset of �n−1 with i th-largest entry
equal to pi .

Proof By Lemma A.3, the vector p′′ majorizes every vector v ∈ �n−1 with fixed pi .
That is, for all v in �n−1 with i th-largest entry equal to pi , v ≺ p′′. By definition
of Schur-concavity and Schur-convexity, if F is Schur-concave, then F(v) � F(p′′)
for all such v, and p′′ minimizes F . If F is Schur-convex, then F(v) � F(p′′) for all
such v, and p′′ maximizes F . 
�
Proof of Theorem 3 Shannon entropy is Schur-concave (Marshall et al. 2010, pp. 101,
562). By Theorem A.5, vector p′ is the vector in �n−1 with fixed pi that maximizes
Shannon entropy. 
�
Proof of Theorem 4 Shannon entropy is Schur-concave (Marshall et al. 2010, pp. 101,
562). By Theorem A.6, vector p′′ is the vector in �n−1 with fixed pi that minimizes
Shannon entropy. 
�

Appendix B

In this appendix, we provide mathematical proofs of informal claims from the main
text about the bounds, as observed in Fig. 3. As in Appendix A, �n−1 denotes the set
of non-negative vectors of length n with sum equal to 1.
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Proposition B.1 Consider vectors p in �1 with p1 � p2. (i) For i = 1 and i = 2,
Hmin(pi , 2) = Hmax(pi , 2). (ii) The bound functions Hmin(p1, 2) = Hmax(p1, 2) and
Hmin(p2, 2) = Hmax(p2, 2) are equal if and only if (p1, H) = (p2, H) = ( 12 , log 2).

Proof (i) Because p1 = 1 − p2, fixing one of the pi determines the other and the
Shannon entropy: H(pi ) = −pi log pi −(1− pi ) log(1− pi ). Thus, Shannon entropy
has only one possible value for vectors of length 2 with one fixed entry, and the upper
and lower bounds given pi exactly overlap.

(ii) Because p1 � p2, the domain for p1 is [ 12 , 1] and the domain for p2 is [0, 1
2 ].

At p1 = p2 = 1
2 , Hmin(p1, 2) = Hmax(p1, 2) = Hmin(p2, 2) = Hmax(p2, 2) =

( 12 , log 2). 
�
Proposition B.2 Consider vectors p in �2 with p1 � p2 � p3. (i) Hmax(p2, 3) for p2
in [0, 1

3 ] is equal to Hmin(p3, 3) for p3 in [0, 1
3 ]. (ii) Hmax(p2, 3) for p2 in [ 13 , 1

2 ] is
equal to Hmin(p1, 3) for p1 in [ 13 , 1

2 ].
Proof (i) For fixed p3 in [0, 1

3 ], Shannon entropy is minimized at (1 − 2p3, p3, p3)
(Theorem 4). In this same interval for p2, Shannon entropy is maximized at the vector
(1 − 2p2, p2, p2) (Theorem 3). These vectors are the same when the same value is
inserted for the lone free variable, confirming the exact overlap of the upper bound
given p2 and the lower bound given p3 on the interval [0, 1

3 ].
(ii) In [ 13 , 1

2 ], the vector minimizing Shannon entropy given fixed p1 is (p1, p1, 1−
2p1) (Proposition 2), and the vector maximizing Shannon entropy given fixed p2 is
(p2, p2, 1 − 2p2) (Theorem 3). These vectors are identical when the same value is
inserted for the lone free variable, confirming the exact overlap of the upper bound
given p2 and the lower bound given p1 on the interval [ 13 , 1

2 ]. 
�
Proposition B.3 Let n � 2. Consider vectors p in �n−1 with p1 � p2 � . . . � pn.
On the interior of the domain [ 1n , 1], Hmin(p1, n) has n − 2 points where it is not
differentiable, falling at values (p1, H) = ( 1j , log j) for 2 � j � n − 1.

Proof From Proposition 2, Hmin(p1, n) contains a ceiling function �1/p1�, which is
discontinuous on the interior of the domain [ 1n , 1] at the n−2 points 1

n−1 ,
1

n−2 , . . . ,
1
2 .

In particular, approaching points 1
j for j = 2, 3, . . . , n−1 frombelow, �1/p1� = j+1,

and approaching from above, �1/p1� = j .
Hmin(p1, n) is differentiable on open intervals ( 1n , 1

n−1 ), (
1

n−1 ,
1

n−2 ), . . . , (
1
2 , 1).

At the interval boundaries, Hmin(p1, n) is continuous: both limp1→1/ j− Hmin(p1, n)

and lim p1→1/ j+ Hmin(p1, n) equal log j . However, lim p1→1/ j− dHmin(p1, n)/dp1 =
−∞ and lim p1→1/ j+ dHmin(p1, n)/dp1 = 0, so that Hmin(p1, n) is not differentiable
at points 1

j for j = 2, 3, . . . n − 1. 
�
Proposition B.4 Let i � 2. For n � i , consider vectors p in �n−1 with p1 � p2 �
. . . � pn. Hmax(pi , n) = Hmin(pi , n) at the point (pi , H) = ( 1i , log i).

Proof Computing Hmax(pi , n) and Hmin(pi , n) at pi = 1
i , log i is obtained for both

quantities. 
�
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Proposition B.5 Let i � 2. For n � i , consider vectors p in �n−1 with p1 � p2 �
. . . � pn. Both Hmax(pi , n) and Hmin(p1, n) pass through the point ( 1n , log n).

Proof This lemma is verified by computing Hmax(pi , n) at pi = 1
n and Hmin(p1, n)

at p1 = 1
n . 
�

Proposition B.6 Let n � 4. Consider vectors p in �n−1 with p1 � p2 � . . . � pn.
Consider i with 2 � i � n − 2. On the interval ( 1n , 1

i ), Hmax(pi , n) > Hmin(p1, n).

Proof The vector that maximizes Shannon entropy for fixed pi = x with 1
n < x < 1

i
and i � 2 is p′(x, i, n) = (x, x, . . . , x, 1−i x

n−i , 1−i x
n−i , . . . , 1−i x

n−i ), where i entries equal

x (Theorem 3). By definition, the point
(
x, H

(
p′(x, i, n)

))
lies on Hmax(pi = x, n),

the upper bound conditional on fixed pi = x , for values of x in the interval 1n < x < 1
i .

This vector p′(x, i, n) also lies in the space of permissible vectors with fixed
frequency p1 = x . Further, p′(x, i, n) is not a permutation of p∗∗(x, n) =(
x, x, . . . , x, 1− (�x−1�−1)x, 0, . . . , 0

)
, the vector that minimizes Shannon entropy

given fixed p1 = x (Proposition 2), producing Hmin(p1, n).
We then have H

(
p′(x, i, n)

)
� H

(
p∗∗(x, n)

)
, or Hmax(pi , n) � Hmin(p1, n),

for x in ( 1n , 1
i ). Because p′(x, i, n) is not a permutation of p∗∗(x, n), the inequality

H
(
p′(x, i, n)

)
> H

(
p∗∗(x, n)

)
is strict by the equality condition of Corollary 3.16

of Aw and Rosenberg (2018). 
�
Proposition B.7 Let n � 3. Consider vectors p in �n−1 with p1 � p2 � . . . � pn.
On the interval [ 1n , 1

n−1 ], Hmax(pn−1, n) = Hmin(p1, n).

Proof This result is obtained by direct computation of the functions, noting that on the
relevant interval, the minimizing vector in Proposition 2 and the maximizing vector
in Theorem 3 both have their first n − 1 components equal to one another. 
�
Proposition B.8 Let n � 3. Consider vectors p in �n−1 with p1 � p2 � . . . � pn.
Consider i1, i2 with 2 � i1 < i2 � n. (i) Hmin(pi1 = 0, n) = Hmin(pi2 = 0, n) = 0.
(ii) If i1 � 3, then Hmax(pi1 = 0, n) has a positive value that lies strictly below the
value of Hmax(pi2 = 0, n). (iii) If i1 = 2, then Hmax(pi1 = 0, n) = 0.

Proof (i) This result is obtained by direct computation.
(ii) If 3 � i1 < i2, then Hmax(pi1 = 0, n) = log(i1 −1) < log(i2 −1) = Hmax(pi2 =
0, n).
(iii) If i1 = 2, then we obtain Hmax(pi1 = 0, n) = 0 by direct computation. 
�

Proposition B.8 describes the overlap of intervals for different pi along the y-axis,
for 2 � i � n. In Proposition B.9, we describe the overlap for 0 < x � 1

i . In
particular, on the interval (0, 1

i ], the region between the upper and lower bounds given
pi1 overlaps the corresponding region given pi2 , where i1 < i2; in the special case
(i1, i2) = (2, n), the overlap is a curve.

Proposition B.9 Let n � 3. Consider vectors p in �n−1 with p1 � p2 � . . . � pn.
Consider i1, i2 with 2 � i1 < i2 � n. Suppose x lies in (0, 1

i2
]. (I) For (i1, i2) �= (2, n),

Hmax(pi1 = x, n) > Hmin(pi2 = x, n) > Hmin(pi1 = x, n). (II) For (i1, i2) = (2, n),
Hmax(p2 = x, n) = Hmin(pn = x, n).
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Proof We separately consider
(
0, 1

n

)
, 1
n , and,

( 1
n , 1

i2

]
.

(A) For x in
(
0, 1

n

)
, we claim

(A.i) Hmax(pn = x, n) > Hmax(pn−1 = x, n) > . . . > Hmax(p2 = x, n),
(A.ii) Hmax(p2 = x, n) = Hmin(pn = x, n),

(A.iii) Hmin(pn = x, n) > Hmin(pn−1 = x, n) > . . . > Hmin(p2 = x, n).

(B) For x = 1
n , we claim

(B.i) Hmax(pn = 1
n , n) = Hmax(pn−1 = 1

n , n) = . . . = Hmax(p2 = 1
n , n),

(B.ii) Hmax(pn = 1
n , n) = Hmin(pn = 1

n , n),
(B.iii) Hmin(pn = 1

n , n) > Hmin(pn−1 = 1
n , n) > . . . > Hmin(p2 = 1

n , n).

(C) For x in
( 1
n , 1

i2

]
with 3 � i2 � n − 1, we claim

(C.i) Hmax(p2 = x, n) > Hmax(p3 = x, n) > . . . > Hmax(pi2 = x, n),
(C.ii) Hmax(pi2 = x, n) � Hmin(pi2 = x, n),
(C.iii) Hmin(pi2 = x, n) > Hmin(pi2−1 = x, n) > . . . > Hmin(p2 = x, n).

(A.ii) proves Proposition B.9.II. The remaining eight statements suffice to prove
Proposition B.9.I. For 2 � i1 < i2 � n and (i1, i2) �= (2, n), the inequalities
Hmax(pi1 = x, n) > Hmin(pi2 = x, n) > Hmin(pi1 = x, n) are reached by the
chain of inequalities specified by statements (A.i), (A.ii), and (A.iii) for x in (0, 1

n ),
by the chain of inequalities of (B.i), (B.ii), and (B.iii) for x = 1

n , and by the chain of
inequalities of (C.i), (C.ii), and (C.iii) for x in ( 1n , 1

i2
].

(A) Consider x in the interval (0, 1
n ).

(A.i) Let n � 3 and suppose 3 � i � n. Using Theorem 3, define a function f (x, i, n),

f (x, i, n) =Hmax(pi = x, n) − Hmax(pi−1 = x, n)

= − [1 − (n − i + 1)x] log
[
1 − (n − i + 1)x

i − 1

]

+ [1 − (n − i + 2)x] log
[
1 − (n − i + 2)x

i − 2

]
+ x log x .

To prove (A.i), it suffices to prove f (x, i, n) > 0 for x in (0, 1
n ).

To prove f (x, i, n) > 0, we prove (a) f is strictly convex for x in (0, 1
n ), or

∂2

∂x2
f (x, i, n) > 0; (b) f has a local minimum at x = 1

n ; (c) f
(
x = 1

n , i, n
)

� 0. For
the continuous function f , these three claims suffice to demonstrate f (x, i, n) > 0
for x in (0, 1

n ): if f is strictly convex on (0, 1
n ) and has a minimum at x = 1

n that is
nonnegative, then f must decrease monotonically on (0, 1

n ) to a nonnegative value—
and hence, f (x, i, n) > 0 for all x in (0, 1

n ).
(a) Taking the second derivative and noting 1−(n−i+2)x � 1−(n−3+2) 1n = 1

n > 0,
we have
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∂2

∂x2
f (x, i, n) = 1

x
[
1 − (n − i + 1)x

][
1 − (n − i + 2)x

] > 0.

(b) By direct computation, ∂
∂x f

(
x = 1

n , i, n
) = 0. Because f is strictly convex on

(0, 1
n ), this point is a local minimum.

(c) By direct computation, it is straightforward to show that limx→ 1
n
f (x, i, n) = 0.

(A.ii) By direct computation from Theorems 3 and 4,

Hmax(p2 = x, n) = Hmin(pn = x, n) = −[1 − (n − 1)x)] log[1 − (n − 1)x]
−(n − 1)x log x .

(A.iii) As we did for (A.i), let n � 3 and suppose 3 � i � n. Using Theorem 4, define
g(x, i, n),

g(x, i, n) = Hmin(pi = x, n) − Hmin(pi−1 = x, n)

= −[1 − (i − 1)x] log[1 − (i − 1)x] + [1 − (i − 2)x] log[1 − (i − 2)x]
− x log x .

To prove (A.iii), it suffices to prove g(x, i, n) > 0 for x in (0, 1
n ).

To prove g(x, i, n) > 0, we prove (a) g is strictly concave for x in (0, 1
n ), or

∂2

∂x2
g(x, i, n) < 0; (b) g is non-negative at the boundaries of the interval, g(0) � 0

and g
( 1
n

)
� 0. For the continuous function g, these two claims suffice to demonstrate

g(x, i, n) > 0 for x in (0, 1
n ): if g is strictly concave on (0, 1

n ), then it has a monoton-
ically decreasing slope, so that if it is non-negative at the start and end of the interval,
it cannot decrease to zero on the interior of the interval.

(a) The second derivative, along with 1−(i−2)x > 1−(i−1)x > 1−(n−1) 1n = 1
n ,

yields
∂2

∂x2
g(x, i, n) = −1

x
[
1 − (i − 1)x

][
1 − (i − 2)x

] < 0. (B1)

(b) We show via direct computation that limx→0 g(x, i, n) = 0 and

lim
x→ 1

n

g(x, i, n) = 1

n
[(n − i + 2) log(n − i + 2) − (n − i + 1) log(n − i + 1)].

(B2)

The function w(x) = x log x is strictly increasing for x > 1; because n − i + 1 � 1,
w(n − i + 2) − w(n − i + 1) > 0, so that Eq. B2 is positive.

(B) Consider x = 1
n .

(B.i) This statement was proven in Proposition B.5.
(B.ii) This statement was proven in Proposition B.4.
(B.iii) This statement follows from the proof of (A.iii.b) that, for g(x, i, n) =
Hmin(pi = x, n) − Hmin(pi−1 = x, n), limx→ 1

n
g(x, i, n) > 0 for i � 3 and n � i .
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(C) Consider x in the interval ( 1n , 1
i2

], with 3 � i2 � n − 1.
(C.i) Let n � 3 and suppose 2 � i � n − 2. Using Theorem 3, define a function
�(x, i, n)

�(x, i, n) = Hmax(pi = x, n) − Hmax(pi+1 = x, n)

= −(1 − i x) log

(
1 − i x

n − i

)
+ [1 − (i + 1)x] log

[
1 − (i + 1)x

n − i + 1

]
+ x log x .

To prove (C.i), it suffices to prove �(x, i, n) > 0 for x in ( 1n , 1
i+1 ].

To prove �(x, i, n) > 0, we prove (a) � is strictly convex for x in ( 1n , 1
i+1 ), or

∂2

∂x2
�(x, i, n) > 0; (b) � has a local minimum at x = 1

n ; (c) f
(
x = 1

n , i, n
)

� 0. For
the continuous function �, these three claims suffice to demonstrate �(x, i, n) > 0 for
x in ( 1n , 1

i+1 ]: if � is strictly convex on ( 1n , 1
i+1 ) and has a minimum at x = 1

n , then

� must increase monotonically on ( 1n , 1
i+1 )—and hence, �(x, i, n) > 0 for all x in

( 1n , 1
i+1 ].

(a) Taking the second derivative and noting 1 − i x and 1 − (i + 1)x are positive on
( 1n , 1

i+1 ), we have

∂2

∂x2
�(x, i, n) = 1

x(1 − i x)[i − (i + 1)x] > 0.

(b) We show by direct computation that ∂
∂x f

(
x = 1

n , i, n
) = 0.

(c) We show by direct computation that f
(
x = 1

n , i, n
) = 0.

(C.ii) Hmax(pi2 , n) � Hmin(pi2 , n) by definition of the bounds in Theorems 3 and 4.
(C.iii) The proof is similar to that of (A.iii), aswe continue to use the function g(x, i, n)

from the proof of that statement. Let n � 3 and suppose 3 � i � n − 1. To prove
(C.iii), it suffices to prove g(x, i, n) > 0 for x in ( 1n , 1

i ].
To prove g(x, i, n) > 0, we prove (a) g is strictly concave for x in ( 1n , 1

i ); (b) g is
positive at the boundaries of the interval, g( 1n ) > 0 and g( 1i ) > 0. For the continuous
function g, these two claims suffice to demonstrate g(x, i, n) > 0 for x in ( 1n , 1

i ]: if g
is strictly concave on ( 1n , 1

i ), then it has a monotonically decreasing slope, so that if it
is positive at the start and end of the interval, it cannot decrease to zero on the interior
of the interval.

(a) This statement follows as in (A.iii.a): the second derivative in Eq. B1 is negative
on ( 1n , 1

i2
].

(b) This statement follows for the left endpoint x = 1
n as in (A.iii.b); for the right

endpoint, x = 1
i , g(x, i, n) = 2

i log 2 > 0. 
�
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