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1  |  INTRODUC TION

In the past two decades, computational methods for inference of 
population structure from individual-level genetic data have con-
tributed a rich and informative set of approaches for the analysis of 

genetic variation. Model-based clustering methods such as admixture 
(Alexander et al.,  2009; Alexander & Lange, 2011), baps (Corander 
et al., 2004, 2008) and structure (Falush et al., 2003, 2007; Hubisz 
et al., 2009; Pritchard et al., 2000) are now routinely used to gen-
erate insights into population structure and evolutionary history in 
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Abstract
In model-based inference of population structure from individual-level genetic data, 
individuals are assigned membership coefficients in a series of statistical clusters gen-
erated by clustering algorithms. Distinct patterns of variability in membership coef-
ficients can be produced for different groups of individuals, for example, representing 
different predefined populations, sampling sites or time periods. Such variability can 
be difficult to capture in a single numerical value; membership coefficient vectors are 
multivariate and potentially incommensurable across predefined groups, as the num-
ber of clusters over which individuals are distributed can vary among groups of inter-
est. Further, two groups might share few clusters in common, so that membership 
coefficient vectors are concentrated on different clusters. We introduce a method 
for measuring the variability of membership coefficients of individuals in a predefined 
group, making use of an analogy between variability across individuals in membership 
coefficient vectors and variation across populations in allele frequency vectors. We 
show that in a model in which membership coefficient vectors in a population follow a 
Dirichlet distribution, the measure increases linearly with a parameter describing the 
variance of a specified component of the membership vector and does not depend 
on its mean. We apply the approach, which makes use of a normalized FST statistic, to 
data on inferred population structure in three example scenarios. We also introduce 
a bootstrap test for equivalence of two or more predefined groups in their level of 
membership coefficient variability. Our methods are implemented in the r package 
FSTruct.
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diverse species of interest in ecology, evolution, conservation biol-
ogy and agriculture (Guillot & Orlando, 2017).

In model-based inference of population structure, individuals are 
clustered based on their multilocus genotypes into a series of sta-
tistical clusters, such that each individual possesses a membership 
coefficient for each cluster. Each membership coefficient represents 
the proportion of an individual's ancestry that is derived from the 
associated cluster. Interpreting the membership coefficients of indi-
viduals from various predefined populations, sampling sites or other 
groups of biological interest can illuminate patterns of genetic vari-
ation and population structure. Researchers often investigate vari-
ability of membership patterns within predefined groups, as well as 
similarities and differences in the membership patterns of distinct 
groups.

One type of comparison that is frequently of interest is an as-
sessment of relative levels of variation in membership coefficients 
among the individuals belonging to two or more predefined groups. 
This type of comparison arises in many contexts, such as when ex-
ploring differences in membership variability between admixed and 
nonadmixed populations, between populations from different time 
periods or between different types of data from the same sampled 
individuals.

For example, in a study of ancient human DNA samples dating 
over a period of thousands of years, Antonio et al. (2019) sought to 
examine whether the population of Rome possessed greater diver-
sity in ancestry during certain periods of the Roman Empire. They 
estimated membership coefficients using admixture and interpreted 
the inferred coefficients to claim that during the Imperial Rome pe-
riod, when the Roman Empire was at its peak, ancestry was more 
variable than during earlier periods, when Rome was more isolated 
(Figure 1 of Antonio et al., 2019).

Interpretations of inferred membership coefficients to make rel-
ative claims about membership variability have generally relied on 
visual assessment of population structure diagrams rather than on 
statistical hypothesis testing. In particular, as in Antonio et al. (2019), 
researchers seeking to quantify variability in membership coeffi-
cients across individuals or to compare this variability between two 
or more groups often do so visually or informally.

Here, we introduce a statistical method to measure variability in 
membership coefficients inferred by model-based clustering and to 
compare this variability across populations. We apply the method to 
examples from real and simulated data. The method is implemented 
in the r package FSTruct.

2  |  MATERIAL S AND METHODS

2.1  |  Overview

The output of population structure inference software programs 
such as structure and admixture is a representation of individual 
membership coefficients in matrix form. The matrix, often denoted 

Q and termed a ‘Q matrix’, has I rows, corresponding to I individu-
als, and K columns, corresponding to the total number of clusters 
(Figure 1b). The entry in row i and column k, q(i)

k
, represents the mem-

bership coefficient of individual i in cluster k: the proportion of the 
ancestry of individual i that is assigned to cluster k. Each row sums to 
1, or 

∑K

k=1
q
(i)

k
= 1 for each i.

We seek to compute a measure of variability among ancestry 
vectors for individuals: among rows of Q. We wish for the measure 
to be comparable across different data sets, possibly representing 
different samples. This problem is complicated by the fact that dif-
ferent Q matrices might include different numbers of clusters; fur-
thermore, column entries for some clusters might vary greatly across 
individuals, while other columns are more uniform.

We approach the problem by modifying the population differ-
entiation statistic FST to fit this ancestry scenario. FST measures al-
lele frequency variability among subpopulations, and it is computed 
using a set of allele frequency vectors that each sum to 1. This set-
ting is mathematically analogous to Q matrices, in which vectors of 
membership coefficients for each individual sum to 1. In the analogy, 
each individual represents a ‘population’, and its cluster membership 
is analogous to an ‘allele frequency’ (Figure 1).

By computing FST among individual vectors of membership co-
efficients, we can measure the variability of a single Q matrix. To 
facilitate comparisons of Q matrices with different numbers of indi-
viduals or clusters, we use a normalization of FST. Despite the gen-
eral understanding that FST can in principle reach 1, features of a 
data set constrain the maximal value of FST, so that the maximum 
is often less than 1 (Alcala & Rosenberg,  2017, 2019; Jakobsson 

F I G U R E  1  The analogy of the use of FST to measure membership 
variability. (a) A standard application of FST to measure variability 
of allele frequency vectors across populations; q(i)

k
 is the frequency 

of allele k in population i. (b) Use of FST to measure variability 
of membership coefficient vectors across individuals; q(i)

k
 is the 

membership coefficient of individual i in cluster k. The matrix 
containing entries q(i)

k
 is a Q matrix

(a) calculation among population vectors of allele frequencies

Alleles ( )
Popula�ons ( ) 1 2 … ( )

1   ( ) ( ) … ( ) 1

2   ( ) ( ) … ( ) 1

… … … … … ...
( ) ( ) … ( ) 1

Compute 

among 
rows

(b)   calculation among individual vectors of membership coefficients

Clusters ( )
Individuals ( ) 1 2 … ( )

1   ( ) ( ) … ( ) 1

2   ( ) ( ) … ( ) 1

… … … … … ...
( ) ( ) … ( ) 1

Compute 

among 
rows
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et al., 2013). The constrained maximum is relatively low when I, the 
number of individuals in a Q matrix, is small (analogous to a small 
number of populations), or when M, the mean membership of the 
highest-membership ancestry cluster, is close to its minimum, 1

K
, or 

its maximum, 1 (analogous to an extreme value for the frequency of 
the most frequent allele). Denoting this maximum Fmax

ST
, we normalize 

FST by its maximum, using the ratio FST ∕Fmax
ST

 as a measure of vari-
ability that is comparable across Q matrices of different size. This 
measure ranges between 0 and 1, equalling 0 when members of a 
population have identical membership and equalling 1 when vectors 
of membership coefficients are maximally variable.

2.2  |  The FST∕Fmax

ST
 formula

Consider a scenario with I subpopulations and K distinct alleles. 
Allele k has frequency q(i)

k
 in subpopulation i, with 0 ≤ q

(i)

k
≤ 1 and ∑K

k=1
q
(i)

k
= 1.

To calculate FST among the I subpopulations, we use 
FST =

(
HT − HS

)
∕HT, where HS represents the mean heterozygosity 

of the subpopulations and HT represents the heterozygosity of the 
total population formed by pooling the subpopulations.

The subpopulation heterozygosity HS is the mean expected 
frequency of heterozygotes across all I subpopulations, as-
suming Hardy–Weinberg equilibrium within subpopulations, or 
HS = 1 −

1

I

∑I

i=1

∑K

k=1

�
q
(i)

k

�2

. The total heterozygosity HT is the ex-
pected frequency of heterozygotes under Hardy–Weinberg equilib-
rium in a population whose allele frequencies equal the mean allele 
frequencies across subpopulations: HT = 1 −

∑K

k=1

�
1

I

∑I

i=1
q
(i)

k

�2

. 
The quantity 1

I

∑I

i=1
q
(i)

k
 gives the mean frequency of allele k across 

subpopulations.
With the total population assumed to be polymorphic so that 

HT > 0, for the setting of I subpopulations and K alleles, with K possi-
bly arbitrarily large, Alcala and Rosenberg (2022) obtained the maxi-
mal value possible for FST given a fixed value of M =

1

I

∑I

i=1
q
(i)

1
, where 

allele k = 1 represents the allele of greatest mean frequency across 
the I subpopulations. Writing �1 = IM, J =

⌈
�
−1
1

⌉
 and 

�
�1

�
= �1 − ⌊�1⌋ , 

we have (Alcala & Rosenberg, 2022, Equation 3)

This maximum is plotted as a function of M for five different values of 
I in Figure 2.

In the language of our analogy, I is the number of individuals—the 
number of rows in the Q matrix; M is the sample mean membership 
coefficient for the most frequent ancestral cluster across all I individ-
uals; and �1 = IM is the largest entry in the vector that sums column 
entries of the Q matrix across rows. The latter case of Equation 1, 
with 1 < 𝜎1 < I, is generally more relevant in the setting of popula-
tion clustering, as I is typically larger than K, so that 𝜎1 >

I

K
> 1.

The ratio FST ∕Fmax
ST

, which represents a normalized measure of 
variability that can be compared among different groups of individ-
uals with different values of I or K, or both, ranges between 0 and 
1, taking a value of 0 when all individuals in a group have identical 
membership coefficients. It has a value of 1 when they are as vari-
able as possible given M.

Alcala and Rosenberg  (2022) showed that for 0 < 𝜎1 ≤ 1, the 
maximum is realized when each ancestry cluster is found in only a 
single individual and each individual has exactly J ancestry clusters 
with coefficients greater than zero: J − 1 clusters with coefficients 
of σ1, one cluster with a coefficient of 1 − (J − 1)�1 ≤ �1 and all oth-
ers with coefficients of 0. Note that in the scenario 0 < 𝜎1 ≤ 1, the 
number of clusters K is larger than the number of individuals I; at the 
maximum, multiple clusters are tied with the same mean member-
ship coefficient M.

For 1 < 𝜎1 < I, the maximum is realized when only the ancestry 
cluster of greatest membership is shared among individuals, and at 
most a single individual contains ancestry from multiple sources. 
More formally, this scenario occurs when ⌊�1⌋ individuals possess 
all of their membership in the cluster of greatest membership (i.e. 
q
(i)

1
= 1 for these individuals), a single individual has membership co-

efficient {σ1} for the cluster of greatest membership and coefficient 

(1)

Fmax
ST

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝜎1=1, 2, … , I−1

(I−1)
�
1−𝜎1(J−1)

�
2−J𝜎1

��

I−
�
1−𝜎1(J−1)

�
2−J𝜎1

�� , 0<𝜎1<1

I(I−1)−𝜎
2
1
+⌊𝜎1⌋−2(I−1)

�
𝜎1

�
+(2I−1)

�
𝜎1

�2

I(I−1)−𝜎
2
1
−⌊𝜎1⌋+2𝜎1−

�
𝜎1

�2 , non− integer 𝜎1, 1<𝜎1< I.

F I G U R E  2  Bounds on FST as a function of M, the frequency of the most frequent allele—or the ancestry cluster of greatest membership, 
in our analogy. Bounds are evaluated using Equation 1 for different values of I, the number of populations (or the number of individuals, in 
our analogy). (a) I = 2. (b) I = 3. (c) I = 5. (d) I = 10. (e) I = 50

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
M

F STm
ax

(a)   I = 2

0.00 0.25 0.50 0.75 1.00
M

(b)   I = 3

0.00 0.25 0.50 0.75 1.00
M

(c)   I = 5

0.00 0.25 0.50 0.75 1.00
M

(d)   I = 10

0.00 0.25 0.50 0.75 1.00
M

(e)   I = 50



    |  2617MORRISON et al.

1 − {σ1} for one other cluster, and the remaining I − ⌊�1⌋ − 1 individ-
uals each have membership coefficient 1 for mutually distinct an-
cestry clusters.

2.3  |  Statistical test to compare values of FST∕Fmax

ST

In applications, we may wish not only to compute FST ∕Fmax
ST

 for a 
single population but also to compare this ratio between two or 
more populations using a statistical test. We accomplish this task by 
bootstrap resampling of rows to generate replicate Q matrices for 
each population. We then compute the FST ∕Fmax

ST
 statistic for each of 

these replicate matrices. This process generates a bootstrap distri-
bution of the statistic for each population. We then use a Wilcoxon 
rank-sum test to determine whether pairs of bootstrap distributions 
of the statistic for different sets of individuals are significantly dif-
ferent; we use a Kruskal–Wallis test to compare three or more sets 
of individuals.

2.4  |  Software availability

We have implemented our method in the r package FSTruct (pro-
nounced ‘F-struct’), which is available for download from github.
com/Maike​Morri​son/FSTruct. This package includes functions that 
compute FST ∕Fmax

ST
 from a Q matrix such as those produced by admix-

ture or structure, generate bootstrap samples and distributions for 
arbitrarily many Q matrices and visualize Q matrices.

3  |  RESULTS

3.1  |  Simulation examples

3.1.1  |  Dirichlet model

To illustrate our method, we used individual membership coeffi-
cient vectors drawn from a Dirichlet distribution (Kotz et al., 2000). 
This distribution is suited for use as the underlying model for finite 
vectors of nonnegative numbers 

(
q1, q2, … , qK

)
 that sum to one, ∑K

k=1
qk = 1, and it has appeared in previous studies of membership 

coefficient vectors (Huelsenbeck & Andolfatto,  2007; Pritchard 
et al., 2000).

We treat individual membership coefficient vectors in a pop-
ulation as following a Dirichlet distribution with parameter vec-
tor �� = �

(
�1, �2, … , �K

)
, where 

∑K

k=1
�k = 1. We denote this 

distribution by Dir
(
�
(
�1, �2, … , �K

))
. Here, λ is a vector of length 

K whose elements determine the parametric mean membership 
coefficient for each ancestral cluster. The value of α controls the 
variance of qk, the individual membership coefficient in cluster k: 
Var

[
qk
]
= �k

(
1 − �k

)
∕(� + 1) . Thus, an increase in α lowers the vari-

ances of membership coefficients.

To generate a random Q matrix with I individuals and K an-
cestry clusters, we draw I independent and identically distributed 
Dir

(
�
(
�1, �2, … , �K

))
 vectors, 

(
q1, … , qK

)
, which each comprise a 

set of membership coefficients for a single individual. Each vector 
is a row of the simulated Q matrix and is a draw from a Dirichlet 
distribution with mean membership coefficients 

(
�1, �2, … , �K

)
. 

Variability of membership coefficients across individuals is con-
trolled by α. Hence, we proceed by (1) using the Dirichlet distribution 
to simulate Q matrices with specified parametric membership coeffi-
cient means and variances, (2) computing FST ∕Fmax

ST
 for each Q matrix 

and (3) examining the relationship between the value of FST ∕Fmax
ST

 for 
each Q matrix and the parametric variance of the Dirichlet distribu-
tion used to simulate it.

3.1.2  |  Dirichlet simulations

To investigate the behaviour of FST ∕Fmax
ST

 in relation to a measure of 
variability in membership coefficients, we used the Dirichlet distri-
bution to simulate Q matrices with known variability. We simulated 
Q matrices with I = 50 individuals and K = 2 clusters. Each simula-
tion replicate thus drew I = 50 ancestry vectors from a Dir

(
�
(
�1,�2

))
 

distribution.
We fixed 

(
�1,�2

)
=
(
2

3
,
1

3

)
, so that membership in cluster 1 has 

parametric mean 2
3
 across individuals in a population and member-

ship in cluster 2 has parametric mean 1
3
. The parametric variance of 

the membership coefficient for a specific cluster, across sampled 
individuals, then equals �2 = Var

[
q1
]
= Var

[
q2
]
=
(
2

3
×

1

3

)
∕(� + 1); 

both coefficients have the same variance. As α ranges in (0,∞), the 
variance ranges in 

(
0,

2

9

)
.

We performed 500 replicate simulations of samples of 50 indi-
viduals for each of 45 values of α, choosing α values to obtain para-
metric variances 0.001, 0.005, 0.01, 0.015, …, 0.22, ranging from 
near the lower bound of 0 on the variance and stopping short of the 
upper bound of 2

9
.

Next, we compared the value of FST ∕Fmax
ST

 for each simulated Q 
matrix to the parametric variance of the Dirichlet distribution used to 
generate it. As FST ∕Fmax

ST
 measures variability of Q matrices, we expect 

to see a positive relationship between the Dirichlet variance used to 
generate the Q matrix and our estimate of its variability, FST ∕Fmax

ST
.

Simulation results, depicting the 500 values of FST ∕F
max
ST

 
for each of the 45 choices of the Dirichlet variance 
�
2 = Var

[
q1
]
= Var

[
q2
]
=
(
2

3
×

1

3

)
∕(� + 1), appear in Figure 3. In the 

figure, the relationship between FST ∕Fmax
ST

 and σ2 is strongly linear, 
with slope 4.5.

Noticing that the empirical slope, 4.5, was the reciprocal of 2
9
, 

the upper bound of the Dirichlet variance, we sought to obtain 
a mathematical relationship between �

[
FST ∕F

max

ST
; �, �1, �2, I

]
, the 

expectation of FST ∕Fmax
ST

 under the Dirichlet model and the para-
metric variance of each membership coefficient in the model. This 
calculation, performed in the Appendix, confirms the relationship 
(Equation A11)

http://github.com/MaikeMorrison/FSTruct
http://github.com/MaikeMorrison/FSTruct
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where 1∕
(
�1, �2

)
= 4.5 in the example plotted in Figure 3. Thus, the 

simulations and an analytical calculation confirm that in a simple 
Dirichlet model, the FST ∕Fmax

ST
 measure has a linear relationship with 

the parametric variance across sampled individuals of membership 
coefficient q1 (or q2). Importantly, the expected value of FST ∕Fmax

ST
 in 

Equation 2 is independent of the parametric mean membership co-
efficients, depending only on the Dirichlet parameter α, which con-
trols variability. This result supports the use of FST ∕Fmax

ST
 to measure 

variability in populations that possess different mean membership 
coefficients.

3.1.3  |  Visual illustration of values of FST∕Fmax

ST

Continuing with the Dirichlet simulations, we next sought to visually 
illustrate the relationship of FST ∕Fmax

ST
 to the variance and mean of 

membership coefficients. We considered Q matrices with four dif-
ferent values of α, representing four levels of parametric variance in 
membership coefficients, and two different vectors for the paramet-
ric mean membership coefficients λ. For each of the eight settings 
(four variances, two means), we considered two Q matrices.

These eight simulated pairs of Q matrices are visualized in 
Figure 4a,d, where they are coloured according to the value of the α 
parameter used to simulate them. For the lowest-variability case (α1, 
red), the simulated individual membership coefficients show little 

deviation from the mean, � =
(
2

3
,
1

3

)
 for Figure 4a and 

(
9

10
,
1

10

)
 for 

Figure 4d. As the variance parameter increases (α2, purple; α3, blue), 
variance in membership coefficients is increasingly visible. For the 
highest-variability case (α4, green), membership coefficients are cen-
tred on 

(
�1,�2

)
= (1, 0) for approximately 2

3
 or 9

10
 of the individuals, 

and on 
(
�1,�2

)
= (0, 1) for the remaining individuals.

Bootstrap distributions of FST ∕Fmax
ST

 appear in Figure  4b for 
� =

(
2

3
,
1

3

)
 and in Figure 4c for � =

(
9

10
,
1

10

)
. In these panels, we ob-

serve that FST ∕Fmax
ST

 increases from the lowest-variability case (α1) 
to the highest-variability case (α4), in accord with the interpretation 
that FST ∕Fmax

ST
 measures variability in membership coefficients. As α 

increases (membership variability across individuals decreases), the 
variance of FST ∕Fmax

ST
 across bootstrap samples decreases; this pat-

tern is driven by the fact that the rows of a high-α (low-variability) Q 
matrix are very similar, so bootstrap-sampled matrices drawn from 
this matrix will necessarily also be similar to one another.

Comparing Figure  4b with Figure  4c, we observe that the 
value of FST ∕Fmax

ST
 is similar between matrices simulated with the 

same Dirichlet α parameter, irrespective of the mean membership 
coefficient vectors (λ) used to simulate the matrices. This pattern 
accords with the interpretation that FST ∕Fmax

ST
 is driven by the vari-

ance of membership coefficients and not the mean—as reflected in 
the analytical result in Equation 2 that under the Dirichlet model, 
�
[
FST ∕F

max
ST

;�,�,I
]
 can be written so that it depends on α but not on λ.

In fact, in some cases, matrices simulated with the same value of 
α but different means (λ) are more similar than matrices simulated 
with both the same α and the same means. We tested all ⎛⎜⎜⎝

16

2

⎞⎟⎟⎠
 pair-

wise comparisons of the 16 bootstrap distributions in Figure 4 and 
found that nearly all pairs of distributions were significantly differ-
ent (Wilcoxon rank-sum tests, p < 10−6). Interestingly, the only two 
pairs that were not significantly different were pairs with the same α 
but different means: the left-hand α1 distribution with mean 

(
2

3
,
1

3

)
 in 

Figure 4b and the right-hand α1 distribution with mean 
(

9

10
,
1

10

)
 in 

Figure 4c (Wilcoxon rank-sum test, p =  .270), and the left-hand α3 
distribution with mean 

(
2

3
,
1

3

)
 in Figure 4b and the left-hand α3 distri-

bution with mean 
(

9

10
,
1

10

)
 in Figure  4c (Wilcoxon rank-sum test, 

p = .002). That pairs with the same α and different means can have 
the same FST ∕Fmax

ST
, while pairs with different α and either the same 

or different means have different FST ∕Fmax
ST

 underscores the point 
that FST ∕Fmax

ST
 can be used to compare the variability of Q matrices 

with quite different mean membership.
We also observe in Figure 4a,d that the sampling variability of 

features of Q matrices simulated from the Dirichlet distribution 
with identical parameters—as reflected in comparisons of pairs 
of matrices of the same colour within a panel—increases with α. 
We confirm in Figure S1 that the variability in the mean member-
ship coefficients 

(
q1, q2

)
 of simulated Q matrices increases as the α 

(2)�

[
FST

Fmax

ST

; �, �1, �2, I

]
≈

1

�+1
=

1

�1�2

�1�2

�+1
=

1

�1�2

Var
[
q1
]
=

1

�1�2

Var
[
q2
]
,

F I G U R E  3  Linear relationship between FST ∕Fmax

ST
 and 

Var
[
q1
]
= Var

[
q2
]
, the variance across individuals of individual 

membership coefficients under a Dirichlet distribution. 
For each of 45 values of Var

[
q1
]
= Var

[
q2
]
, 500 points are 

plotted, each representing a random Q matrix with dimensions 
50 × 2. Rows of the Q matrix are simulated using a Dirichlet 
distribution with means � =

(
�1,�2

)
=
(
2

3
,
1

3

)
 and variances 

Var
[
q1
]
= Var

[
q2
]
= �1�2 ∕(� + 1) , with α chosen to produce 

variances 0.001,0.005,0.01,0.015, … ,0.22 . Each Q matrix gives rise 
to an associated value of FST ∕Fmax

ST
, plotted on the vertical axis. A 

regression line fit to the 500×45 points with intercept 0 has slope 
4.5, or 1∕

(
�1�2

)
= 1∕

(
2

3
×

1

3

)
, and it explains 99% of the variability 

in FST ∕Fmax

ST
. Grey lines mark the 2.5% and 97.5% percentiles, and 

thus contain 95% of the points
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value used to simulate the matrices decreases (i.e. as the Dirichlet 
variance increases). This increased variability in sampled Q matrix 
mean memberships leads to increased variability among sampled 
Q matrix membership variances (Figure  S2). Sampling variability 
can lead Q matrices simulated with the same parameter values 
to possess quite different sample means and variances, as is the 
case particularly for the two pairs of matrices simulated with α4 in 
Figure 4d. Despite this sampling variability of Q matrices under the 
Dirichlet model, we observe that FST ∕Fmax

ST
, which is largely driven 

by the underlying parameter α, is relatively stable across pairs of 
Q matrices.

3.2  |  Data examples

To illustrate the application of FSTruct, we apply the method to data 
examples that represent each of three distinct scenarios in which an-
cestry variability is of interest: (1) ancestry comparisons of admixed 

F I G U R E  4  Dependence of bootstrap distributions of FST ∕Fmax

ST
 for simulated Q matrices on the Dirichlet variance parameter α, rather than 

the Dirichlet mean λ. (a, d) Q matrices simulated using specified Dir(αλ) distributions. (b, c) Bootstrap distributions of FST ∕Fmax

ST
 for Q matrices 

from (a) and (d), plotted directly below or above the corresponding matrix. In both (a) and (d), eight matrices were simulated, two for each of 
four values of α selected to span the range of parametric variances: �1 = 21901∕99, �2 = 341∕99, �3 = 101∕99 and �4 = 1∕99. Matrices 
are annotated by associated parametric variances �2 = �1�2 ∕(� + 1). In (a), matrices are simulated with parametric mean � =

(
2

3
,
1

3

)
 and are 

taken from matrices plotted in Figure 3. In (d), matrices are simulated with a more extreme parametric mean, � =
(

9

10
,
1

10

)
. Each vertical bar 

represents an individual membership coefficient vector (q1, q2); the proportion of each bar coloured a darker shade represents q1 and the 
proportion in a lighter shade corresponds to q2. The parametric variance of a Q matrix, �2 = �1�2 ∕(� + 1), ranges in 

(
0,

2

9

)
 for � =

(
2

3
,
1

3

)
 and 

in (0, 0.09) for � =
(

9

10
,
1

10

)
. The empirical variance s2 is computed for each matrix using the sample mean q =

�
1

I

∑I

i=1
q
(i)

1
,
1

I

∑I

i=1
q
(i)

2

�
 in place 

of the parametric mean λ. The values of FST ∕Fmax

ST
 for the eight matrices in (a) are 0.004 and 0.005 for the two simulated with α1, 0.203 and 

0.230 for α2, 0.496 and 0.461 for α3, and 1.000 and 0.997 for α4. The values of FST ∕Fmax

ST
 for the eight matrices in (d) are 0.003 and 0.005 

for α1, 0.157 and 0.287 for α2, 0.539 and 0.571 for α3, and 1.000 and 1.000 for α4. In (b) and (c), each bootstrap distribution includes 1000 
bootstrap samples of the I = 50 individuals in the associated Q matrix

(a)

(b)

(c)
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and nonadmixed populations, (2) ancestry comparisons of popula-
tions representing different time periods or spatial locations and (3) 
ancestry comparisons of distinct data sets corresponding to differ-
ent sets of loci for the same individuals.

3.2.1  |  Admixed populations

A characteristic feature of recently admixed populations is that indi-
viduals vary greatly in their ancestry, with some individuals possess-
ing most of their ancestry from one source population, and others 
possessing most of their ancestry from another source (Gravel, 2012; 
Verdu & Rosenberg, 2011). Thus, in examining inferred cluster mem-
berships, admixed populations might be expected to give rise to 
greater variability in ancestry than nonadmixed populations.

We therefore evaluated FST ∕Fmax
ST

 in three populations from an 
admixture analysis performed by Verdu et al.  (2017). The popula-
tions include an admixed population from Cape Verde, and Gambian 
and Iberian populations taken to represent African and European 
sources for the admixed population. The inferred genetic structure 
for the three populations is redrawn in Figure 5a.

We computed FST ∕Fmax
ST

 for each of the three populations, mea-
suring ancestry variability of the inferred cluster memberships 
within each of the three groups. For the nonadmixed source pop-
ulations, this quantity is 0.078 for the Gambian population and 
0.064 for the Iberian population (Figure 5b). The value for the ad-
mixed Cape Verdean population is greater, equalling 0.100. Pairs 
of bootstrap distributions of FST ∕Fmax

ST
 are significantly different 

(p < 2 × 10−16 for all three pairwise combinations, Wilcoxon rank-sum 
test). The admixed Cape Verdean population is indeed observed to 

have greater variability in ancestry according to the FST ∕Fmax
ST

 mea-
sure than the putative source populations, supporting the use of 
the measure to distinguish clustering patterns in admixed and non-
admixed populations.

3.2.2  |  Populations over time or space

Geographic movements of populations shape patterns of genetic 
ancestry for samples collected in different spatial locations or from 
the same location in different time periods. Locations or time peri-
ods whose samples contain individuals from many different sources 
or from recently admixed populations are expected to have highly 
variable ancestry, whereas locations or periods in which mixing of 
disparate populations is less salient are expected to have more ho-
mogeneous ancestry.

To explore an example of ancestry variability over time, we 
evaluated FST ∕Fmax

ST
 in a structure analysis conducted by Antonio 

et al.  (2019) on samples from 29 archaeological sites near Rome 
spanning the last 12,000 years. These samples represent eight 
time periods: Mesolithic, Neolithic, Copper Age, Iron Age and 
Roman Republic, Imperial Rome, Late Antiquity, Medieval and Early 
Modern, and the present. The plot of the inferred genetic structure 
for these samples is redrawn in Figure 6a. Antonio et al. (2019) ar-
gued, based in part on their version of Figure 6a, that ancestry was 
variable during the Iron Age and Roman Republic, and highly variable 
during the Imperial Rome and Late Antiquity periods.

We computed FST ∕Fmax
ST

 for each time period. This ratio is 0 for 
the Mesolithic, 0.0131 for the Neolithic, 0.0041 for the Copper Age, 
0.0183 for the Iron Age and Roman Republic, 0.0192 for Imperial 
Rome, 0.0244 for Late Antiquity, 0.0186 for the Medieval and Early 
Modern period and 0.0011 for modern individuals (Figure 6b). Pairs 
of bootstrap distributions of FST ∕Fmax

ST
 are significantly different 

(p < 2 × 10−9 for all 28 pairwise combinations, Wilcoxon rank-sum 
test). The numerical results validate the claims of Antonio et al. (2019) 
of high variability during the Iron Age and Roman Republic, Imperial 
Rome and Late Antiquity periods. They lend increased granularity 
to these claims, suggesting that ancestry variability was steadily 
increasing during these three periods, with a maximum achieved 
during Late Antiquity.

3.2.3  |  Different genetic loci in the same samples

The ancestry patterns identified by population structure inference 
methods are influenced by the choice of loci used for the analysis. 
When data sets possess few loci, structure is not observed, and indi-

viduals have membership coefficients close to 

(
1

K
,
1

K
, … ,

1

K

)

; dif-
ferent individuals possess similar membership coefficients. As the 
number of loci increases, individuals come to have different mem-
bership coefficients, with, for example, individuals from two 

F I G U R E  5  Variability of ancestry in admixed and nonadmixed 
populations. (a) K = 4 admixture analysis of Gambian (n = 109), 
Cape Verdean (n = 44) and Iberian (n = 107) samples. Adapted 
from Verdu et al. (2017). (b) Bootstrap distributions of the ancestry 
variability measure, FST ∕Fmax

ST
, for each population (1000 samples)
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predefined populations possessing membership primarily in two dis-
tinct clusters.

To explore patterns of ancestry variability in data sets of differ-
ent size, we evaluated FST ∕Fmax

ST
 using results from a structure anal-

ysis conducted by Algee-Hewitt et al. (2016). This study focused on 
13 tetranucleotide loci commonly used for individual identification 
in forensic applications, the ‘codis loci’. In a worldwide human sam-
ple, the study compared analyses with the codis loci to analyses with 
a larger set of 779 non-codis loci and to analyses with sets of 13 non-
codis tetranucleotide loci. The study claimed that the codis loci have 
similar ancestry information to sets of 13 non-codis tetranucleotide 
loci.

Four ancestry patterns from Algee-Hewitt et al. (2016), inferred 
from the same sample of individuals, are replotted in Figure  7. 
Figure 7a depicts a plot based on the codis loci. Figure 7b plots a ‘null 
data set’ designed to possess no structure. Figure 7c plots a set of 13 
non-codis tetranucleotide loci, and Figure 7d depicts a plot with 779 
loci. The ‘null’ plot shows little structure, the two plots with 13 loci 
show some structure, and the plot with 779 loci shows substantial 
structure.

We computed FST ∕Fmax
ST

 for each analysis, for each plot evaluat-
ing variability in ancestry across all individuals within the plot. The 
ratio is lowest for the null data set, with a value of 0.009. It is 0.100 

for both the codis loci and for the 13 non-codis loci. The ratio is sub-
stantially higher for the full 779 loci, with a value of 0.529. Five of 
the six pairs of bootstrap distributions of FST ∕Fmax

ST
 are significantly 

different (p < 2 × 10−16, Wilcoxon rank-sum test), the exception being 
that the two plots with 13 loci, codis and non-codis, do not show a 
significant difference (p = .56). The pattern of FST ∕Fmax

ST
 values, with 

the smallest value for Figure 7b, intermediate values for Figure 7a,c, 
and largest value for Figure 7d, captures increasing ancestry variabil-
ity as the analyses move from a largely unstructured plot (Figure 7b) 
to partially unstructured plots (Figure 7a,c) to a substantially struc-
tured plot (Figure 7d). The lack of a significant difference in FST ∕Fmax

ST
 

between the plot for the codis loci and the plot for equally many non-
codis loci supports the claim of Algee-Hewitt et al.  (2016) that the 
codis loci contain comparable information about ancestry to other 
sets of loci with the same size.

4  |  DISCUSSION

We have introduced a measure for quantifying variability across vec-
tors of individual membership coefficients, as produced by popula-
tion structure inference programs such as structure and admixture. 
Our measure is based on a mathematical analogy with the population 

F I G U R E  6  Variability of ancestry over time. (a) K = 5 structure analysis of samples from eight time periods: Mesolithic (n = 3), Neolithic 
(n = 10), Copper Age (n = 3), Iron Age and Roman Republic (n = 11), Imperial Rome (n = 48), Late Antiquity (n = 24), Medieval and Early 
Modern (n = 28) and Present (n = 15). Adapted from Antonio et al. (2019). (b) Bootstrap distributions of the ancestry variability measure, 
FST ∕F

max

ST
 , for each population (1000 samples)
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differentiation statistic FST. Whereas FST traditionally measures vari-
ability in allele frequency vectors among populations, we have used 
FST to measure variability in membership coefficient vectors among 
individuals. Because the upper bound of FST as a function of the fre-
quency of the most frequent allele is usually less than 1, we have em-
ployed a normalized version of this statistic, FST ∕Fmax

ST
, which ranges 

in [0,1] for all matrices of membership coefficients and can thus be 
used to compare ancestry variability among different matrices.

Through both simulation and an analytical calculation under a 
Dirichlet distribution for membership coefficient vectors, we demon-
strated that the expected value of FST ∕Fmax

ST
 increases with the vari-

ance of membership coefficients across individuals (Figures 3 and 4); 
indeed, in a remarkably simple result, we find that it scales approxi-
mately linearly with the parametric variance in a model with K = 2 an-
cestral clusters (Equation 2). This result supports the use of FST ∕Fmax

ST
 

as a measure of variability in ancestry across individuals. Note that 
although our analytical result that �

[
FST ∕F

max

ST
; �, �1, �2, I

]
≈ 1∕(� + 1) 

relies on the case of K = 2 ancestral clusters, additional simulations 
with larger K suggest that similar results hold for larger K, as such 
simulations find that the mean FST ∕Fmax

ST
 values across simulated Q 

matrices with fixed parameter values match 1/(α + 1), irrespective of 
the value of K (Figure S3).

We have proposed that the FST ∕Fmax
ST

 measure can be used in a 
statistical test of the equality of ancestry variability between two Q 
matrices by generating bootstrap samples of the individuals in each 
Q matrix, computing FST ∕Fmax

ST
 for each bootstrap-sampled matrix 

and comparing bootstrap distributions of FST ∕Fmax
ST

 using a Wilcoxon 
rank-sum test. In analysing our simulated and empirical data, this 
test performed appropriately. It distinguished between matrices 
with meaningfully distinct variabilities, such as between matrices 
simulated with different Dirichlet α parameter values (Figure 4). It 
notably failed to find a significant difference in a case where the 
true variabilities of the Q matrices were similar, with the Q matrices 
representing ancestry inferred using two sets of 13 loci (Figure 7). 
To further support the use of this bootstrap test, we include sup-
plementary figures that demonstrate that under the null hypothesis, 
p-values for the test have the appropriate uniform distribution; this 
result is seen in simulations that consider different numbers of boot-
strap replicates (Figure S4), different numbers of clusters (Figure S5) 
and different numbers of individuals (Figure S6).

The expected value of FST ∕Fmax
ST

 behaves sensibly as the 
number of individuals, I, increases (Figure S7). In particular, sim-
ulated values of �

[
FST ∕F

max

ST
; �, �, I

]
 remain constant with I: as the 

number of simulated individuals increases at a fixed variability of 

F I G U R E  7  Variability of ancestry for analyses with different loci 
from the same samples. K = 4 structure analyses of four different 
sets of loci for a worldwide human sample. Adapted from Algee-
Hewitt et al. (2016). (a) 13 codis tetranucleotide microsatellite loci. 
(b) A simulated null data set with no population structure. (c) 13 
non-codis tetranucleotide microsatellite loci. (d) Full data set of 779 
tetranucleotide loci. (e) Bootstrap distributions of the ancestry 
variability measure, FST ∕Fmax

ST
, for each data set (1000 samples)
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membership, the mean FST ∕Fmax
ST

 across simulations remains the 
same and the variance of FST ∕Fmax

ST
 decreases. More generally, we 

have seen that FST ∕Fmax
ST

 does not depend on the mean member-
ship of the Q matrices under analysis, which makes it well suited 
to comparing the ancestry variabilities of populations with differ-
ent mean memberships. To clarify, the test of equality of FST ∕Fmax

ST
 

values cannot be used to assess the equality of mean membership 
among Q matrices—it compares their variability, not their mean 
membership.

We demonstrated the use of the FST ∕Fmax
ST

 measure in data sets 
exemplifying three scenarios in which ancestry variability is of par-
ticular interest. In a comparison of ancestry measured in admixed 
and nonadmixed populations by Verdu et al.  (2017), we found that 
the recently admixed Cape Verdean population exhibited greater 
variability in ancestry, as measured by FST ∕Fmax

ST
, than did nonad-

mixed populations (Figure  5). In a comparison of ancestries mea-
sured in different time periods in the same location, we provided 
quantitative support for a claim of Antonio et al. (2019) that certain 
eras in ancient Rome possessed more variable ancestry than others 
(Figure 6). Finally, in a comparison of different sets of loci studied 
in the same individuals, we found quantitative support both for the 
observation of Algee-Hewitt et al.  (2016) that ancestry variability 
across individuals was similar for two different sets of 13 loci, and 
for an increase in ancestry variability in high-resolution data com-
pared to data of lower resolution. In all three cases, our analyses 
provided quantitative support for claims previously argued primarily 
by qualitative observation.

Because the FST ∕Fmax
ST

 measure depends on Q matrices, limita-
tions of the methods used to generate the Q matrices extend to 
its calculation. For example, if individuals were mislabelled prior to 
analysis with methods such as structure or admixture, then our mea-
sure would be affected. Further, Q matrices generated by structure 
and admixture do not contain information about the magnitude of the 
difference between ancestral clusters; our measure only captures 
variation in ancestry with respect to the clusters that such programs 
infer.

The new measure, which we have implemented in the r package 
FSTruct, contributes to a body of methods for quantitative analy-
sis of inferred membership coefficients. This collection of methods 
includes computations useful for analysing the level of support ob-
served for different numbers of clusters K (Alexander & Lange, 2011; 
Evanno et al.,  2005) and methods of aligning the clustering solu-
tions observed in replicate analyses (Behr et al.,  2016; Jakobsson 
& Rosenberg, 2007; Kopelman et al., 2015), as well as software for 
graphical display (Ramasamy et al., 2014; Rosenberg, 2004) and for 
managing files and workflows associated with the analysis (Earl & 
VonHoldt, 2012; Francis, 2017).

A number of other studies have considered related but distinct 
problems in assessing variability of ancestry based on membership 
fractions. Rosenberg et al. (2005) described a ‘clusteredness’ statis-
tic that measures the extent to which individuals are placed into sin-
gle clusters rather than across multiple clusters. This statistic is 
maximal if each individual possesses a permutation of the 

membership vector (1,0,…,0) and minimal if all individuals possess 
membership vector 

(
1

K
,
1

K
, … ,

1

K

)
. Kerminen et al.  (2021) evalu-

ated the Shannon entropy applied to individual-level membership 
vectors, assessing variation in time in the Shannon entropy for study 
participants with different birth years. Whereas both the clustered-
ness statistic of Rosenberg et al.  (2005) and the Shannon entropy 
statistic of Kerminen et al. (2021) consider variability of the ancestry 
coefficients of single individuals, our FST ∕Fmax

ST
 measure examines 

variability of ancestry coefficient vectors across individuals. Thus, 
for example, comparing individuals in corresponding matrices in 
Figure  4a,d, clusteredness increases (and Shannon entropy de-
creases) as the membership of the highest-membership cluster in-
creases from Figure 4a to Figure 4d. However, FST ∕Fmax

ST
, measuring 

variability across individuals, is similar in corresponding matrices in 
the two panels, reflecting the visual similarity between panels of the 
interindividual patterns.

We note that in addition to analysing the Q-matrices produced 
by population structure inference programs such as structure and 
admixture, FSTruct can quantify variability in any matrix whose 
rows sum to 1. Applications are potentially numerous. For exam-
ple, single-cell sequencing technologies have enabled the iden-
tification and quantification of cell populations within tissues, 
revealing different patterns of variation, with some tissues con-
taining few cell populations, while others are more diverse (Wang 
et al., 2019). Our method enables comparisons of the variability 
of within-tissue cell populations, where tissues are analogous to 
individuals and cell populations are analogous to cluster mem-
berships. Our method could also be applied to quantify variabil-
ity among individuals of features such as mutational signatures, 
where the proportion of mutations belonging to a mutational type 
is analogous to a cluster membership (Alexandrov et al.,  2013; 
Rahbari et al., 2016).
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APPENDIX A 
In this appendix, we evaluate the approximate expected value of 
FST ∕F

max

ST
 calculated for a sample of I individuals (i = 1, 2, … , I), 

each with K = 2 membership coefficients 
(
q
(i)

1
, q

(i)

2

)
 drawn indepen-

dently from the Dirichlet distribution Dir
(
��1, ��2

)
. We use the no-

tation �
[
FST ∕F

max

ST
; �, �1, �2, I

]
 or simply �

[
FST ∕F

max

ST

]
 to denote this 

expectation.

OVERVIE W
To obtain the expectation �

[
FST ∕F

max

ST

]
, we first sample I in-

dependent and identically distributed Dir
(
��1, ��2

)
 random 

variables 
(
q
(i)

1
, q

(i)

2

)
, where q(i)

1
 is the membership coefficient of 

individual i in cluster 1, q(i)
2

 is the membership coefficient of indi-
vidual i in cluster 2, and q(i)

1
+ q

(i)

2
= 1. We assume that the sample 

size I is large.
We assume without loss of generality that the parametric mean 

membership coefficient for cluster 1 is at least as large as that for 
cluster 2; that is, �1 ≥ �2. As I → ∞, by the strong law of large num-
bers (Serfling,  1980, section 1.8), the sample mean membership 
coefficient for cluster 1, 1

I

∑I

i=1
q
(i)

1
, converges almost surely to the 

parametric mean λ1, and the sample mean membership coefficient 
for cluster 2, 1

I

∑I

i=1
q
(i)

2
, converges almost surely to the paramet-

ric mean λ2. Hence, for large I, the probability approaches 1 that 
1

I

∑I

i=1
q
(i)

1
≥

1

I

∑I

i=1
q
(i)

2
. As a result, because we consider large I, we as-

sume that the cluster with the greater parametric mean membership 
coefficient, cluster 1, also has the greater sample mean membership 
coefficient. We denote this sample mean, the mean membership of 
cluster 1 in a simulated population, by M =

1

I

∑I

i=1
q
(i)

1
. By definition, 

M ≥
1

2
. As stated above, M

a.s.
→�1 as I → ∞.

The quantity whose expectation we wish to evaluate under the 
model, FST ∕Fmax

ST
, is a function of the sampled membership coeffi-

cients, 
(
q
(1)

1
,q

(1)

2

)
, 
(
q
(2)

1
,q

(2)

2

)
, …, 

(
q
(I)

1
,q

(I)

2

)
. We let f

(
q
(i)

1
,q

(i)

2

)
 represent 

the Dirichlet probability density for 
(
q
(i)

1
,q

(i)

2

)
; because we are consid-

ering vectors with two components, the Dirichlet reduces to a Beta 
distribution (Kotz et al., 2000, p. 487),

where

and Γ is the gamma function.

The 
(
q
(i)

1
, q

(i)

2

)
 are independent and identically distributed. Hence, 

the expectation is

With this expression in hand, we proceed by writing the expression for 
FST ∕F

max

ST
 in terms of the membership coefficients 

(
q
(i)

1
, q

(i)

2

)
 and the 

sample size I . We then compute the integral, making use of the 
Dirichlet parameters �, �1 and �2.

APPROXIMATING FST ∕Fmax

ST
 UNDER THE DIRICHLET MODEL

The value of FST ∕Fmax

ST
 calculated for a population of I  individuals 

with membership coefficients 
(
q
(1)

1
, q

(1)

2

)
, … ,

(
q
(I)

1
, q

(I)

2

)
 can be writ-

ten using Equations 3 and 5 of Alcala and Rosenberg (2017),

We obtain

Recall that M =
1

I

∑I

i=1
q
(i)

1
 is the sample mean membership of the most 

prevalent ancestral cluster, assuming that the cluster with the greater 
parametric mean membership is also the cluster with the greater sam-
ple mean membership.

We now make an approximation to the denominator of 

Equation  A4. Because ⌊ IM⌋ = IM − {IM}, ⌊ IM⌋ + {IM}2 = 

IM−
(
{IM}−{IM}2

)
= IM−� where the error term � = {IM}(1 − {IM}) 

lies in 
[
0,

1

4

]
, taking its maximal value of 1

4
 when {IM} =

1

2
. For large 

sample size I , because M ≥
1

2
 and � ≤

1

4
, IM ≫ 𝛿, so that 

⌊IM⌋ + {IM}2 ≈ IM. Thus, we substitute IM in place of ⌊IM⌋ + {IM}2 in 
Equation A4, obtaining

(A1)f
(
q
(i)

1
,q

(i)

2

)
=

(
q
(i)

1

)��1−1
(
q
(i)

2

)��2−1

B
(
��1,��2

) ,

(A2)B
(
��1, ��2

)
=
Γ
(
��1

)
Γ
(
��2

)

Γ
(
��1+��2

) =
Γ
(
��1

)
Γ
(
��2

)
Γ(�)

,

(A3)
�

[
FST

Fmax

ST

; �, �1, �2, I

]
=
∫

1

q
(1)

1
=0 ∫

1

q
(2)

1
=0

⋯

∫

1

q
(I)

1
=0

FST

Fmax

ST

(
q
(1)

1
, q

(2)

1
, … , q

(I)

1

)

× f
(
q
(1)

1
, q

(1)

2

)
f
(
q
(2)

1
, q

(2)

2

)
⋯ f

(
q
(I)

1
, q

(I)

2

)
dq

(1)

1
dq

(2)

1
⋯ dq

(I)

1
.

FST=

1

I

∑I

i=1

�
q
(i)

1

�2

−M2

M(1−M)

Fmax

ST
=
⌊IM⌋+{IM}2− IM

2

IM(1−M)
.

(A4)
FST

�
q
(1)

1
q
(2)

1
… q

(I)

1

�

Fmax

ST

�
q
(1)

1
q
(2)

1
… q

(I)

1

� =

∑I

i=1

�
q
(i)

1

�2

− IM2

⌊IM⌋ + {IM}2 − IM2
.

(A5)FST

Fmax

ST

�
q
(1)

1
q
(2)

1
… q

(I)

1

�
≈

∑I

i=1

�
q
(i)

1

�2

− IM2

IM(1 −M)
.
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This assumption is equivalent to setting Fmax

ST
= 1.

To find an approximation for �
[
FST ∕F

max

ST

]
, it is convenient to make 

a further approximation in Equation A5, substituting M with �1. We 
justify this substitution by proving that as I → ∞,

Subtracting the right-hand side from the left-hand side, proving 
Equation A6 is equivalent to proving

If Xn
a.s.
→X and Yn

a.s.
→Y, then Xn + Yn

a.s.
→X + Y (Grimmett & 

Stirzaker,  2001a, p. 336, exercise 2; Grimmett & Stirzaker,  2001b, 
p. 354, exercise 2), so the sum of two terms that converge almost 
surely to 0 also converges almost surely to 0. Hence, it suffices to 
separately prove almost sure convergence to 0 of the two terms 
summed in Equation A7.

For the right-hand term, we use the continuous mapping theorem, 
which states that for a continuous function g and a random vector Xn, if 
Xn

a.s.
→X, then g

(
Xn

) a.s.
→g(X) (van der Vaart, 1998, p. 7, Theorem 2.3). We 

consider the continuous function g(x) = − x ∕(1 − x) + �1 ∕
(
1 − �1

)
 

and recall that as I → ∞, M
a.s.
→�1. It follows that as I → ∞, and M

a.s.
→�1, 

g(M)
a.s.
→g

(
�1

)
; that is, −M∕(1 −M) + �1 ∕

(
1 − �1

) a.s.
→0.

For the left-hand term, the factor 1∕
[
M(1 −M)

]
− 1∕

[
�1

(
1 − �1

)]
 

converges almost surely to 0 by the continuous mapping theo-
rem with g(x) = 1∕

[
x(1 − x)

]
− 1∕

[
�1

(
1 − �1

)]
. By the strong law 

of large numbers, 1

I

∑I

i=1

�
q
(i)

1

�2

 converges almost surely to 

� = �

[(
q
(i)

1

)2
]
= Var

[
q
(i)

1

]
+ �

2

1
= �1

(
1 − �1

)
∕(� + 1) + �

2

1
= �1

(
��1 + 1

)
∕(� + 1) 

(Serfling, 1980, Theorem B). If Xn
a.s.
→X and Yn

a.s.
→Y , then XnYn

a.s.
→XY 

(Grimmett & Stirzaker,  2001a, p. 336, exercise 2; Grimmett & 
Stirzaker, 2001b, p. 354, exercise 2), so that the left-hand term 
of Equation A7 converges almost surely to � × 0 = 0.

E VALUATING �
[
FST ∕F

max

ST

]
 UNDER THE DIRICHLE T 

MODEL
Inserting our expression for f

(
q
(i)

1
,q

(i)

2

)
 from Equation A1 and our ex-

pression for FST ∕Fmax

ST
 from Equation A6 into Equation A3 allows us 

to write an approximate expression for the expectation of FST ∕Fmax

ST
 

given the parameters of the Dirichlet distribution and the sample 
size I:

Examining the quantity 
∑I

i=1

�
q
(i)

1

�2

− I�2
1
, we observe that 

Equation  A8 can be decomposed as a sum of I + 1 terms, one for 
each of the 

(
q
(i)

1

)2

 terms, and one for the − I�2
1
 term. Assign the first I 

of these separate terms the labels L1, L2, … , LI and the − I�2
1
 term the 

label L∗, so that �
[
FST∕F

max

ST
; �, �1, �2, I

]
≈L1+L2+ ⋯ +LI+L∗.

We begin by evaluating the term L∗, which can be written

Recalling that q
(i)

2
= 1 − q

(i)

1
, we observe that the integrand (

q
(i)

1

)��1−1
(
q
(i)

2

)��2−1

∕B
(
��1,��2

) is simply the Beta probability density 

function, which integrates to one. Hence, the product evaluates to 1 

and L∗ simply equals a constant:

We next evaluate the Li terms. For each i in 1, 2, … , I,

As was the case for L∗, the integrand of the integral inside the product 
is the Beta probability density function, so the product evaluates to 
one. Thus,

The remaining integral can be evaluated by noting that 
∫
1

0
xa−1(1−x)b−1dx = B(a, b). We employ this identity to simplify Li, 

obtaining

By Equation A2 and the property of gamma functions Γ(z + 1) = zΓ(z), 
this expression simplifies to

We now combine Equations A9 and A10 to complete the calcula-
tion in Equation A8, noting that Li does not depend on i, so that each 
Li follows Equation A10.

(A6)
∑I

i=1

�
q
(i)

1

�2

− IM2

IM(1 −M)

a.s.
→

∑I

i=1

�
q
(i)

1

�2

− I�2
1

I�1
�
1 − �1

� .

(A7)

[
1

I

I∑
i=1

(
q
(i)

1

)2

][
1

M(1 −M)
−

1

�1

(
1 − �1

)
]
+

[
−M

1 −M
+

�1

1 − �1

]
a.s.
→0.

(A8)

�

�
FST

Fmax

ST

; �, �1, �2, I

�
≈
∫

1

q
(1)

1
=0 ∫

1

q
(2)

1
=0

⋯

∫

1

q
(I)

1
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�
q
(i)
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1
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� ×
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B
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q
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1
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�
q
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2
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B
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2
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B
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1
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.
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− I�2

1

I�1
(
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)
I∏

i=1
∫

1

q
(i)

1
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.

(A9)L∗ = −
I�2

1

I�1
(
1 − �1

) = −
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1 − �1
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