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ABSTRACT
Mixed-membership unsupervised clustering is widely used to extract informative patterns from data in
many application areas. For a shared dataset, the stochasticity and unsupervised nature of clustering
algorithms can cause difficulties in comparing clustering results produced by different algorithms, or even
multiple runs of the same algorithm, as outcomes can differ owing to permutation of the cluster labels
or genuine differences in clustering results. Here, with a focus on inference of individual genetic ancestry
in population-genetic studies, we study the cost of misalignment of mixed-membership unsupervised
clustering replicates under a theoretical model of cluster memberships. Using Dirichlet distributions to
model membership coefficient vectors, we provide theoretical results quantifying the alignment cost as
a function of the Dirichlet parameters and the Hamming permutation difference between replicates. For
fixed Dirichlet parameters, the alignment cost is seen to increase with the Hamming distance between
permutations. Datasets with low variance across individuals of membership coefficients for specific clusters
generally produce high misalignment costs—so that a single optimal permutation has far lower cost than
suboptimal permutations. Higher variability in data, as represented by greater variance of membership
coefficients, generally results in alignment costs that are similar between the optimal permutation and
suboptimal permutations. We demonstrate the application of the theoretical results to data simulated under
the Dirichlet model, as well as to membership estimates from inference of human-genetic ancestry. The
results can contribute to improving cluster alignment algorithms that seek to find optimal permutations of
replicates. Supplementary materials for this article are available online.
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1. Introduction

In mixed-membership unsupervised clustering, statistical mod-
els of a set of clusters and a set of entities are considered, so
that the total “membership” of an entity is distributed across
the clusters (Airoldi et al. 2015a). Using the models, patterns
inferred among the entities are interpreted by examining their
co-clustering, and a cluster itself is interpreted by examining the
entities that possess large membership fractions for the cluster.

Mixed-membership unsupervised clustering has found
diverse applications in such areas as document and text classifi-
cation, statistics of networks, and medical diagnostics (Airoldi
et al. 2015b). In one of the most prominent areas of application—
the field of population genetics—it has long been a central
technique for recovering information about genetic relation-
ships of individuals and populations. In typical population-
genetic studies, researchers collect genotypes from individuals
within a species, measure features of genetic variation among
the individuals, and infer evolutionary processes that have
generated those features. Mixed-membership unsupervised
clustering techniques designed specifically for population-
genetic data—Structure (Pritchard, Stephens, and Donnelly
2000), Admixture (Alexander, Novembre, and Lange 2009),
and Baps (Corander, Waldmann, and Sillanpää 2003), for

CONTACT Noah A. Rosenberg noahr@stanford.edu Department of Biology, Stanford University, Stanford, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

example—use stochastic iterative clustering algorithms to
infer membership fractions for individuals in clusters. The
membership fraction for an individual in a cluster is interpreted,
depending on the setting, in one of two ways. In some settings, it
represents the proportion of the individual’s genome originating
in the cluster, or the probability that within the individual,
an observation of a specific site in the genome originates
from that cluster, with different sites having independent and
identical probabilities. In others, it gives the probability that the
individual’s entire genome originates from the cluster, so that
different sites are identically distributed but fully dependent.

In unsupervised clustering, two challenges to data analysis
have long been recognized: label-switching and genuine mul-
timodality (Stephens 2000; Jasra, Holmes, and Stephens 2005;
Jakobsson and Rosenberg 2007; Airoldi et al. 2015a). Label-
switching describes the fact that because the methods include
stochastic steps, if K clusters are labeled 1, 2, . . . , K, then K!
distinct permutations of the cluster labels have equivalent mean-
ing. For example, Figure 1(A) shows two permutations of the
clusters for a single set of cluster memberships; the panels differ
only in that the cluster labels, each of which is represented by
a color, differ between the permutations. When label-switching
is present, clustering replicates can be aligned by identifying
the unique permutation that makes the replicates equivalent
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Figure 1. Label-switching and genuine multimodality. (A)–(C) Pairs of replicates. (D)–(F) Optimal permutations of replicate 2 to align with replicate 1. Replicates are
simulated using the Dirichlet parameter values in Appendix A. (A) Label-switching only. (B) Label-switching with two independent replicates simulated from the same
parameter values. (C) Genuine multimodality. (D) Optimal permutation for (A). (E) Optimal permutation for (B). (F) Optimal permutation for (C). The number of individuals
per population is 50.

(Figure 1(D)). Genuine multimodality arises if no permutation
exists that makes replicates equivalent, such as in Figure 1(C).
Replicates using the same data can fail to produce identical
memberships, even after they are permuted to align in many
features (Figure 1(F)). A common scenario is that in which repli-
cates are not strictly equivalent (Figure 1(B)), but a permutation
makes them extremely similar (Figure 1(E)); this situation is
informally described as possessing label-switching rather than
genuine multimodality.

To make use of cluster analyses from multiple datasets, algo-
rithms, or settings, a method is needed for identifying the
permutations that eliminate label-switching and reveal genuine
multimodality. In the population-genetic context, early attempts
at permutation proceeded informally, as the particular features
of datasets often rendered the optimal permutations relatively
easy to identify (e.g., Rosenberg et al. 2001; Rosenberg 2004). To
advance on this situation, several algorithms, including Clumpp
(Jakobsson and Rosenberg 2007), Clumpak (Kopelman et al.
2015), and Pong (Behr et al. 2016), have been introduced for
identifying optimal alignments, where an optimal alignment is
one that minimizes a cost function or maximizes a similarity
function. These algorithms are now widely used with unsuper-
vised clustering methods to clarify the results that the methods
produce.

The alignment algorithms are generally seen to perform well
in identifying permutations that visually align replicates (Jakob-
sson and Rosenberg 2007; Kopelman et al. 2015; Behr et al.
2016). However, despite the widespread use of alignment
algorithms in population genetics, formal evaluations of their
success at identifying optimal permutations have not been
performed. Further, relatively little understanding has been

available regarding the alignment cost difference of suboptimal
permutations in relation to minimal-cost permutations; thus,
when permutations are suboptimal, the potential for reducing
the alignment cost from that achieved by existing algorithms
remains unclear.

In this study, we introduce a model for evaluating the cost dif-
ference of optimal and suboptimal permutations. We treat indi-
vidual memberships as drawn from a Dirichlet distribution with
specified parameters. Under the Dirichlet model, we explore the
cost of suboptimal permutations as a function of the number of
misaligned clusters—the Hamming distance between permuta-
tions. We find that cost generally increases with the number of
misaligned clusters. For examples in which Dirichlet parameters
assign each individual primarily to a single cluster, the align-
ment cost for suboptimal permutations is generally substantially
higher than for the optimum. For “noisy” data, as represented by
Dirichlet parameters with similar mean values of membership
components for different clusters, suboptimal permutations can
possess cost similar to the optimum. The model can help in
understanding challenges for algorithms that seek to produce
minimal-cost permutations.

2. Model

2.1. Terminology

Model-based unsupervised clustering algorithms in population
genetics produce a vector of membership coefficients for each
individual. For N individuals and K clusters, the output of a
clustering algorithm is an estimated N × K membership
coefficient matrix Q̂, where q̂ik is the estimated coefficient for
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individual i in cluster k. In models in which each individual
is treated as belonging to a single cluster, q̂ik represents the
estimated probability that individual i is a member of cluster k.
In mixed-membership models, in which an individual possesses
membership in multiple clusters, q̂ik is the estimated fraction of
the data from individual i that originates from cluster k.

For convenience, we use the language of mixed-membership
unsupervised clustering in population genetics, but our analysis
can also apply to cases of population-genetic clustering in which
membership coefficients are interpreted as probabilities rather
than ancestry fractions, as well as to related applications outside
population genetics. Note that in the population-genetic con-
text, we distinguish “populations,” representing predetermined
groups of individuals, from “clusters,” the K groups for which
membership is estimated.

Hence, each individual has an estimated membership vector
q̂i = (q̂i1, q̂i2, . . . , q̂iK), for which the sum across clusters is∑K

k=1 q̂ik = 1. The estimated membership matrix Q̂ is a right-
stochastic matrix, and each column vector characterizes a clus-
ter by the list of associated memberships of the N individuals.

In population genetics, unsupervised cluster analyses study
the patterns of genetic variation of individuals from multiple
populations. They infer a matrix that contains the estimated
membership proportions of the individuals in the K clusters,
where clusters correspond either to supervised ancestry groups
or emergent groups appearing in specific data analyses. For
instance, in a supervised analysis with three clusters 1, 2, and 3,
representing ancestry in three distant populations, respectively,
an individual with estimated membership vector (0.6, 0.3, 0.1)

has 60% of its genome estimated to originate from population 1,
30% from population 2, and 10% from population 3.

2.2. Dirichlet Model

We consider membership coefficients drawn from a theoretical
model. Each of a set of predetermined populations is assumed
to have its own characteristic distribution of membership coeffi-
cients for a series of K clusters. For an analysis with K clusters, a
natural choice to model the individual membership coefficients
of a population is a Dirichlet distribution of order K (Kotz,
Balakrishnan, and Johnson 2004, chap. 49).

In this model, for a given predefined population, the expected
membership proportion of an individual in cluster k is the mean
of the kth random variable in a Dirichlet-distributed random
vector. Suppose a random vector q is drawn from the Dirichlet
distribution of order K with parameters a = (a1, a2 . . . , aK),
where ak > 0 for all k. Writing a0 = ∑K

k=1 ak, this q ∼ Dir(a)
has probability density function

f (q; a) = �(a0)∏K
k=1 �(ak)

K∏
k=1

qak−1
k , (1)

where �(·) is the gamma function (Kotz, Balakrishnan, and
Johnson 2004).

It is convenient to convert Dirichlet parameters a =
(a1, a2, . . . , aK) to expected memberships, (E[q1],E[q2],
. . . ,E[qK]), as the expected memberships are often more
easily understood than the Dirichlet parameters. We model
a set of populations using Dirichlet distributions, with the

Dirichlet parameter vector a chosen so that each mean value
E[qk] = ak/a0 corresponds to the assumed mean proportion
of cluster k in a population; the sum a0 controls the variance.
Memberships of different individuals from the same population
are modeled as independent random vectors sampled from
the Dirichlet model with a shared set of parameter values.
Memberships of individuals from different populations follow
distributions with different Dirichlet parameters.

We use superscript ·(�) on the Dirichlet parameters a to
distinguish the parameter vector for population �. Thus, for
example, for a set I1 of individuals from population 1 and a
set I2 of individuals from population 2, qi ∼ Dir(a(1)) for all
i ∈ I1 and qi ∼ Dir(a(2)) for all i ∈ I2, where a(1)/a(1)

0 denotes
the population-wise parametric mean membership proportions
for population 1 and a(2)/a(2)

0 denotes those proportions for
population 2.

2.3. Distance Function

To quantify the alignment cost for a pair of replicate analyses,
we will need a dissimilarity measure for pairs of membership
coefficients on the same samples. Consider two replicate N × K
membership coefficient matrices, P and Q. We follow Jakobsson
and Rosenberg (2007) in relying on the Frobenius norm of their
difference (see also Rosenberg et al. 2002).

In particular, using ‖·‖F to denote the Frobenius norm, the
distance between the membership matrices P and Q can be
calculated as

D1,2 =
N∑

i=1

K∑
k=1

(pik − qik)
2 = ‖P − Q‖2

F . (2)

As
∑K

k=1(pik − qik)
2 ≤ ∑K

k=1 p2
ik + ∑K

k=1 q2
ik ≤ 2, each sum∑K

k=1(pik − qik)
2 lies in [0, 2]. The choice of the Frobenius

norm to measure the difference between membership matrices
not only accords with past studies, it is also mathematically
convenient in our framework, as the sum of squares that it
entails facilitates the computation of integrals with respect to the
Dirichlet distribution.

3. Alignment Cost for a Single Individual

3.1. Overview

With our Dirichlet model and distance function established, we
now describe the computation of the alignment cost associated
with a pair of replicate clusterings and a single individual. Under
the model, the membership coefficient vector of an individual
is a random vector drawn from the Dirichlet distribution with
specified parameters.

Consider two replicate draws from the Dirichlet model,
representing outcomes of two cluster analyses. Both replicates
have K clusters. However, owing to label-switching, multi-
modality, or both, the clusters are not necessarily aligned.
In the most general case, in one replicate, an individual has
membership vector p drawn from a Dirichlet distribution
Dir(a), and the same individual has membership vector q
drawn from Dir(b) in the second replicate. Both p and q are
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random vectors; when two replicates are aligned, p and q are
drawn from the same distribution, and when the replicates
are not aligned, the random vectors are drawn from different
distributions.

The contribution of the individual to the distance between
replicates 1 and 2 is the random variable

∑K
i=1(pi − qi)2 =∥∥p − q

∥∥2
2. Denote the mean value of this random variable∥∥p − q

∥∥2
2 by Aa,b, where p ∼ Dir(a) and q ∼ Dir(b). Using

the probability density function of the Dirichlet distribution in
Equation (1), this value can be computed as

Aa,b = ∫ 1
p1=0

∫ 1−p1
p2=0 · · · ∫ 1−∑K−2

i=1 pi
pK−1=0

∫ 1
q1=0

∫ 1−q1
q2=0 · · · ∫ 1−∑K−2

i=1 qi
qK−1=0

[∑K−1
i=1 (pi − qi)2 +

(
(1 − ∑K−1

i=1 pi) − (1 − ∑K−1
i=1 qi)

)2]

(
∏K−1

i=1 pai−1
i )(1−∑K−1

i=1 pi)aK −1

[∏K
i=1 �(ai)]/�(

∑K
i=1 ai)

(
∏K−1

i=1 qbi−1
i )(1−∑K−1

i=1 qi)bK −1

[∏K
i=1 �(bi)]/�(

∑K
i=1 bi)

dqK−1 · · · dq2 dq1 dpK−1 · · · dp2 dp1.

(3)

Here, we have made use of the fact that pK = 1−∑K−1
i=1 pi and

qK = 1−∑K−1
i=1 qi. It is often convenient to consider the special

case for label-switching, in which the entries of b represent
a permutation of the entries of a. In other words, denote the
permutation between two replicates by φ, so that cluster φ(i)
gives the number of the cluster in replicate 2 that corresponds
to cluster i in replicate 1.

For the label-switching case, in replicate 1, the parameters
associated with the K cluster memberships are (a1, a2, . . . , aK).
In replicate 2, corresponding parameters are (b1, b2, . . . , bK) =
(aφ(1), aφ(2), . . . , aφ(K)). For simplicity, we let bi = aφ(i). Only
for the identity permutation φ0, for which φ(i) = i for all i =
1, 2, . . . , K, are the two replicates aligned. Because the ai and bi
are the same set of items, permuted, a0 = ∑K

i=1 ai = ∑K
i=1 bi =

b0.
We are interested in the mean contribution of an individual

to the alignment cost, Ca,b, which can be calculated as the
difference between the contribution of a random individual to
the distance between a pair of replicates aligned by permutation
b (misaligned for b �= a) and the contribution to the distance
between correctly aligned replicates:

Ca,b = Aa,b − Aa,a
2

. (4)

Here, we include a factor of 1
2 based on the fact that

∑K
k=1(pik −

qik)
2 lies in [0, 2], so that Aa,b − Aa,a is bounded above by 2; the

cost Ca,b ranges from 0 to 1.
We now evaluate Equation (3) to obtain the individual mean

contribution to distance between replicates. First, we consider K
= 2. We next examine K = 3, and we generalize to arbitrary K.
We explore the effect of the Dirichlet parameters on these mean
contributions.

3.2. K = 2

Consider two replicates, with Dirichlet parameters (a1, a2) and
(b1, b2) = (aφ(1), aφ(2)).

Theorem 3.1. Consider a population of individuals with mem-
bership coefficients in K = 2 clusters. Suppose that in one
replicate, the membership coefficients of the individuals follow
a Dirichlet model with parameters a = (a1, a2), and in a
second replicate, they follow a Dirichlet model with parameters
b = (b1, b2). The mean contribution of a randomly chosen
individual to the distance between replicates is

Aa,b = 2
[

(a1 + 1)a1
(a1 + a2 + 1)(a1 + a2)

+ (b1 + 1)b1
(b1 + b2 + 1)(b1 + b2)

− 2a1b1
(a1 + a2)(b1 + b2)

]
. (5)

Proof of Theorem 3.1. When K = 2, Equation (3), representing
the mean contribution of a randomly chosen individual to the
distance between two replicates, becomes

Aa,b = ∫ 1
p1=0

∫ 1
q1=0

(
(p1 − q1)

2 + [
(1 − p1) − (1 − q1)

]2
)

× pa1−1
1 (1−p1)a2−1

�(a1) �(a2)/�(a1+a2)
qb1−1

1 (1−q1)b2−1

�(b1) �(b2)/�(b1+b2)
dq1 dp1.

We compute this integral in Appendix B to obtain the result.

We can then apply Theorem 3.1 to obtain the contribution
of an individual in the special case that the two replicates are
aligned. In other words, we calculate Aa,a:

Aa,a = 4a1a2
(a1 + a2)2(a1 + a2 + 1)

. (6)

For misaligned replicates that differ by label-switching, consider
a permutation φ with (b1, b2) = (a2, a1). We have

Aa,φ(a) = 2
a3

1 + a3
2 + a2

1 + a2
2 − a2

1a2 − a1a2
2

(a1 + a2)2(a1 + a2 + 1)
. (7)

Applying Equations (7), (6), and (4), the mean contribution of
an individual to alignment cost is

Ca,φ(a) = (a1 − a2)
2

(a1 + a2)2 . (8)

Figure 2 plots Equation (8) as a function of a1 and a2. For
a2 = a1, the two replicates have the same parameters, and
the mean contribution of an individual to the cost is 0. In each
replicate, the mean membership coefficient for cluster 1 is 1

2 , and
the mean for cluster 2 is also 1

2 . Starting from the a2 = a1
line in the a1a2-plane, as a2 increases while holding a1 constant,
or as a1 increases while holding a2 constant, the cost increases.
These parameter changes make the permuted replicate with
parameters (a2, a1) quite different from the unpermuted repli-
cate with parameters (a1, a2), so that a replicate is increasingly
distinguishable from its label-switching permutation. The cost
approaches 1 for a replicate with high a1 and low a2, or vice
versa; in these cases, nearly all of the membership lies in one
of the two clusters, so that the alignment cost of switching the
two clusters is nearly 1.
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Figure 2. Alignment cost (Equation (8)) for permutation φ = (2, 1) as a function
of the Dirichlet parameters a1 and a2 for a model with K = 2 clusters under label-
switching. Parameters are varied in [1, 25].

Table 1. Alignment cost for each of the six label-switching cases with K = 3, as
functions of the Dirichlet parameters a1, a2, a3.

Permutation Permutation Alignment cost
number φ(1, 2, 3) Ca,φ(a)

1 (1, 2, 3) 0
2 (1, 3, 2) (a2 − a3)2/(a1 + a2 + a3)2

3 (3, 2, 1) (a1 − a3)2/(a1 + a2 + a3)2

4 (2, 1, 3) (a1 − a2)2/(a1 + a2 + a3)2

5 (2, 3, 1) (a2
1 + a2

2 + a2
3 − a1a2 − a1a3 − a2a3)

/(a1 + a2 + a3)2

6 (3, 1, 2) (a2
1 + a2

2 + a2
3 − a1a2 − a1a3 − a2a3)

/(a1 + a2 + a3)2

NOTE: Each cost is obtained by evaluating Equation (9), and then applying Equa-
tion (4).

3.3. K = 3

Considering two replicates, the number of permutations possi-
ble for the clusters is K! = 6. As in the K = 2 case, for each
permutation φ, we can obtain the mean individual contribution
to the distance between two replicates. We compute Aa,b from
Equation (3):

Aa,φ = ∫ 1
p1=0

∫ 1−p1
p2=0

∫ 1
q1=0

∫ 1−q1
q2=0

(
(p1 − q1)2

+(p2 − q2)2 + [
(1 − p1 − p2) − (1 − q1 − q2)

]2
)

pa1−1
1 pa2−1

2 (1−p1−p2)a3−1

�(a1) �(a2) �(a3)/�(a1+a2+a3)

× qb1−1
1 qb2−1

2 (1−q1−q2)b3−1

�(b1) �(b2) �(b3)/�(b1+b2+b3)
dq2 dq1 dp2 dp1.

(9)

For each φ, we compute the alignment cost for φ from Equa-
tion (4).

The costs for the six permutations appear in Table 1. We
omit their derivations, as each can be obtained from the general
result that we present for arbitrary K (Section 3.4). In the table,
the cost of 0 for the identity permutation appears in the first
row. The next three rows show the costs associated with each
of the permutations with Hamming distance 2 from the initial
permutation (1, 2, 3), where the Hamming distance tabulates the
number of clusters that are misaligned between a pair of repli-
cates. The last two rows show the costs for the two permutations
with Hamming distance 3 from (1, 2, 3).

Figure 3 plots the alignment cost from Table 1 for label-
switching with a specific permutation (2, 3, 1) as a function of
a1 and a2, for three fixed values of a3. In each panel, varying the
three parameters in [1, 25], for a1 = a2 = a3, the alignment
cost has the minimum value of 0. In Figure 3(A), the largest
alignment cost is reached when one of the three parameters
has value 25 and the other two are equal to 1; in Figure 3(C),
the maximum occurs when two parameters equal 1 and the
third is 25. In the intermediate Figure 3(B), large values occur
both in the case that two values equal 1 and the third is 13,
and in the case that one value is 1, one is 25, and the third is
13. These maxima reflect the intuition that when memberships
differ substantially across clusters, the identity permutation has
substantially lower cost than do permutations that represent
misalignments.

3.4. Arbitrary K

We now generalize the calculation of the individual mean con-
tribtion to distance between replicates (Equation (3)) and align-
ment cost (Equation (4)) from the K = 2 case to arbitrary K.

Theorem 3.2. Consider a population of individuals with mem-
bership coefficients in K ≥ 2 clusters. Suppose that in one
replicate, the membership coefficients of the individuals follow
a Dirichlet model with parameters a = (a1, a2, . . . , aK), and in a
second replicate, they follow a Dirichlet model with parameters
b = (b1, b2, . . . , bK). The mean contribution of a randomly
chosen individual to the distance between replicates is

Aa,b = 2
[∑K−1

i=1 (ai+1)ai+∑K−2
i=1

∑K−1
j=i+1 aiaj

(a0+1)a0

+
∑K−1

i=1 (bi+1)bi+∑K−2
i=1

∑K−1
j=i+1 bibj

(b0+1)b0

−
∑K−1

i=1 aibi+(
∑K−1

i=1 ai)(
∑K−1

i=1 bi)
a0b0

]
.

(10)

Recall that a0 = ∑K
i=1 ai and b0 = ∑K

i=1 bi; the proof
appears in Appendix C. Note that in the case of K = 2, Equa-
tion (10) reduces to Equation (5). If two replicates are aligned,
then we can derive the mean contribution of an individual to
the distance between replicates by substituting bi = ai into
Equation (10) for all i.

Corollary 3.3. The mean contribution to the distance between
two aligned replicates of an individual whose membership coef-
ficients follow a Dir(a) distribution, where a = (a1, a2, . . . , aK),
is

Aa,a = 4
∑K−1

i=1
∑K

j=i+1 aiaj

(a0 + 1)a2
0

. (11)

We obtain this result by applying Theorem 3.2 to the identity
permutation φ0. For K = 2, Equation (11) reduces to Equa-
tion (6). For a general permutation φ, supposing that the two
replicates are not necessarily correctly aligned, we calculate the
contribution of a randomly chosen individual to the cost using
Equations (10) and (11), following Equation (4).

Corollary 3.4. Suppose the membership coefficients of the
individuals in a Dirichlet model follow Dir(a), where a =
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Figure 3. Alignment cost (Table 1) for permutation φ = (2, 3, 1) as a function of Dirichlet parameters a1 and a2 for K = 3 clusters and fixed a3. (A) a3 = 1. (B) a3 = 13. (C)
a3 = 25. Parameters are varied in [1, 25].

(a1, a2, . . . , aK). The mean contribution of an individual to the
alignment cost for a second replicate whose parameters follow
a Dirichlet model with permutation φ(a) is

Ca,φ(a) = 1
a2

0

K∑
i=1

ai(ai − bi). (12)

Once again, for K = 2, Equation (12) reduces to Equation (8).
For K = 3, Equation (12) gives Table 1. With these general results
on the alignment cost under label-switching now established, we
proceed to analyze the effects of the parameters on the alignment
cost.

4. Effect of the Parameters under Label-Switching

4.1. Effect of the Dirichlet Parameters with Fixed
Permutation

For label-switching with a fixed permutation, the value of
Ca,φ(a) in Equation (12) is only affected by the values of the
Dirichlet parameters. In general, as the difference between the
parameter of a cluster and its corresponding parameter under
permutation—the difference between ai and aφ(i)—increases,
Ca,φ(a) also increases.

We have already examined the effect of the Dirichlet param-
eters in cases with K = 2 and K = 3. In Figure 2, we examined the
relationship between Ca,φ(a) and the ai for the only nonidentical
permutation with K = 2, φ(1, 2) = (2, 1). The alignment cost
was equal to 0 for a1 = a2, that is, when both clusters have
mean membership 0.5. The cost increases as a1 and a2 become
increasingly different.

For K = 3, similar relationships appear in Figure 3 for the
permutation (2, 3, 1). For a1 = a2 = a3, the alignment cost
reaches the minimum of zero. In panels A and C, with domain
[1, 25] for each of the three parameters, the alignment cost is
maximal when one of the three is 25 and the other two are 1; in
panel B, with a3 fixed, the maximum occurs at (a1, a2, a3) =
(1, 1, 13). The more diverged the values of three parameters,
the higher the alignment cost. This result corresponds to the
intuition that when clusters have distinct membership patterns,
they are less easily mistaken for each other.

4.2. Effect of the Permutation with Fixed Dirichlet
Parameters

The cost for a permutation increases as its parameters increas-
ingly diverge from the starting permutation. Suppose now that
we consider the effect only of the permutation. The minimum
possible value of Ca,φ(a) in Equation (12) is 0. Clearly, the cost is
0 for two replicates in which the second replicate is unpermuted
in relation to the first.

Consider a permutation cycle PC: a subset of elements in
the permutation φ that are permuted among themselves, so
that φ(i) ∈ PC for all i ∈ PC and φ(i) �∈ PC for all
i �∈ PC. We interpret a permutation cycle as minimal in the
sense that none of its proper subsets is a permutation cycle.
Suppose φ is decomposed into NPC permutation cycles. The
set of all elements I = {1, 2, . . . , K} is the disjoint union of
all permutation cycles: I = ⋃̇NPC

h=1 PCh. We have the following
result.

Proposition 4.1. Consider a permutation φ. Ca,φ(a) = 0 if and
only if for each permutation cycle PCh in φ, there exists a
constant ch > 0 such that ai = ch for all i ∈ PCh.

The proposition states that the cost associated with φ is
zero if and only if for all permutation cycles, all clusters in the
permutation cycle have the same Dirichlet parameter.

Proof of Proposition 4.1. We prove the “if ” direction first. Index
the permutation cycles by h. Suppose for each h that ai = ch
for all i ∈ PCh. For each i, suppose that when φ is decomposed
into permutation cycles, φ(i) is in permutation cycle PCh. Then
ai = ch. Because cluster i and cluster φ(i) are in the same
permutation cycle, bi = aφ(i) = ai = ch. Therefore, Ca,φ(a) =
(1/a2

0)
∑K

i=1 ai(ai − ai) = 0.
For the “only if ” direction, suppose Ca,φ(a) = (1/a2

0)
∑K

i=1
ai(ai − bi) = 0. We have

∑K
i=1 aibi = ∑K

i=1 a2
i . Equiva-

lently, (
∑K

i=1 aibi)2 = (
∑K

i=1 a2
i )

2 = (
∑K

i=1 a2
i )(

∑K
i=1 b2

i )
because b = φ(a) and all the Dirichlet parameters are
positive. By the Cauchy-Schwarz inequality, (

∑K
i=1 aibi)2 ≤

(
∑K

i=1 a2
i )(

∑K
i=1 b2

i ), with equality if and only if a = αb for
some constant α. Because

∑K
i=1 ai = ∑K

i=1 bi, the only value α

can take is 1, so that ai = bi = aφ(i) for all i = 1, 2, . . . , K. Note
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that i and φ(i) are in the same permutation cycle, say, PCh, by
definition. We can denote by ch the value ai = aφ(i); the value
ch applies for all i in PCh. Thus, assuming Ca,φ(a) = 0 produces
the conclusion that ai = ch for all i ∈ PCh.

Note that the proposition applies to the identity permutation
φ = φ0. The identity permutation places each cluster in its own
permutation cycle, so that φ(i) = i, bi = aφ(i) = ai, and
(1/a2

0)
∑K

i=1 ai(ai − bi) = 0.
Consider an example of Proposition 4.1 with permutation

φ1(1, 2, 3, 4, 5) = (2, 1, 4, 5, 3). This permutation has two per-
mutation cycles: {1, 2} and {3, 4, 5}. If a1 = a2 and a3 =
a4 = a5, then Ca,φ1(a) = 0. This can be easily seen from the
fact that in Equation (12), Ca,φ(a) = 0 if ai = bi for all
i = 1, 2, . . . , K. When two clusters have the same parameter,
they assign the same mean membership value, so that they are
indistinguishable. Although φ is not the identity, it produces
cost 0 because it only permutes indistinguishable clusters.

We also report the maximum possible cost as a function
of the Dirichlet parameters, together with the permutation
that gives this cost. This upper bound on the cost provides
information on the worst-case misalignment possible given
two replicates. Examining the form of Equation (12), for fixed
(a1, a2, . . . , aK), this maximum can be calculated by minimizing∑K

i=1 aibi, where b = φ(a), over permutations φ.

Proposition 4.2. Fix Dirichlet parameters a. Let σ describe a
permutation that orders a1, a2, . . . , aK with aσ(1) ≤ aσ(2) ≤
· · · ≤ aσ(K). Considering all permutations φ, the cost Ca,φ(a) is
maximized when the permutation φ satisfies φ(i) = σ(K −
σ−1(i) + 1) for i = 1, 2, . . . , K. The maximum cost is
(1/a2

0)
∑K

i=1 aσ(i)
[
aσ(i) − aσ(K−i+1)

]
.

The proposition states that the maximal value of Ca,φ(a) is
attained when φ matches the largest parameter in a to the
smallest value in b, the second-largest value in a to the second-
smallest value in b, and so on.

Proof of Proposition 4.2. We make use of the rearrangement
inequality (Steele 2004, p. 78). Write aσ(1) ≤ aσ(2) ≤ · · · ≤
aσ(K), and write r = σ−1(i), denoting the rank order of ai in
the list (a1, a2, . . . , aK), with 1 smallest and K largest.

By the rearrangement inequality, the minimum of
∑K

i=1 aibi
= ∑K

i=1 aiaφ(i) = ∑K
i=1 aσ(i) aφ(σ(i)) is attained when φ(i) =

σ(K − r + 1) for each i. The value of
∑K

i=1 aibi at the minimum
is

min
φ

K∑
i=1

aibi =
K∑

i=1
ai aσ(K−r+1) =

K∑
i=1

aσ(i)aσ(K−i+1).

With the permutations that produce minimal and maximal
cost established, we can examine the effect of the permutation
on cost more generally. Figure 4 shows the cost contributed
by individuals in each of four populations, for all 24 permuta-
tions of four clusters with fixed Dirichlet parameters. With the
parameters fixed, the contribution to alignment cost in general

increases as more clusters are misaligned. This result can be seen
in the fact that permutations with 3 or 4 misaligned clusters tend
to lie toward the right side of the figure, which is ordered left to
right by increasing cost; permutations with only two misaligned
clusters tend to lie near the left side. The maximal cost follows
Proposition 4.2: in panels A–C, the highest-cost permutation
reverses the order of the mean memberships, as do the four
highest-cost permutations with equal cost in panel D.

Although the general pattern is that an increase in the
number of misaligned clusters increases the alignment cost,
many counterexamples exist. For example, in Figure 4(A),
φ1(1, 2, 3, 4) = (4, 2, 3, 1), with two clusters misaligned, has
greater cost than φ2(1, 2, 3, 4) = (4, 3, 1, 2), with all four clusters
misaligned. Permutation φ1 exchanges the two clusters with
the greatest difference in mean, whereas permutation φ2, while
assigning cluster 1 to the distant cluster 4, performs a less costly
exchange among clusters 2, 3, and 4 than mapping cluster 4 to
cluster 1.

5. Multiple Individuals

The theoretical contributions to distance between replicates
(Theorem 3.2) and to alignment cost (Corollary 3.4) are both
derived as expectations of random variables for a single individ-
ual in one population. We provide a simple extension to multiple
individuals from multiple populations.

For multiple individuals from multiple populations, we can
obtain an expected total contribution to distance between repli-
cates and an expected total contribution to the alignment cost.
We treat all individuals in a population as independent and
identically distributed draws from the population. The expected
mean total contribution of multiple individuals can be calcu-
lated by the linearity of expectation.

Proposition 5.1. Consider L populations, in which population
� has N� individuals and membership coefficients a(�) =
(a(�)

1 , a(�)
2 , . . . , a(�)

K ) that follow a Dir(a(�)) distribution, with
a(�)

0 = ∑K
k=1 a(�)

k . The total distance between two replicates
under label-switching with permutation φ, which maps a(�)

i to
a(�)
φ(i), for i = 1, 2, . . . , K, is

Aφ,total =
L∑

�=1
N�Aa(�),φ(a(�)), (13)

and the total alignment cost is

Cφ,total =
L∑

�=1
N�Ca(�),φ(a(�)). (14)

Proof of Proposition 5.1. The proof is trivial. For a population
with N� individuals and Dirichlet parameters a(�), suppose two
replicates follow a permutation φ for the second replicate in
relation to the first. The membership coefficients of these indi-
viduals are independently drawn from the same Dirichlet distri-
bution. Hence, by the linearity of expectation, the expected total
contributions to distance and cost are sums across individuals,
N�Aa(�),φ(a(�)) and N�Ca(�),φ(a(�)), respectively. For multiple pop-
ulations, we simply sum expectations across populations.
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Figure 4. Alignment cost as a function of permutations. The figure considers an example cluster analysis in which four populations are placed into four clusters; each
population has a different cluster in which membership predominates. In each panel, the 24 permutations of the four clusters are ordered by the alignment cost associated
with an individual from a specific population. (A) Population 1. (B) Population 2. (C) Population 3. (D) Population 4. Simulation parameters appear in Appendix A.
Permutations are labeled with respect to the original clusters (1, 2, 3, 4), representing φ(1, 2, 3, 4) for each of the 24 possible choices of φ. In panel D, clusters 2 and 3
have the same parameter values; we do not count as misaligned clusters that map within a permutation cycle to a cluster with the same parameter value. The number of
individuals per population is 100.

6. Example

We use data from the human-genetic ancestry inference study of
Fortier, Kim, and Rosenberg (2020) to illustrate the alignment
cost in a practical setting. For the data, we assume that member-
ship coefficients follow the Dirichlet model, whose parameters
we then estimate. We then measure empirical alignment costs
between pairs of replicates, comparing them to theoretical costs
that result from using the estimated parameters of the Dirichlet
distribution.

6.1. Data

Fortier, Kim, and Rosenberg (2020) conducted clustering using
STRUCTURE applied to 978 sampled individuals from L = 53
human populations, with K = 4. They performed analyses using
a larger dataset of 791 loci genotyped in the individuals and a
less informative smaller subset containing, among the 791 loci,
only 13 that are used in forensic genetics. The 53 populations
vary in sample size, from 1 to 51 individuals.

For each analysis, 10 clustering replicates were performed,
so that we have two sets of 10 replicates from Fortier, Kim, and
Rosenberg (2020), each with a 978 × 4 membership coefficient
matrix. The individual membership coefficients of all replicates

appear in Figure 5(A) (all 791 loci) and Figure 6(A) (13-locus
subset). Fortier, Kim, and Rosenberg (2020) summarized these
replicates; we show all 10. With all 791 loci, most individuals
are placed predominantly in one cluster; with the 13-locus
subset, membership is more evenly distributed across clusters.
We use the 791-locus analysis as an example of replicates with
lower variability across individuals in membership coefficients
within populations, and the 13-locus analysis as an example with
greater variability, interpreted in this case as more “noise” in
membership estimates.

6.2. Maximum Likelihood Estimation of Dirichlet
Parameters

Consider a membership matrix from population � of sample
size N�. The matrix has size N� × K, and it can be written
Q(�) = (q(�)

1 , q(�)
2 , . . . , q(�)

N�
)T , where q(�)

1 , q(�)
2 , . . . , q(�)

N�
denote

membership vectors for the N� individuals. If we assume that
each of the N� vectors represents an independent multivariate
draw from an underlying Dirichlet distribution with parameter
vector a, then we can obtain a maximum likelihood estimate of
a by maximizing log-likelihood L(a). Taking the likelihood as a
product of Equation (1) across individuals, we have
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Figure 5. Application of the Dirichlet model to data from 791 loci. (A) 10 clustering replicates. (B) Empirical alignment cost between pairs of replicates, following Equation
(17), divided by the total number of individuals N = ∑L

�=1 N� . (C) Theoretical alignment cost between pairs of replicates, divided by the total number of individuals.
The symmetric Equation (19) is used for the computation. (D) Relative difference between empirical and theoretical alignment cost for pairs of replicates, evaluated using
Equation (20). (E) Theoretical alignment costs for all possible permutations of replicate 1 and empirical alignment costs for replicates 2 to 10 in relation to replicate 1 (blue
lines). The theoretical computation uses Equation (18) and the empirical computation uses Equation (17).
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Figure 6. Application of the Dirichlet model to data from 13 loci. (A) 10 clustering replicates. (B) Empirical alignment cost between pairs of replicates, following Equation
(17), divided by the total number of individuals N = ∑L

�=1 N� . (C) Theoretical alignment cost between pairs of replicates, divided by the total number of individuals.
The symmetric Equation (19) is used for the computation. (D) Relative difference between empirical and theoretical alignment cost for pairs of replicates, evaluated using
Equation (20). (E) Theoretical alignment costs for all possible permutations of replicate 1 and empirical alignment costs for replicates 2 to 10 in relation to replicate 1 (blue
lines). The theoretical computation uses Equation (18) and the empirical computation uses Equation (17).



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1155

L(a) = log
N�∏
i=1

P[q(�)
i |a]

= N�

[
log �

( K∑
k=1

ak

)
−

K∑
k=1

log �(ak)

]

+ N�

K∑
k=1

(ak − 1) log q̄(�)

k , (15)

where log q̄(�)

k = 1
N�

∑N�

i=1 log qik.
This objective of maximizing L(a) is equivalent to minimiz-

ing −L(a), a convex function in a. The minimization problem
has no closed-form solution, but can be solved numerically. We
use fixed-point iteration (Minka 2000). The update step in the
iteration is

anew
k = �−1

[
�

( K∑
k=1

aold
k

)
+ log q̄(�)

k

]
, (16)

where �(x) = d log �(x)/dx is the digamma function. The
algorithm is guaranteed to converge to the maximizing a for the
Dirichlet distribution (Minka 2000, sec. 1).

To use the fixed-point iteration method to numerically find
the maximum likelihood estimate of a = (a1, a2, . . . , aK),
we follow the method of Minka (2000, eqs. 19–21) to start
the iteration from an initial guess for a; this method relies on
empirical computations of the means and variances of the q(�)

ik
across individuals i. To obtain the update in Equation (16), we
apply Newton’s method for solving �(x) = y, following Minka
(2000, Appendix C).

6.3. Empirical and Theoretical Alignment Cost
Calculations

For both the 791-locus and 13-locus cases, we estimated the
Dirichlet parameters for each of the 53 populations and each
of the 10 replicates. For the single-individual group, because
no variance among individuals is available, we cannot estimate
the Dirichlet parameters, and we simply used the membership
coefficients of the individual as the parameter estimates.

To examine the performance of the Dirichlet model in mea-
suring alignment costs, we computed empirical and theoretical
alignment costs between pairs of replicates. For each pair of
replicates, we computed the total empirical alignment cost using
Equation (2) to obtain the sum of squared differences between
their membership matrices. For individual i and cluster k in a
population � with sample size N� individuals, denote by q(R1,�)

ik
and q(R2,�)

ik the membership coefficients in replicates R1 and R2.
The sum is

DR1,R2 =
L∑

�=1

N�∑
i=1

K∑
k=1

(q(R1,�)
ik − q(R2,�)

ik )2. (17)

For the theoretical computation, we first used the inferred
permutation between replicate 1 and subsequent replicates, as
provided by CLUMPP and reported by Fortier, Kim, and Rosen-
berg (2020), as the “correct” alignments. We next computed the
theoretical contribution to alignment cost for each of the 53
populations based on the inferred pairwise permutation (Equa-

tion (12)), aggregating the contributions from all populations
following Equation (14).

More precisely, suppose that for a pair of replicates (R1, R2),
the inferred Dirichlet parameters for the L populations are
{a(R1,�)}�=1,2,...,L and {a(R2,�)}�=1,2,...,L. First, we choose R1 as
the “base” replicate, and denote the permutation in replicate R2
with respect to R1 as φR1→R2 . The total theoretical cost in this
situation is

CφR1→R2 ,total =
L∑

�=1
N�Ca(R1,�),a(R2,�) . (18)

Next, we use R2 as the base, and φR2→R1 is the permutation in
replicate R1 with respect to R2. The cost is

CφR2→R1 ,total =
L∑

�=1
N�Ca(R2,�),a(R1,�) .

Note that in general, Ca(R1,�),a(R2,�) �= Ca(R2,�),a(R1,�) , because the
inferred Dirichlet parameters differ for R1 and R2. To account
for this asymmetry, we take as the theoretical alignment cost the
mean of the two values:

Ctotal(R1,R2) = 1
2
(CφR1→R2 ,total + CφR2→R1 ,total). (19)

6.4. Data Analysis

The greater variability of membership coefficients in the 13-
locus case compared to the 791-locus case is depicted in Fig-
ure 7, both on the basis of the empirical variance in membership
coefficients (Figure 7(A) and (C)) and using the theoretical
variance computed from the estimated Dirichlet parameters
(Figure 7(B) and (D)). We interpret the alignment costs in
relation to this observation concerning variability in the two
cases.

For the 791-locus case, averaging across individuals, Fig-
ure 5(B) reports pairwise empirical costs between replicates
and Figure 5(C) reports theoretical costs. The relative difference
between empirical and theoretical costs, computed with respect
to the theoretical cost as∣∣Ctotal(R1,R2) − DR1,R2

∣∣
Ctotal(R1,R2)

, (20)

appears in Figure 5(D). The theoretical cost in Figure 5(C)
generally accords with the empirical cost in Figure 5(B). The
relative difference in Figure 5(D) is small for most pairs of
replicates.

For another assessment of the agreement of theoretical and
empirical alignment costs, using replicate 1 as the base, we
computed the theoretical alignment cost for all 24 permutations
of the K = 4 clusters (Figure 5(E)). If a permutation was observed
among replicates 2–10, then its empirical cost with respect to
replicate 1 is also shown; if multiple replicates possess the same
permutation, then we take their mean cost. This analysis finds
that empirical and theoretical costs agree across permutations
with a wide range of cost values.

Comparing Figures 6 and 5, Figure 6 reports corresponding
quantities for the 13-locus case. The empirical (Figure 6(B)) and
theoretical (Figure 6(C)) alignment costs have lower values than
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Figure 7. Mean and standard deviation of membership coefficients in 53 populations. (A) Empirical, 791 loci. (B) Theoretical, 791 loci. (C) Empirical, 13 loci. (D) Theoretical,
13 loci. Panels A and B consider replicate 1 from Figure 5; panels C and D consider replicate 1 from Figure 6. Standard deviations appear as error bars. Population 34 has
only one individual and no empirical standard deviation; a theoretical standard deviation is induced by the choice to equate Dirichlet parameters a with the membership
coefficient vector for the individual.

in the 791-locus case. In Figure 6(A), in which individuals pos-
sess high variability within populations, comparing to the low-
variability replicates of Figure 5, it is less easily discerned that
an alignment is suboptimal; the lower alignment costs for the
high-variability 13-locus case compared to the low-variability
791-locus case reflect this observation.

The agreement between theoretical and empirical alignment
costs is reduced for Figure 6 compared to Figure 5, with a sub-
stantial difference between the theoretical costs in Figure 6(C)
and the empirical costs in Figure 6(B). The relative difference
is high in Figure 6(D), and the empirical costs differ from the
theoretical costs for many permutations in Figure 6(E). The
greater disagreement between theoretical and empirical costs
suggests that for the high-variability 13-locus case, the Dirichlet
model provides a poorer fit to the replicates than in the low-
variability 791-locus case.

7. Discussion

We have used a Dirichlet model to study the membership coeffi-
cients produced by mixed-membership unsupervised clustering
algorithms (Section 2.2). Under the Dirichlet model, using a
theoretical measure for the alignment cost between clustering
replicates (Equation (4)), we have evaluated the alignment cost

for a pair of clustering replicates as a function of the model
parameters. The model provides tools for use in evaluating
clustering replicates, both in analyses of specific datasets and in
assessing the performance of clustering algorithms.

Under the model, Corollary 3.4 describes the cost of one
replicate in relation to another, making use of the general The-
orem 3.2. A replicate with N individuals and K clusters—and
hence, NK data entries—is summarized with K parameters, one
for each cluster. Theorem 3.2 and Corollary 3.4 provide rela-
tively simple expressions in terms of the K parameter values for
each of two replicates. We have evaluated these expressions for
the special cases of K = 2 (Section 3.2) and K = 3 (Section 3.3),
for which they reduce further.

In analyzing the properties of the theoretical cost as a func-
tion of the Dirichlet parameters, we have seen that for a fixed
permutation between a pair of replicates, the cost increases
as the Dirichlet parameters of the two replicates diverge (Sec-
tion 4.1). We have also seen that when the Dirichlet parameters
are fixed, the cost increases with the number of misaligned clus-
ters (Section 4.2). However, this result depends in part on the
specific permutation, as certain permutations might produce
lower cost than others with fewer misaligned clusters. When
all clusters within the same permutation cycle share common
Dirichlet parameters, none of these clusters are “misaligned,”
and the cost is zero (Proposition 4.1). We have also described the
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maximal cost across permutations (Proposition 4.2), potentially
enabling cost functions to be normalized by the maximum
across permutations.

In an example data analysis, we have found that the Dirichlet
model closely fits data with low variability in estimated clus-
ter memberships across individuals within populations (Sec-
tion 6.4). The fit is not as close for data with high variability
in cluster memberships, and hence with more “noise.” However,
alignment costs are smaller for such cases; in noisy data, the
model is poorer but the distinction between properly aligned
and misaligned replicates is less consequential.

We envision several applications for the Dirichlet model
and its associated results. First, the model can be used to pro-
vide summary statistics for replicate mixed-membership cluster
analyses. The model would first be used to estimate Dirichlet
parameters for replicates. Theoretical alignment costs of per-
mutations of those replicates could then be calculated from the
parameters, measuring the cost difference between the optimal
permutation and suboptimal permutations. As functions of the
estimated parameters, the cost distribution of permutations, the
cost difference between optimal and suboptimal permutations,
and the maximal cost across permutations can all provide infor-
mative summaries.

Such summary statistics could potentially be applied in diag-
nostics for alignments. The cost difference between the optimal
and least suboptimal permutation can measure the extent to
which the optimal permutation of a replicate is evident—the
“noise” in the replicate—guiding computational decisions for
identifying optimal alignments. In particular, if noise is low and
the cost for suboptimal permutations is high, then the optimal
replicate is likely to be relatively easy to identify, and choices that
prioritize speed rather than comprehensive searches in existing
alignment algorithms might be suitable.

Next, using the model, clustering alignment methods could
adopt heuristic threshold values to decide when to stop the
search for a better alignment, or to decide if two replicates rep-
resent substantially different modes or merely represent label-
switching (Jakobsson and Rosenberg 2007; Kopelman et al.
2015). Such threshold values could potentially be tuned prior to
application of the alignment methods, employing our maximal
cost computation. The theoretical alignment cost can thus pro-
vide an automated method of choosing threshold values suited
to particular datasets, as the theoretical calculation of costs
associated with label-switching would be performed in place of
more computationally intensive empirical calculations.

Finally, and potentially most significantly, methods based on
the model have the potential to contribute to new alignment
algorithms. Existing algorithms rely on empirical cost calcu-
lations between pairs of replicates. Using the model, however,
once the Dirichlet parameters have been estimated, theoret-
ical alignment costs calculated from the estimated parame-
ters potentially reduce computation time. In particular, when
it makes sense to treat individual members of predefined pop-
ulations as identically distributed, the membership coefficients
for the N� members of a population can be summarized with
K parameters in place of N�K data points. Alignment can then
proceed based on computations involving K theoretical values
rather than N�K empirical values, reducing computation time
compared to use of empirical costs. Notably, as the problem of

identifying optimal permutations of replicates can be under-
stood as an example of a general class of assignment prob-
lems (Burkard, Dell’Amico, and Martello 2012) seen in combi-
natorial optimization and operations research, this use of the
model can potentially contribute to alignment problems beyond
the genetics context.

We note a number of limitations. First, the utility of the
Dirichlet model is more limited in cases in which the model
provides a poor fit to the data. However, we have seen that the
fit can be assessed by comparing empirical and theoretical align-
ment costs, so that applicability of the model can be assessed for
a particular dataset.

A second limitation is that the theoretical cost measure does
not consider the scenario in which replicates possess different
numbers of clusters. The approach, however, can be extended.
Consider two replicates, replicate 1 with K1 clusters and repli-
cate 2 with K2 > K1 clusters. In principle, it is possible to
sum membership coefficients in each of K1 disjoint subsets of
the K2 clusters and to then evaluate alignment cost between
the K1 clusters of replicate 1 and the K1 subsets for replicate
2. This computation can be performed in principle for each
way of distributing the K2 clusters over K1 subsets. The Stirling
number of the second kind, S2(K2, K1), counts the partitions of
K2 labeled objects into K1 unlabeled classes, in such a way that
each of the K1 classes contains at least one of the K2 objects;
the number of scenarios that must be considered is the number
of ways of distributing the K2 labeled clusters over K1 labeled
subsets, or S2(K2, K1) K1!.

A third limitation comes from our choice of distance mea-
sure. The derivation of the theoretical alignment cost relied on
the squared 2-norm of the difference between membership vec-
tors as the distance between replicates. Various distances have
previously been used to compare pairs of replicates (Rosenberg
et al. 2002; Jakobsson and Rosenberg 2007; Kopelman et al.
2015; Behr et al. 2016). Other measures, including other p-
norms, could be used in Equation (3) to enlarge small differ-
ences between vectors (lower p) or to reduce them (higher p); a
new cost computation under the Dirichlet model would then be
required.

Although our study has been motivated by the setting of
unsupervised clustering in population genetics, the Dirichlet
model applies to mixed-membership clustering more generally.
Hence, our analysis of the model and its performance can con-
tribute to other fields where cluster analysis—and particularly
unsupervised cluster analysis—is used.

Appendix A. Dirichlet Parameters Used in Generating
Figures

Using the Dirichlet model, we simulated membership coefficients of
N� individuals for each of four populations, � = 1, 2, 3, 4, using 50
and 100 for N� in the various analyses. Dirichlet parameters a(�) =
(a(�)

1 , a(�)
2 , a(�)

3 , a(�)
4 ) were chosen so that membership coefficients had

specified values for expectations and variances. The variance of Dirich-
let variables for the first cluster was set at c = 0.001 for Figure 1 and c =
0.01 for Figure 4. That is,

a(�)
k (a(�)

0 − a(�)
k )

(a(�)
0 )2(a(�)

0 + 1)
= c for k = 1, (A.1)
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Table A.1. Model parameters for simulating clustering examples in Figures 1 and 4.

Figure Population Cluster a1 a2 a3 a4

Figure 1(A)–(C) replicate 1 1 Parameter 146.3 31.35 20.9 10.45
Mean 0.7 0.15 0.1 0.05

Variance 0.001 6 × 10−4 4 × 10−4 2 × 10−4

2 Parameter 24.65 135.575 49.3 36.975
Mean 0.1 0.55 0.2 0.15

Variance 3 × 10−4 0.001 6 × 10−4 5 × 10−4

3 Parameter 2.53 10.12 107.525 6.325
Mean 0.02 0.08 0.85 0.05

Variance 1 × 10−4 5 × 10−4 0.001 3 × 10−4

4 Parameter 47.8 23.9 23.9 143.4
Mean 0.2 0.1 0.1 0.6

Variance 7 × 10−4 4 × 10−4 4 × 10−4 0.001

Figure 1(C) replicate 2 1 Parameter 95.6 47.8 23.9 71.7
Mean 0.4 0.2 0.1 0.3

Variance 0.001 6 × 10−4 4 × 10−4 9 × 10−4

2 Parameter 62.7 62.7 41.8 41.8
Mean 0.3 0.3 0.2 0.2

Variance 0.001 0.001 8 × 10−4 8 × 10−4

3 Parameter 37.35 49.8 124.5 37.35
Mean 0.15 0.2 0.5 0.15

Variance 5 × 10−4 6 × 10−4 0.001 5 × 10−4

4 Parameter 12.65 5.06 1.265 107.525
Mean 0.1 0.04 0.01 0.85

Variance 7 × 10−4 3 × 10−4 8 × 10−5 0.001

Figure 4 1 Parameter 14 3 2 1
Mean 0.7 0.15 0.1 0.05

Variance 0.01 0.006 0.004 0.002
2 Parameter 0.8 4.4 1.6 1.2

Mean 0.1 0.55 0.2 0.15
Variance 0.01 0.028 0.018 0.014

3 Parameter 0.019 0.077 0.816 0.048
Mean 0.02 0.08 0.85 0.05

Variance 0.01 0.038 0.065 0.024
4 Parameter 3 1.5 1.5 9

Mean 0.2 0.1 0.1 0.6
Variance 0.01 0.006 0.006 0.015

where a(�)
0 = ∑4

k=1 a(�)
k , for � = 1, 2, 3, 4. With the four means

specified and the variance specified for the membership coefficient of
the first cluster, the Dirichlet parameters are uniquely specified. The
parameters and the corresponding mean and variance of the Dirichlet
distributions appear in Table A.1.

Appendix B. Proof of Theorem 3.1

When K = 2, we have

Aa,b = ∫ 1
p1=0

∫ 1
q1=0

(
(p1 − q1)2 + [

(1 − p1) − (1 − q1)
]2

)

× pa1−1
1 (1−p1)a2−1

�(a1) �(a2)/�(a1+a2)
qb1−1

1 (1−q1)b2−1

�(b1) �(b2)/�(b1+b2)
dq1 dp1

= 2 �(a1+a2)
�(a1)�(a2)

�(b1+b2)
�(b1)�(b2)

× ∫ 1
p1=0 pa1−1

1 (1 − p1)a2−1

× ∫ 1
q1=0

[
p2

1qb1−1
1 (1 − q1)b2−1 − 2p1qb1

1 (1 − q1)b2−1

+qb1+1
1 (1 − q1)b2−1

]
dq1 dp1.

(B.1)

We now apply the beta integral B(a, b) = ∫ 1
0 xa−1(1 − x)b−1 dx =

�(a) �(b)/�(a + b) sequentially to the inner integral and then the
outer integral of Equation (B.1), obtaining

Aa,b = 2
�(a1 + a2)

�(a1)�(a2)

�(b1 + b2)

�(b1)�(b2)

∫ 1

p1=0
pa1−1

1 (1 − p1)a2−1

[
p2

1
�(b1) �(b2)

�(b1 + b2)
− 2p1

�(b1 + 1) �(b2)

�(b1 + b2 + 1)
+ �(b1 + 2) �(b2)

�(b1 + b2 + 2)

]
dp1

= 2
�(a1 + a2)

�(a1) �(a2)

[
�(a1 + 2) �(a2)

�(a1 + a2 + 2)
− 2b1

b1 + b2

�(a1 + 1) �(a2)

�(a1 + a2 + 1)

+ (b1 + 1)b1
(b1 + b2)(b1 + b2 + 1)

�(a1) �(a2)

�(a1 + a2)

]
. (B.2)

Finally, we simplify using �(x + 1) = x�(x) to obtain Equation (5).

Appendix C. Proof of Theorem 3.2

The proof entails a calculation of the multiple integral in Equation (3).
This integral can be rearranged in a nested way:

Aa,b = 2 �(
∑K

i=1 ai)∏K
i=1 �(ai)

�(
∑K

i=1 bi)∏K
i=1 �(bi)

∫ 1
p1=0 pa1−1

1
∫ 1−p1

p2=0 pa2−1
2

· · · ∫ 1−∑K−2
i=1 pi

pK−1=0 paK−1−1
K−1

(
1 − ∑K−1

i=1 pi

)aK−1 ∫ 1
q1=0 qb1−1

1

∫ 1−q1
q2=0 qb2−1

2 · · · ∫ 1−∑K−2
i=1 qi

qK−1=0 qbK−1−1
K−1

(
1 − ∑K−1

i=1 qi

)bK−1

(∑K−1
i=1 p2

i + ∑K−1
i=1 q2

i − ∑K−1
i=1

∑K−1
j=1 piqj − ∑K−1

i=1 piqi

+∑K−2
i=1

∑K−1
j=i+1 pipj + ∑K−2

i=1
∑K−1

j=i+1 qiqj

)
dqK−1

· · · dq2 dq1 dpK−1 · · · dp2 dp1.

(C.1)
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We make use of the mean and variance of the Dirichlet distribu-
tion, so that for (p1, p2, . . . , pK) Dirichlet-distributed with parameters
(a1, a2, . . . , aK) and (q1, q2, . . . , qK) Dirichlet-distributed with param-
eters (b1, b2, . . . , bK), with a0 = ∑K

i=1 ai and b0 = ∑K
i=1 bi, we have

(Kotz, Balakrishnan, and Johnson 2004, eq. 49.9)

E[pi] = ai
a0

(C.2)

E[qi] = bi
b0

(C.3)

var[pi] = ai(a0 − ai)
a02(a0 + 1)

(C.4)

var[qi] = ai(a0 − ai)
a02(a0 + 1)

(C.5)

cov(pi, pj) = − aiaj
a2

0(a0 + 1)
, i �= j (C.6)

cov(qi, qj) = − bibj
b2

0(b0 + 1)
, i �= j. (C.7)

Using these results, we have

E[p2
i ] = var[pi] + E[pi]2 = ai(ai + 1)

a0(a0 + 1)
(C.8)

E[q2
i ] = var[qi] + E[qi]2 = bi(bi + 1)

b0(b0 + 1)
(C.9)

E[pipj] = cov(pi, pj) + E[pi]E[pj] = aiaj
a0(a0 + 1)

, i �= j (C.10)

E[qiqj] = cov(qi, qj) + E[qi]E[qj] = bibj
b0(b0 + 1)

, i �= j. (C.11)

Because p and q are independent, we also have

E[piqj] = E[pi]E[qj]. (C.12)

In the integral in Equation (C.1), each term in the sum
∑K−1

i=1 p2
i +∑K−1

i=1 q2
i −∑K−1

i=1
∑K−1

j=1 piqj −
∑K−1

i=1 piqi +
∑K−2

i=1
∑K−1

j=i+1 pipj +∑K−2
i=1

∑K−1
j=i+1 qiqj is integrated with respect to the Dirichlet density

over two simplices, one for p and one for q. Hence, each term can be
integrated by one of Equations (C.2)–(C.12): Equation (C.8) for terms
p2

i , Equation (C.9) for terms q2
i , Equation (C.12) for terms piqj (j = i

and j �= i), Equation (C.10) for terms pipj (j �= i), and Equation (C.11)
for terms qiqj (j �= i).

The integral becomes:

Aa,b = 2

⎛
⎝K−1∑

i=1
E[p2

i ] +
K−1∑
i=1

E[q2
i ] −

K−1∑
i=1

K−1∑
j=1

E[piqj] −
K−1∑
i=1

E[piqi]

+
K−2∑
i=1

K−1∑
j=i+1

E[pipj] +
K−2∑
i=1

K−1∑
j=i+1

E[qiqj]
⎞
⎠ .

Simplifying using Equations (C.2)–(C.12), we obtain Equation (10),
concluding the proof.

Supplementary Materials

Title: AlignmentCost
Python package “AlignmentCost” for analyzing alignment cost. Python

package “AlignmentCost” contains code to perform the empirical data
analysis described in the article (Figures 5 and 6), including functions
for computing the alignment cost (Equations (10)–(12)) and estimating
the Dirichlet parameters (Section 6.2). The package also contains the
empirical datasets used as examples in the article. (AlignmentCost.zip,
ZIP file)
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