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Solving the Arizona search problem by imputation

Egor Lappo1 and Noah A. Rosenberg1,2,*

SUMMARY

An ‘‘Arizona search’’ is an evaluation of the numbers of pairs of profiles in a forensic-genetic database that
possess partial or complete genotypic matches; such a search assists in establishing the extent to which a
set of loci provides unique identifications. In forensic genetics, however, the potential for performing Ari-
zona searches is constrained by the limited availability of actual forensic profiles for research purposes.
Here, we use genotype imputation to circumvent this problem. From a database of genomes, we impute
genotypes of forensic short-tandem-repeat (STR) loci from neighboring single-nucleotide polymorphisms
(SNPs), searching for partial STR matches using the imputed profiles. We compare the distributions of the
numbers of partial matches in imputed and actual profiles, finding close agreement. Despite limited po-
tential for performing Arizona searches with actual forensic STR profiles, the questions that such searches
seek to answer can be posedwith imputation-basedArizona searches in increasingly large SNP databases.

INTRODUCTION

In a common setting in forensic genetics, the genotype of a sample of biological material from an unknown individual is queried against a

database of genotypic profiles of known individuals.1,2 The procedure relies on a standardized set of genetic markers typed both in the pro-

files in the database and in the sample whose identity is sought. A full genotypic match to a database profile can recover the identity of the

source of the sample; a partial genotypic match can be informative as well, suggesting that the unknown individual is a relative of the contrib-

utor of the partially matching profile.3,4

For the procedure to produce accurate identifications, genotypic profiles across the standardized set of genetic markers must be suffi-

ciently variable that with high probability, a match of a full genotypic profile uniquely identifies an individual across the human species, up

to monozygous sibships.5 At the same time, it is desirable for the system to possess the fewest loci necessary for establishing uniqueness.

The use of a small number of loci minimizes the intrusion of marker systems on genetic privacy, so that profiles contain as little information

as possible about individual genotypes and phenotypes; the use of a small number of loci also minimizes the genotyping cost in systems that

process many profiles.

What is the minimal size required for a set of loci to achieve the goal that profiles based on that set are unique? As it is impractical to

perform the required empirical evaluation—to obtain the genotypes of all possible individuals for a large set of loci, and to choose the optimal

subset by analysis of the resulting ginormous dataset—the determination must rely in part on a mathematical model of the level of individual

identifiability contained in proposed sets of loci. Indeed, widely used marker sets have been designed using model-based calculations that

rely on allele frequencies in small datasets.6,7 In the United States, the set of loci in current use—the ‘‘CODIS loci,’’ abbreviated from the ‘‘Com-

bined DNA Index System’’—has contained 13 highly variable short-tandem-repeat (STR) loci that were first chosen in the 1990s8 and that were

later augmented with 7 additional loci in 2017.9

As profiles on the initial CODIS marker set began accumulating in the 1990s, empirical evaluation of the uniqueness of profiles in forensic

databases becamepossible to perform in principle. In such an evaluation, all profiles are comparedwith all other profiles. The number of pairs

of diploid profiles that match at k alleles is tabulated, for each value of k from 1 to twice the number of loci in the marker set.

Such a pairwise analysis of all profiles in a database has come to be known as an ‘‘Arizona search,’’ after one such evaluation—in which a

team working with the forensic profile database for the state of Arizona conducted a search of pairs of profiles in the database.10 The analysis

identified partial matches at a level that was unexpectedly high—high enough to raise the concern among some that the 13-locus set then in

use might not produce a sufficiently high level of uniqueness for individual profiles.11,12

The ‘‘Arizona search’’ incident has had a number of lasting consequences. First, it contributed to the clarification of protocols for forensic

databases.12,13 As the purpose of the databases is their operational use for testing query profiles against database profiles, implementation

protocols have been clarified so that calculations such as Arizona searches that do not fall into the operational purview generally would not be

performed by forensic employees with access to actual profiles.12 In the United States, discussions of the possibility for other scientists to

access such forensic profiles for research purposes12,14,15—for example, to conduct ‘‘Arizona searches’’ themselves—have not resulted in

such access.
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A second consequence was a further understanding of the conceptual meaning of the level of pairwise matching in a forensic query data-

base. The central application of such a database is to assess if some database profile has a match to a profile at hand. The probability that a

match exists between two profiles in a database solves a fundamentally different problem—analogous to the probability that two people in a

group have a shared birthday rather than the probability that someone in the group has a shared birthday with person X.11,12,16,17 Neverthe-

less, the pairwise match probability is informative about the conceptual uniqueness of matches and the fit of probability models to forensic

databases.11,18,19

Finally, recognizing the utility of Arizona searches in understanding the properties of forensic databases, a third consequence is that

several studies have sought to provide substitute calculations that mimic a pairwise database search in the absence of access to actual da-

tabases. In the model-based Arizona search of Mueller,18 independence of a set of forensic loci is assumed. Profiles are generated from allele

frequency parameters under independence, producing hypothetical databases. The fraction of profile pairs with complete or partial matches

is then obtained. Studies such as that ofMueller18 have generally found thatmodels provide a reasonable description of the number of partial

matches in databases.

A limitation on such studies is that they use model-based profiles rather than actual profiles. Some studies with sets of actual profiles have

been performed,19,20 comparing model-based predictions of the number of pairwise database matches to empirical assessments. Although

these studies have tens of thousands of individuals, their numbers of profiles remain small compared to themillions of profiles now present in

actual forensic databases. Hence, the potential for understanding pairwise database matches in practical settings continues to rely on math-

ematical models together with evaluations of the level of empirical matching in smaller datasets.

We and others have recently employed techniques for the imputation of the alleles of forensic STR loci from neighboring SNPs,21–23 intro-

ducing a new possibility for evaluating pairwisematch probabilities in databases. Non-forensic genomic SNP databases are increasing in size,

so that the possibility that millions of SNP profiles will be available for pairwise comparison can be envisioned. With a large database of SNP

profiles, the alleles of forensic STRs could conceivably be imputed from the SNPs. From probabilistically imputed STR alleles, the probability

of database matches could then be obtained.

An imputation-based calculation enables an Arizona search from SNPprofiles, where instead of using amodel that generates profiles from

allele frequencies, as in the work of Mueller,18 the model employed is the imputation model for STR allele probabilities on the basis of the

neighboring SNPs. Hence, assuming that the potential for performing Arizona searches from actual STR profiles continues to remain limited,

use of imputation in increasingly large SNP datasets can increase the database size for Arizona searches.

In this study, we assess the feasibility of performing an Arizona search of forensic STR profiles by imputation in databases of SNP profiles.

We consider individuals for which both SNP and STR genotypes are available.We empirically perform the search using the actual STR profiles,

tabulating numbers of partial matches. We then repeat the search by the imputation of STR profiles from SNP profiles, assessing the agree-

ment of the number of partial matches in the imputed data with that in the empirical genotypes. The results suggest that increasingly large

SNPdatabases can indeedbe used, together with imputation, to perform searches thatmimic Arizona searches of unavailable STR databases.

RESULTS

Arizona search with imputed genotypes

We begin by using a dataset of phased SNP–STR genotypes derived from the 1000 Genomes project23 to simulate a forensic database (see

STAR Methods: Data and code availability). We randomly split the 2,504 individuals in the dataset into a reference panel (60%, 1,502 individ-

uals) for use in the imputation procedure, and a database set (40%, 1,002 individuals), in which the Arizona searches are performed. We

consider 100 replicate reference–database splits to ensure that results are not affected by artifacts of random splitting.

For individuals in a database set, we have two kinds of genotype data available: the true STR genotypes at 18 CODIS loci, and STR geno-

types imputed with the BEAGLE program24,25 using neighboring SNP genotypes and the reference panel (STAR Methods: Imputation with

BEAGLE). We refer to the imputed genotypes as ‘‘BEAGLE-called’’ genotypes.

For the true genotypes, we calculate the numbers of matching alleles, loci matching at both alleles (‘‘fully matching’’), and loci matching at

exactly one allele (‘‘partially matching’’) for each of

�
1002
2

�
= 501; 501 possible pairs of individuals.

We then repeat this calculation for BEAGLE-called genotypes and compare the values obtained with those for true genotypes. We refer to

this approach as Scheme 1 (Figure 1A).

Arizona search with imputed allele probabilities

The BEAGLE-called genotypes do not capture all the information that is produced by the imputation procedure. The imputation algorithm

also estimates allele probabilities for each locus on each chromosome for every sample, representing the uncertainty in the imputation. The

BEAGLE-called genotypes are then assigned to be alleles with the highest probability.

In a second experiment, working with the same 100 random splits of reference and database samples, we used the estimated allele

probabilities directly to compute expected numbers of allele and locus matches for each pair of individuals in the database, as described

in STAR Methods: Expected number of matches. Expected numbers of matches represent the similarity between a pair of individuals

across all possible genotype combinations, weighted according to the imputed allele probabilities. We refer to this approach as Scheme

2 (Figure 1B).
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Distributions of numbers of matches

WeperformArizona searches using true STR genotypedata and imputed STR genotypedata obtained using Schemes 1 and 2. Figure 2 shows

match distributions over

�
1002
2

�
possible comparisons in the database, averagedover all 100 replicates. The distributions are summarized in

Table 1.

In an Arizona search with the true data, themedian number of matching alleles is 10, and themaximal value observed across the replicates

is 24. The theoretical maximum is 36, corresponding to a comparison of identical samples. For the counts of fully matching loci, themedian of

the true distribution is 1, and largest observed value is 8 compared to a theoretical maximum of 18. Finally, for partially matching loci, the

median is 8, and the observed maximum is 17.

Both ways of using imputed data produce distributions of matches close to the true data. Arizona search using BEAGLE-called genotypes

(Scheme 1) recovers the correctmedians (Table 1). Visually, the distributions of the numbers of allelematches, fully matching loci, and partially

matching loci are close to the true ones. The range of values is larger with imputed data: most noticeably, the maximal numbers for counts of

fully matching loci are 8 and 11 for true and imputed genotypes, respectively.

Using the expected numbers of matches computed from imputed allele probabilities (Scheme 2) yields a distribution of the numbers of

allele matches that is more concentrated than the true discrete distributions (Figure 2A). The medians are close to true values, as are the

observed maxima (Table 1).

Match error due to imputation

The Arizona searches using imputed data recover the distributions of allele and locusmatches across pairs of individuals; we now evaluate the

procedure at the level of specific pairs of individuals.

Figure 3 compares the numbers of matches for true and imputed data for each pair of individuals. The numbers computed using

Scheme 1 are reasonably correlated with the true values (Spearman correlations of 0.66, 0.51, and 0.55 for allele matches, fully matching

loci, and partially matching loci, respectively). In each category of matches, for more than 50% of pairs, the absolute difference between

the number of matches in Scheme 1 and the true number is no more than 1. In 90% of pairs, Scheme 1 differs from true values by 3 or less

(Table 2).

1000 Genomes
SNP and STR data

N = 2,504

100x

Random split

Reference panel
N = 1,502

"Database"
N = 1,002

Extract STR
genotypes

True
STR genotypes

N = 1,002

BEAGLE-called
 STR genotypes

N = 1,002

Impute STRs from
SNPs with BEAGLE

Arizona Search
for true genotypes:

501,501 comparisons

Arizona Search
for imputed genotypes:
501,501 comparisons

Extract SNP
genotypes

Compare numbers
of matches

1000 Genomes
SNP and STR data

N = 2,504

100x

Random split

Reference panel
N = 1,502

"Database"
N = 1,002

Extract STR
genotypes

True
STR genotypes

N = 1,002

STR allele
probabilities
N = 1,002

Impute STRs from
SNPs with BEAGLE

Arizona Search
for true genotypes:

501,501 comparisons

Extract SNP
genotypes

Compare numbers
of matches

Arizona Search:
expected number

of matches in
501,501 comparisons

A B

Figure 1. The experimental design

Rectangular boxes represent data, rounded boxes represent actions, and circles mean that the actions below are repeated multiple times.

(A) Scheme 1: Arizona search using BEAGLE-called genotypes.

(B) Scheme 2: Arizona search using STR allele probabilities inferred by BEAGLE for each individual in the database. The 100 replicate splits are the same in

Schemes 1 and 2.
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Scheme 2 increases the agreement of the algorithmwith the true values. Correlations of true and expected numbers of matches are higher

(0.71, 0.58, 0.61 for allele matches, fully matching loci, and partially matching loci). Median absolute error is also near one allele or locus

(Table 2).

To further characterize the differences between true numbers of matches and those computed with imputed data, we use the Hodges-

Lehmann estimator of the difference of means for paired samples.26 Let Ti be the true number of matches (for any of the three match cate-

gories) and let Ii be the number of matches with imputed data (with either Scheme 1 or 2), for i = 1;2;.;501501. Let Ei = Ii � Ti . Rearrange

the Ei in non-decreasing order, E1 %E2 %/%E501501. Our estimate of the difference between numbers of imputed and true matches is the

median of averages of all pairs in the set fEig:

bq = median

�
Ei+Ej

2

���� i < j

�
: (Equation 1)

The value of bq is an estimator that is well suited to our problem, as it does not introduce any assumptions on the distributions of the numbers of

matches and it is robust to outliers.

The Hodges-Lehmann estimates, shown in Figure 4 as distributions over 100 replicate splits, lie in ½ � 0:15;0:15�. Hence, on average, using

called genotypes (Scheme 1) or expectedmatches (Scheme 2) computed from SNPdata biases theArizona search results by less than 0.15 of a

match.

DISCUSSION

We have analyzed the possibility of performing Arizona searches of STR databases using SNP genotype data and imputation. Using 18 of the

20 CODIS STR loci and neighboring SNPs, we have described Arizona searches by imputation that use either most likely STR genotype assign-

ments (Scheme 1) or STR allele probabilities (Scheme 2) obtained by imputation using surrounding SNPs (Figure 1).

Both schemes recover the true distributions of the numbers of matching alleles and loci (Figure 2), and the medians of three classes of

matches closely agree with the true values. For the maximal number of matches, Scheme 2 provides values close to those of the true

data; Scheme 1 sometimes yields pairs with higher numbers of matches (Table 1). That Scheme 1 would not perform as well on this metric

Table 1. Summaries of distributions of the numbers of matching alleles, fully matching loci, and partially matching loci in Arizona searches in simulated

forensic databases

Summary statistic Variable True data Scheme 1 Scheme 2

Median Matching alleles 10 10 9.602

Fully matching loci 1 1 0.962

Partially matching loci 8 8 7.597

Maximum Matching alleles 24 25 22.906

Fully matching loci 8 11 8.268

Partially matching loci 17 18 17.062

Medians and maximal observed values are computed after pooling results on 100 replicate splits of the starting dataset into reference and database samples.

A CB

Figure 2. Distributions of the numbers of matching alleles, fully matching loci, and partially matching loci in Arizona searches in simulated forensic

databases

Normalized histograms are plotted for discrete match counts using true STR genotypes (green) and imputed STR genotypes (Scheme 1, orange). Kernel density

estimates are plotted for expected matches (Scheme 2, purple). All 100 replicate splits are combined to produce a single distribution.

(A) Number of matching alleles between two individuals.

(B) Number of fully matching loci between two individuals.

(C) Number of partially matching loci between two individuals.
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is sensible: although the calculation using imputed allele probabilities reasonably captures the uncertainty in the imputation algorithm,

Scheme 1 is systematically biased toward selecting more probable (and more frequent) alleles for each individual, increasing the probability

of observing pairs with high numbers of matches.

When specific pairs of individuals are considered, the median absolute error in the number of matches computed by imputation is near 1

(Table 2). Correlations between numbers of imputed and true matches are reasonably high (Figure 3), though error can be nontrivial for spe-

cific pairs. As in other imputation studies,27,28 it is likely that some of this error can be eliminated with larger reference panels.

As forensic genetics has been increasingly examining new SNP sets that could eventually augment or even replace existing STR sys-

tems,29,30 it is possible that the Arizona search question of understanding the distribution of pairwise agreement among profiles will become

relevant for new potential marker sets. Although we have focused here on imputing STRs from SNPs, imputation of the relevant SNPs in pro-

posed marker sets from neighboring SNPs could proceed similarly, and indeed would be more similar than our present SNP–STR analysis to

typical biomedical imputations of SNPs from other SNPs.

A

D E F

CB

Figure 3. Comparison of numbers of matches with imputed and true data for all pairs of individuals in the database

In each panel, the x-axis is the number of matching alleles or loci with true STR genotype data, and the y axis shows the corresponding number with imputed data.

The Spearman correlation coefficient r is shown for each panel. The panels showmatches in all 100 replicates combined into a single distribution. In the figure, for

integers ðx;yÞ, the unit square centered at
�
x + 1

2; y + 1
2

�
depicts values in ½x;x + 1Þ 3 ½y;y + 1Þ. (A) Scheme 1, allele matches. (B) Scheme 1, fully matching loci. (C)

Scheme 1, partially matching loci. (D) Scheme 2, allele matches. (E) Scheme 2, fully matching loci. (F) Scheme 2, partially matching loci.

Table 2. Absolute difference between the number of matches in Schemes 1 and 2 and the true values

Summary statistic Variable Scheme 1 Scheme 2

Median absolute error Matching alleles 1 1.237

Fully matching loci 1 0.491

Partially matching loci 1 1.149

90th percentile of the absolute error Matching alleles 3 3.070

Fully matching loci 2 1.361

Partially matching loci 3 2.834

The differences are computed after merging results on 100 independent replicate splits of the starting dataset into reference and database samples.
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Imputation has appeared in a variety of problems in forensic genetics;21–23,31–34 its use for the Arizona search problem is one of an

increasing number of scenarios in which loci external to forensic systems can assist in understanding forensic genetic matching. Imputation

has enabled the matching of genetic records between profiles of SNP loci and profiles of STR loci, potentially linking SNP and STR databases

in principle.21,22,33 It can also help in testing STR loci for phenotypic associations while attempting to understand the phenotypes that might

be associated with particular forensic profiles.31,34

Limitations of the study

Our somewhat simplistic analysis in the 1000 Genomes—a dataset with relatively few individuals compared to that in which the largest re-

ported Arizona search has been performed19—provides a demonstration that the imputation-based Arizona search approach is feasible.

However, we note a number of limitations. First, the 1000 Genomes SNP–STR haplotype panel we used was itself obtained using imputation

based on an external family-based reference dataset.23 While the accuracy of this procedure was found to be high,23 imputation errors could

still be present in the data. It is important to be cautious in interpreting our computations for any particular pair of individuals, and it will be

useful to perform similar analyses in datasets containing SNP and STR genotypes obtained directly. We note also that we have not taken into

account population structure among profiles in the database of profiles; a future direction is to examine imputation in the context of ap-

proaches to Arizona searches incorporating the Balding–Nichols model that takes population structure into account.19 The possibility that

the database contains siblings, parents and offspring, or other close relatives could also be considered.

Finally, we note that in our analysis of the 1000 Genomes data, we are relying on an assumption that a forensic database accurately rep-

resents the profiles of its sampled individuals. Genotyping errors, recording errors, sample mislabelings, and sample duplications can alter

the relationship between the set of individuals for whose profiles an Arizona search is of interest and the actual profiles employed in such a

search. Such factors will be important to consider in interpreting any imputation-based Arizona searches performed beyond the controlled

scenario of a simulation.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Imputation with BEAGLE

B Expected number of matches

A

D E F

CB

Figure 4. Differences between the numbers of matches with imputed and true data, computed using the Hodges-Lehmann estimator

The histograms show distributions across the 100 replicate splits. (A) Scheme 1, allele matches. (B) Scheme 1, fully matching loci. (C) Scheme 1, partially matching

loci. (D) Scheme 2, allele matches. (E) Scheme 2, fully matching loci. (F) Scheme 2, partially matching loci.
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Materials availability
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Data and code availability

� The dataset is a panel of phased SNP–STR haplotypes from Saini et al.,23 derived from the 1000 Genomes phase 335 and used previ-

ously by Kim & Rosenberg.33 It contains STR genotypes for 2,504 individuals at 18 of 20 CODIS loci (CSF1PO, D10S1248, D12S391,

D13S317, D18S51, D19S433, D1S1656, D22S1045, D2S1338, D2S441, D3S1358, D5S818, D7S820, D8S1179, FGA, TH01, TPOX, vWA).

As in Kim & Rosenberg,33 we include SNP haplotypes only in 1Mb windows centered on CODIS STR loci. The 1000 Genomes data

used in the study are available from Saini at al.,23 as processed by Kim & Rosenberg33; processed data are available from github.

com/jk2236/RM_WGS. Processed data are publicly accessible in the supplementary files.
� Code to replicate the analysis and generate figures is available in the supplementary files.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Imputation with BEAGLE

We ran the imputation with BEAGLE 5.424 using the human reference genome GRCh37 genetic map and all numerical parameters set to

default values, as in Kim & Rosenberg.33 The parameter values we used are36: impute=true, ap=true, gp=true, imp-states=1600, imp-

segment=6.0, imp-step=0.1, imp-nsteps=6.0, cluster= 0.005, ne=100000, window=40.0, overlap=2.0, seed=-99999.

Expected number of matches

To compute the number of matches expected between two imputed profiles in Scheme 2, we derive exact expressions for the distributions of

the numbers of fully and partially matching loci for a pair of individuals given allele probabilities at each locus.

Suppose we have run the BEAGLE imputation algorithm for an STR locus l of an individual A. The output contains two allele probability

vectors A1 and A2 for the two haplotypes of A, each of length Nl—the number of distinct alleles of l observed in the reference panel. The

probability of observing a given ordered genotype ijj is the product A1;iA2;j . We can use these probabilities to compute distributions of

the numbers of fully and partially matching loci between any two individuals. We first consider a single locus l, and we then extend to any

number of loci by dynamic programming.

Suppose we have two individuals A and B and four probability vectors A1, A2, B1, and B2 for alleles at a locus l. Given the genotype prob-

abilities forA andB, what are the probabilities thatA andBmatch fully (at both copies) and partially (exactly one allele is the same forA andB)?

Let Pl
1;0 be the probability of a full match, Pl

0;1 of a partial match, and Pl
0;0 of a non-match.

To find an expression for Pl
1;0, we work case-by-case for each possible genotype of individual A. We consider cases of isj and i = j sepa-

rately. First, if i = j, then genotypes of A and B must both be i j i, which happens with probability

XNl

i = 1

A1;iA2;iB1;iB2;i: (Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

BEAGLE v5.4 Browning, Zhou, and Browning24 http://faculty.washington.edu/browning/

beagle/beagle.html

Custom computer code This paper https://github.com/EgorLappo/arizona-

searches-by-imputation

Other

Genotype data Kim and Rosenberg,33 Saini et al.23 https://github.com/jk2236/RM_WGS
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If isj, then there are two possible cases: the match is A : i j j, B : i j j, or the match is A : i j j, B : j j i. Together, the two cases have probability

XNl

i = 1

XNl

j = 1;jsi

A1;iA2;j

�
B1;iB2;j +B1;jB2;i

�
: (Equation 3)

The sum of Equations 2 and 3 is the probability of the full match between the two individuals:

Pl
1;0 =

XNl

i = 1

XNl

j = 1;jsi

A1;iA2;j

�
B1;iB2;j +B1;jB2;i

�
+
XNl

i = 1

A1;iA2;iB1;iB2;i: (Equation 4)

To compute a probability of a partial match, we again consider i = j, so that the genotype of A is i j i. A partial match happens if B has

genotype i j k or k j i with ksi. The resulting probability is

XNl

i = 1

A1;iA2;i½B1;ið1 � B2;iÞ + ð1 � B1;iÞB2;i�:

If isj, then a partial match corresponds to the following cases:A : i j j, B : i j k;A : i j j, B : j j k;A : i j j,B : k j i; andA : i j j, B : k j j, all with ks i,

ksj. These cases have probability

XNl

i = 1

XNl

j = 1;jsi

A1;iA2;j

	
B1;i

�
1� B2;j

�
+B1;jð1� B2;iÞ+

�
1� B1;i � B1;j

��
B2;i +B2;j

� 

:

Together, we get

Pl
0;1 =

XNl

i = 1

XNl

j = 1;jsi

A1;iA2;j

	
B1;i

�
1� B2;j

�
+B1;jð1� B2;iÞ+

�
1� B1;i � B1;j

��
B2;i +B2;j

� 

+
XNl

i = 1

A1;iA2;i½B1;ið1� B2;iÞ+ ð1� B1;iÞB2;i �:

(Equation 5)

Finally, we use a similar approach for calculating the probability of a non-match. Here, the individual genotypes areA : i j j, B : k j lwith ks
i, ksj, lsi, lsj, giving the following expression:

Pl
0;0 =

XNl

i = 1

XNl

j = 1;jsi

A1;iA2;j

�
1� B1;i � B1;j

��
1� B2;i � B2;j

�
+
XNl

i = 1

A1;iA2;ið1� B1;iÞð1� B2;iÞ: (Equation 6)

Now suppose that we have imputed L STR loci for individuals A and B. Following our previous analyses that have assumed that imputation

proceeds independently at different STR loci,21,22,33 suppose also that the match probabilities are independent between loci (i.e. linkage

equilibrium). To convert one-locus results into amany-locusmodel, we use the recursive equations of Tvedebrink et al.20 Let pl
m;p be the prob-

ability of observingm full matches and p partial matches when considering the first l of L loci; ifm+p> l, then pl
m;p = 0. The initial conditions

are p1
1;0 = P1

1;0, p
1
0;1 = P1

0;1, and p1
0;0 = P1

0;0. Other values are calculated recursively as

pl+1
m;p =

8>>>>>>><
>>>>>>>:

Pl+1
0;0 p

l
m;p +Pl+1

0;1 p
l
m;p� 1 +Pl+1

1;0 p
l
m� 1;p if m>0;p>0;

Pl+1
0;0 p

l
0;p +Pl+1

0;1 p
l
0;p� 1 if m = 0;p> 0;

Pl+1
0;0 p

l
m;0 +Pl+1

1;0 p
l
m� 1;0 if m>0;p = 0;

Pl+1
0;0 p

l
0;0 if m = 0;p = 0:

(Equation 7)

The values pL
m;p characterize the discrete bivariate distribution of fully and partially matching loci between individuals A and B, conditional

on the BEAGLE-estimated probabilities of individual alleles. We obtain expected numbers of fully and partially matching loci asPL
m = 0

PL�m
p = 0 mpL

m;p and
PL

m = 0

PL�m
p = 0 pp

L
m;p, respectively. The expected number of matching alleles is

PL
m = 0

PL�m
p = 0 ð2m +pÞpL

m;p.
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