
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 N

ov
em

be
r 

20
23

 

royalsocietypublishing.org/journal/rspb
Research
Cite this article: Lappo E, Rosenberg NA,
Feldman MW. 2023 Cultural transmission of

move choice in chess. Proc. R. Soc. B 290:
20231634.

https://doi.org/10.1098/rspb.2023.1634
Received: 21 July 2023

Accepted: 26 September 2023
Subject Category:
Evolution

Subject Areas:
evolution, theoretical biology, behaviour

Keywords:
chess, cultural evolution, Dirichlet-multinomial,

social learning, transmission biases
Author for correspondence:
Egor Lappo

e-mail: elappo@stanford.edu
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6875461.
Cultural transmission of move choice
in chess

Egor Lappo, Noah A. Rosenberg and Marcus W. Feldman

Department of Biology, Stanford University, Stanford, CA 94305, USA

EL, 0000-0002-0847-4070; NAR, 0000-0002-1829-8664; MWF, 0000-0002-0664-3803

The study of cultural evolution benefits from detailed analysis of cultural
transmission in specific human domains. Chess provides a platform for
understanding the transmission of knowledge due to its active community
of players, precise behaviours and long-term records of high-quality data.
In this paper, we perform an analysis of chess in the context of cultural evol-
ution, describing multiple cultural factors that affect move choice. We then
build a population-level statistical model of move choice in chess, based
on the Dirichlet-multinomial likelihood, to analyse cultural transmission
over decades of recorded games played by leading players. For moves
made in specific positions, we evaluate the relative effects of frequency-
dependent bias, success bias and prestige bias on the dynamics of move
frequencies. We observe that negative frequency-dependent bias plays a
role in the dynamics of certain moves, and that other moves are compatible
with transmission under prestige bias or success bias. These apparent biases
may reflect recent changes, namely the introduction of computer chess
engines and online tournament broadcasts. Our analysis of chess provides
insights into broader questions concerning how social learning biases
affect cultural evolution.
1. Introduction
Chess has existed in its current form for hundreds of years; it is beloved as an
established sport, a hobby and also as a source of inspiration for scientists
across disciplines. Since the 1950s, playing chess well has served as a goal in
the development of artificial intelligence, as a task that a ‘thinking agent’
would be able to accomplish [1]. This goal was realized in the victory of a
chess algorithm over a top human player (Deep Blue versus Garry Kasparov
in 1997). In physics and signal processing, researchers study time series in data-
bases of chess games to extract information regarding long-term correlations,
dynamics of position evaluation, invention of new openings and other game
features (see e.g. [2–5]). Statisticians have been interested in chess as a case
study in the development of human performance measurement [6,7] and
modelling of human choice [8].

As a cultural dataset, a compendium of chess games has great potential to
help cultural evolution researchers understand patterns of cultural transmission
and social learning. A large body of well-annotated chess games is available
online, and, unlike linguistic or textual data, for example, these data contain
a precise record of players’ behaviour. As chess positions and moves are dis-
crete, they can be recorded with complete information. Yet the space of
potential game sequences is extremely large, so that there can be great variation
in move choices. In addition, the large amount of canonical literature on chess
allows for thorough qualitative interpretation of patterns in move choice.

Focusing on the game of Go, a game that also features discrete moves and
complete information, Beheim et al. [9] analysed the choice of the first move by
Go players in a dataset of approximately 31 000 games. They concluded that the
choice of the first move is driven by a mix of social and individual factors, and
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Figure 1. Example chess opening positions. (a) Queen’s Pawn opening, 1. d4. (b) Caro–Kann opening, 1. e4 c6 2. d4 d5. (c) Najdorf Sicilian opening, 1. e4 c5
2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6.
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the strength of these influences depends on the player’s age.
Many issues concerning cultural transmission in board
games remain to be studied. For example, what are the mech-
anisms behind social learning: are players choosing to use
‘successful’ moves or, instead, moves played by successful
players? What defines success of a move? Answering these
questions contributes to understanding both general pro-
cesses of the spread of innovations and mechanisms that
govern dynamics of the evolution of cultural traits.

In this paper, we perform a quantitative study of chess in
the context of cultural evolution using a database of 3.45
million chess games from 1971 to 2019. In §2, we introduce
chess vocabulary and several aspects of the game important
for our analysis. In §3, we describe cultural factors involved
in the game and position them within the context of existing
literature on cultural transmission. Section 4 describes the
dataset used in this study. In §5, we motivate and define a
statistical model for frequencies of opening strategies in the
dataset. Unlike individual-based analysis of a binary choice
of the first move in Go by Beheim et al. [9], our model incor-
porates counts for all possible moves in a position, taking a
population-level approach. In §6, we discuss the fit of the
model to data for three positions at different depths in the
game tree.
2. The game of chess
In this section, we briefly review chess vocabulary, assuming
readers have some basic knowledge of the rules of the game
(for a concise summary, see [10]).

First, a game of chess consists of two players taking turns
moving one of their pieces on the board, starting with the
player who is assigned the white pieces. We will call these
discrete actions plys: the first ply is a move by the white
player, the second ply is a move by the black player, and so
on. The average length of a chess game at a professional
level is around 80 plys (see §4 below). We will use the
word ‘ply’ when describing specific positions, but otherwise
we will use the words ‘move’, ‘strategy’ and ‘response’
interchangeably with ‘ply.’

Moves are typically recorded using algebraic notation [11,
p. 389], in which each ply is represented by a letter for a
piece—K for king, Q for queen, R for rook, B for bishop, N
for knight, no letter for a pawn—followed by the coordinates
of the square on which the piece ends. The coordinates on the
board are recorded using letters from a to h from left to right
for the ranks (the x-axis coordinates), and numbers from 1 to 8
for the files (the y-axis coordinates). For example, the first few
moves of the game could be recorded as 1. e4 e5 2. Nf3 Nc6
3. Bc4 Nf6 … . Other special symbols are used for captures
(x), checks (+) and castling (O–O or O–O–O for king- and
queen-side castling, respectively).

The initial stage of the game is called the opening. In the
opening, players try to achieve a favourable arrangement of
the pieces that gives them the most freedom for further
actions while keeping their kings safe. Openings are highly
standardized, with many having names, e.g. the Sicilian
Defence, or the London Opening. Because the number of
possible positions is not that large at the beginning of the
game, openings are extensively analysed by players and
then memorized for use in tournaments. Example chess
positions in the opening are presented in figure 1.

The collective body of knowledge about how to play
chess from various positions is called chess theory. For the
opening, theory consists of extensive analyses of many pos-
itions by human players as well as by computers. One of
the manifestations of chess theory is the existence of fixed
sequences of moves called ‘lines,’ from which deviations
are rare. A mainline is a sequence of moves that has proven
to be the most challenging for both opponents, such that
neither of them is able to claim an advantage. A sideline is a
sequence of moves that deviates from the established optimal
sequence.

Each professional chess player has a numerical rating,
usually assigned by the national or international federation.
FIDE (The International Chess Federation) uses the Elo
rating system [12]. The rating is relative, meaning that it is cal-
culated based on a player’s past performance, and is intended
to represent a measure of the player’s ability. The typical
rating of a strong intermediate player is approximately
1500, and a rating of 2500 is required to qualify for a Grand-
master (GM) title. Most elite tournaments involve ratings
above 2700.
3. Culture and chess
Chess is a cultural practice that is actively shaped by the
people who participate in it. Individual players enter the
practice, altering their performance and behaviours depend-
ing on the games they and others have played. Many
cultural processes are involved in players’ decision-making.
To analyse these processes, we will concentrate on decisions
made in the opening stage, because the relatively small
number of positions allows players to reason about concrete
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moves and lines in their analyses and preparation. The factors
affecting move choice that we discuss below are well-known
to the chess community [13–16]. Our goal here is to place
them in the language of cultural evolution.

(a) Objective strength. One factor in move choice is the objec-
tive strength of the move, which reflects the potential for
victory from resulting positions. An evaluation of a
move’s strength can be made by human analysis or
with a chess computer. Many early moves have been
extensively analysed, so the best choice in those positions
is well-known to most professional players.

(b) Social context of the move. Players are aware of how often a
given move has been played in the past. This frequency
evaluation can even be automated using websites such
as OpeningTree.com. Developed theory often exists
for more frequent moves, which can be the default
choice for many players. Conversely, rare moves or novel-
ties (previously unseen moves) can create problems for
opponents who most likely have not prepared a response.

It is important to observe that the frequency with which
a move is played is not directly proportional to the objec-
tive strength discussed in (a); there are moves that are
objectively weak, but only conditional on the opponent
finding a single good response. If this response is not
played by the opponent, then the weak move may give
an advantage. In some conditions, e.g. an unprepared
opponent or lack of time, such a ‘weak’ move can be
highly advantageous. There have also been cases in
which a historically frequent move was later ‘refuted’ by
deep computer analysis.

Beyond the move frequency, information on the success
of strategies in leading to a win can play a role in move
choice. In many positions, actually applying information
about objective move strength is a complex problem. It
is not enough to make a single strong move: a player
must then prove an advantage by continuing to play
further strong moves and executing plans that would
lead to victory. The success rate of a move is an indicator
of how hard it is to gain a long-term advantage leading to
checkmate after choosing it.

The influence of elite players may also be important in
move choice. Top players participate in invitational tour-
naments followed by the wider community. Players
presented with a choice of approximately similar moves
may choose the one that was played by a ‘superstar’
player. This phenomenon is exemplified by strategies
named after famous players, such as ‘Alekhine’s Defence’
[17, p. 159] or ‘Najdorf Sicilian’ [17, p. 246]. Leading
players can create trends; for example, the Berlin Defence
was popularized after grandmaster Vladimir Kramnik
employed it to win the World Championship in 2000
[17, p. 43].

(c) Metastrategy. Beyond trends in move choice, the ‘metas-
trategy’ of chess is also evolving. Conceptions of what
a game of chess ‘should’ look like have been changing
through the years, and so has the repertoire of openings
used by professional players [11, p. 359]. In the eight-
eenth century, the swashbuckling Romantic style of
chess emphasized winning with ‘style’: declining gam-
bits, or offers of an opponent’s piece, could be viewed
as ungentlemanly, and Queen’s Pawn openings were
rarely played [18, ch. 5]. However, by the World
Championship of 1927, trends in chess had shifted to
long-term positional play (see [18, Ch. 8]). Queen’s
Pawn openings were the cutting edge of chess theory,
and almost all games at that tournament began with
the Queen’s Gambit Declined [19]. Following World
War I, hypermodern chess emphasized control of the
board’s centre from a distance, and its influence is evi-
dent in top-level games of the mid-twentieth century
[18, Ch. 10]. Hypermodern players refused to commit
their pawns forward, preferring a position where pieces
are placed on safe squares from which they could
target the opponent’s weaknesses. Recently, a style of
chess mimicking computer play has emerged, in which
players memorize long computer-supported opening
lines and play risky pawn advances.

Chess is as much a social phenomenon as it is individ-
ual. Some players exhibit personal preferences for certain
game features, such as early attacks or long and compli-
cated endgames, and some aspects of play are
determined by a player’s upbringing. For example, the
Soviet school of chess formed around a certain energetic,
daring and yet ‘level-headed’ style [20].

(d) Psychological aspects. Finally, psychological aspects and
circumstances of the game contribute to move choice
[21]. There are lines that are known to lead to a quick
draw, and a player might elect to follow one of them,
depending on the relevance of the outcome at a particu-
lar stage of the tournament. Openings may also be
chosen to take opponents out of their comfort zone: in
a game against a much weaker opponent, a dynamic
and ‘pushy’ line might give a player an advantage. Simi-
larly, a master of attacking play might make mistakes
when forced into a long positional game.

The complexities of move choice suggest that chess could
serve as a model example for the quantitative study of cul-
ture. Players’ knowledge is continually altered by their own
preparation, the games they play and other players’ actions.
In this sense, chess knowledge is ‘transmitted’ over time, in
part by players observing and imitating their own past
actions and those of other players, or transmission by random
copying [22]. The large historical database of chess games
provides an opportunity to study deviations from random
copying dynamics known as transmission biases or social
learning strategies [23–26]. In our analysis of the transmission
of chess knowledge, we will investigate success bias (players
paying attention to win rates of different strategies), prestige
bias (players imitating the world’s best grandmasters) and
frequency-dependent bias (e.g. players choosing rare or
unknown strategies).
4. Data
The dataset that serves as the foundation for this project
is Caissabase—a compendium of approximately 5.6 million
chess games, available for download at caissabase.co.uk.
Games in the dataset involve players with Elo rating 2000
or above, and correspond to master-level play, allowing us
to focus on the dynamics of high-level chess without the
influence of players who are just learning the game.

In filtering the dataset, we have excluded games with
errors that did not correspond to a valid sequence of moves

https://www.openingtree.com
http://caissabase.co.uk
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as determined by a chess notation parser. We also filtered the
dataset to keep only the games that record the result of
the game, players’ names and their Elo ratings, and we
selected only the games played from 1971 to 2019. This
filtering produced a table of 3 448 853 games.

In figure 2, we highlight the main aspects of the dataset.
Figure 2a shows that the number of games per year
has been growing steadily since the 1970s, stabilizing at
approximately 100 000. In total, there are 77 956 chess players
in the dataset, with the number of unique players per year
increasing in recent decades (figure 2b).

It is widely accepted in the chess community that white
has a slight advantage, as the side that starts the game.
This view is reflected in figure 2c, which plots the fractions
of outcomes of games in each year. Finally, figure 2d shows
the average length of games over time; games have become
longer since the mid-1980s, which could mean that players
are getting better at the game and no longer lose early. To
explore the dynamics in the dataset further, we examine the
frequencies of individual moves.
5. Modelling move choice
(a) Move frequencies
Here, we discuss the dynamics of move frequencies over time
for several game positions. Given a position on the board, the
player whose turn it is has a choice of which move to play. In
positions where their king is in check, players would only
have few choices, since they are forced to get out of check.
In some other cases, several equally attractive moves could
be available, and any of the factors in §3 has the potential
to affect the choice. Depending on the position, the move
frequency trajectories look drastically different, as shown in
figure 3.
Starting Position, ply 1. Figure 3a shows the fractions of
games in which different starting moves were played in
each year from 1971 to 2019. The frequencies of the moves
are mostly constant over time, suggesting that the starting
move is a well-understood and well-developed idea.

Sicilian Defence, ply 3. Figure 3b shows move frequencies
in response to 1. e4 c5—the Sicilian Defence. In this position,
there is a mainline move—Nf3—which an overwhelming
majority of players prefer to play, while other moves are
rarely played. Move distributions in which one specific
move dominates are common, possibly because some
sequences of moves are perceived as a single coherent unit.

Queen’s Gambit Declined, ply 7. Figure 3c presents an
example of a gradual change, which might have happened
either due to a change in the metastrategy of play or because
of the gradual development of chess theory.

Najdorf Sicilian, ply 11. A game starting with a Sicilian
Defence can follow a sequence known as the Najdorf Sici-
lian. This sequence consists of 10 plys, and the moves at
ply 11 that have been played in the resulting position are
presented in figure 3d. Qualitatively, the picture is dramati-
cally different from the early positions considered above.
Among the responses to the Najdorf Sicilian, some moves
are consistently popular choices (Be2, Be3, Bg5), some
became ‘obsolete’ in recent years (f4) and some rapidly
gained popularity (h3).

The qualitative picture of move frequency changes can be
summarized as follows. On one hand, very early opening
moves do not show large fluctuations in frequencies,
most likely because a significant change in frequency necessi-
tates some kind of ‘innovation,’ which is impossible to
produce at such an early stage. On the other hand, moves
beyond the standardized opening frequencies (after the
16th–20th ply) involve positions that do not repeat often
enough for humans to memorize and analyse during
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royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231634

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 N

ov
em

be
r 

20
23

 

preparation. This property makes quantitative analysis of
specific late-game moves nearly impossible. Somewhere
between these two extremes are positions at which chess
theory is actively developed and tested. Positions such as
the Najdorf Sicilian occur early enough in the game to be
reached often, but are advanced enough to provide many
continuation possibilities that are approximately equal in
terms of objective strength. In such positions, all factors,
including engine analysis, move frequency, social context,
stylistic trends and personal preferences could play a role in
move choice.
(b) Population-level modelling of move choice
We develop a statistical model that can help to understand
the data described above. A complete model of move
choice would involve parameters associated with the whole
population, with subgroups of players (e.g. top 50 players)
or with each individual. Such a model would be very com-
plex, so our model is restricted to population-level features
of dynamics; we analyse frequency-dependent, success and
prestige biases. Features concerning match-level dynamics,
personal development and preferences of individual players
are outside of the scope of our analysis, and are present
in the form of residual variance, not explained by our
population-level treatment.
(i) Unbiased model
First, we consider a null model that generates the simplest
dynamics, reflecting unbiased transmission of move choice
preferences from one year to the next. Conceptually, the
model assumes that each year, players ‘sample’ a move
randomly from games that were played in the last year. More
precisely, fix an arbitrary chess position and suppose that in
each year t, exactly Nt games having this position were
played. The data for the model are the counts of k different
response moves, denoted by xt ¼ ðx1t , . . . , xkt Þ. We do not
attempt to model appearance of novel strategies, so we will
assume that all counts are positive, xit . 0. The vector of
response strategy counts in the next year, xt+1, is multinomially
distributed,

xtþ1 � MultinomialðNtþ1, utÞ: ð5:1Þ
The probability vector θt has the Dirichlet distribution with
counts in the current year, xt, as Dirichlet allocation parameters,

ut � DirichletðxtÞ: ð5:2Þ

The multinomial likelihood depends on a positive integer
parameter n and a vector of probabilities u that sum to one,

fMðy; n, uÞ ¼ n!
y1! � � � yk! u

y1
1 � � � uykk ;

Xk
i¼1

yi ¼ n: ð5:3Þ

The Dirichlet likelihood depends on a vector of positive real
numbers a:

fDðu; aÞ ¼
G
Pk

i¼1 ai

� �
Qk

i¼1 GðaiÞ
Yk
i¼1

uai�1
i : ð5:4Þ

These two likelihoods can be combined into the compound
Dirichlet-multinomial likelihood by integrating over θ [27,
pp. 80–83],

fDMðy; n, aÞ ¼
n!G

Pk
i¼1 ai

� �
G nþPk

i¼1 ai

� �Yk
i¼1

Gðyi þ aiÞ
yi!GðaiÞ , ð5:5Þ
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which will be the likelihood for the model. In other
words, under our unbiased model, the counts xtþ1

of moves in year t + 1 are distributed with probability
density function

pðxtþ1 j Ntþ1, xtÞ ¼ fDMðxtþ1; Ntþ1, xtÞ, ð5:6Þ
so that the counts in the previous year xt take the roles of the
Dirichlet parameters a. As a shorthand, we write

xtþ1 � Dirichlet-multinomialðNtþ1, xtÞ: ð5:7Þ
For a vector y having a Dirichlet-multinomial distribution

with parameters n and a, the expectation is

E[y] ¼ nPk
j¼1 aj

a: ð5:8Þ

For our model, this formula yields

E[xtþ1] ¼ Ntþ1Pk
j¼1 x

j
t

xt ¼ Ntþ1

Nt
xt , ð5:9Þ

meaning that no changes are expected to happen in this
unbiased model, except possibly for the change in the
number of games played. The strategies are ‘transmitted’
from one year to the next proportionally to their current
frequencies in the population.

The null model is analogous to a neutral many-
allele Wright–Fisher model in population genetics [28].
The multinomial distribution arises as a representation
of a biological process in Wright–Fisher models, where
individuals in the next generation ‘choose’ a parent from
the previous generation. In our model of move choice, such
sampling is a metaphor that does not correspond exactly
to an observed physical process. As we discuss below,
working with counts directly via the Dirichlet distribution
allows us to account for a potentially higher variance in
the strategy counts relative to the multinomial distribution
[29]. Use of the Dirichlet-multinomial likelihood is a
common way of dealing with overdispersion in count data
in many fields, including ecology [30] and microbiome
studies [31,32].

It should be noted that chess players pay attention to
games further back in the past than just the last year. Our
null model is still a reasonable representation of the process
for several reasons. First, there is a high degree of autocorre-
lation in the move count data [2], meaning that it is likely that
the most recent data point is representative of counts in the
last several years. Second, players tend to look only at select
famous games of the past, whereas the more recent games
can be more easily perceived in their totality.
(ii) Fitness and frequency dependence
A strategy transmitted at a rate greater than expected from
the null model can be said to have higher cultural fitness
[33]. Conversely, a strategy having a lower transmission rate
than expected has lower cultural fitness. Selection on strat-
egies is carried out by players when they decide which
move to play based on any of the factors discussed in §3.
We can account for cultural fitness by associating a fitness
coefficient fi to each strategy i. For now, assume that fitness
values are constant, 0 < fi <∞. The distribution of moves in
the next year can then be described as

xtþ1 � Dirichlet-multinomialðNtþ1, f1x1t , . . . , fkx
k
t Þ, ð5:10Þ
with the expression for expected counts in the next
year becoming

E[xitþ1] ¼ Ntþ1
fixitPk
j¼1 f jx

j
t

: ð5:11Þ

As the coefficients fi are constrained only in that they must be
positive, this way of encoding the parameters is useful for
inference purposes, especially in the Bayesian framework
we employ below. It is straightforward to find reasonable
prior distributions on (0,∞), and absence of ‘sum to one’ con-
straints makes it easy for an MCMC sampler to efficiently
explore the posterior distribution [34, Ch. 12].

However, interpretation of the model is more convenient
with a different parameterization: instead of considering
values of fi, we let

�f t ¼
1
Nt

Xk
j¼1

f j x
j
t ð5:12Þ

be the mean fitness at time t, and define

f 0i ¼
fi
�f t

ð5:13Þ

to be normalized fitness coefficients, such that
Pk

i¼1 f
0
i ¼ 1.

Rewriting equation (5.11) as

E[xitþ1] ¼
Ntþ1

Nt

fi
�f t
xit ¼

Ntþ1

Nt
f 0i x

i
t, ð5:14Þ

we see that fi0 = 1 implies no expected change in the frequency
of strategy i from time t to t + 1. Therefore, this choice of para-
meterization allows us to view fi0 as growth rates, with fi0 = 1
corresponding to no selective advantage, i.e. the neutral case.
The value of �f t, in turn, adjusts the variance of the counts in
the next year.

To summarize, in our Dirichlet-multinomial model, the fi’s
measure two phenomena at once; their relative values represent
selection, while the mean value of the fi’s measures overdisper-
sion with respect to the multinomial model. Mathematically, the
expectation of a DirichletðaÞ-distributed random variable is
invariant with respect to multiplying a by a positive constant,
but its variance is determined by the magnitudes of the
parameters. Although the fi are convenient to use in inference,
we will interpret the results in terms of a parameterization
that involves fi0 and �f t (equations (5.12) and (5.13)).

We now allow fi to depend on the frequency of the
strategy, such that

xtþ1 � Dirichlet-multinomial

ðNtþ1, f1ðx1t =NtÞ x1t , . . . , fkðxkt=NtÞ xkt Þ: ð5:15Þ

In this way, we are able to incorporate frequency-dependent
selection phenomena, which have previously been shown to
be present in models of cultural data (e.g. [35]). Hence, we
will refer to fi as frequency-dependent fitness functions. The
expression for the mean fitness now becomes

�f t ¼
Xk
j¼1

f jðp j
t Þ p j

t , ð5:16Þ

where p j
t ¼ x j

t=Nt, and k is the number of distinct moves
played from a position.

We choose a piecewise-constant form for the functions fi,
as this form introduces minimal assumptions about their
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shape while keeping the number of parameters low. That is,
for i = 1, …, k, we have

fiðxÞ ¼
ci1 if x [ ½0, bi1Þ,
cij if x [ ½bij�1, b

i
jÞ,

ci‘ if x [ ½bi‘�1, 1�,

8><
>: ð5:17Þ

where cij are values of fi and bij are breakpoints that determine
the boundaries of constant segments. For ℓ segments, ℓ− 1
breakpoints bij [ ð0, 1Þ must be specified. We choose quar-
tiles of move frequencies as the values for bij, so that each
function fi has three breakpoints and ℓ = 4 constant segments.
This choice does not uniformly cover the domain of fi, but
allows for the same amount of data to be used in estimating
each segment.
c.R.Soc.B
290:20231634
(iii) Full model
We complete our model by accounting for additional features
that could affect move choice dynamics. In the final model,
the vector of strategy counts in the year t + 1 again has the
Dirichlet-multinomial distributionwith parametersNt+1 anda:

xtþ1 � Dirichlet-multinomialðNtþ1, aÞ: ð5:18Þ
However, vector a is now defined as

ai ¼ expðbi � yitÞ fiðxit=NtÞ xit: ð5:19Þ
Here, xit is the count of gameswith the ith strategy in year t, fi is a
piecewise-constant functionof the strategy frequencydescribed
in §5(ii) above, and βi is a vector of constant coefficients.

Additional features beyond just the move count or fre-
quency are denoted yit in equation (5.19). There are three of
these features:

1. The average outcome of the strategy in the whole popu-
lation for games in year t, with a win for the side
making the move encoded as 1, a win for the opposing
side encoded as −1, and a draw encoded as 0. We
denote the corresponding coefficient by βwin,i.

2. The average outcome of the strategy among the top 50
players in the dataset in year t, encoded in the same
way as the population win rate. The list of top 50 players
was compiled separately for each year using the average
Elo rating of the players in that year. We denote the
corresponding coefficient by βtop50−win,i.

3. The frequency of the strategy among the top 50 players
in year t. We denote the corresponding coefficient by
βtop50-freq,i.

These features represent biases different from frequency depen-
dence that could also contribute to cultural fitness of moves; if
the average outcome significantly affects move choice, success
bias is present in transmission, as represented by coefficients
βwin,i and βtop50-win,i. Similarly, prestige bias could be important
for transmission if players imitate the top 50 players as
represented by coefficients βtop50-win,i and βtop50-freq,i.

The extra features are included in the model as an expo-
nential factor expðbi � yitÞ. This choice of factor has two
purposes: first, it ensures that the variables αi stay positive
for all parameter values and data points; second, it represents
multiplicative effects of several types of transmission biases, a
common approach both in theoretical models of cultural
evolution (see e.g. [36,37]) and in analyses of experimental
data [38–40].
(iv) Inference
In total, the parameter vector u ¼ ðcij, biÞ has length 7k, where
k is the number of different moves played in a given position.
For each move, there are three coefficients βwin,i, βtop50-win,i,
βtop50-freq,i, as well as four values ci1, c

i
2, c

i
3, c

i
4 characterizing

the function fi in equation (5.17).
We choose to fit the model in a Bayesian framework using

Markov Chain Monte Carlo sampling, as this choice makes
implementation of the model straightforward and allows us
to obtain both point estimates and uncertainty quantification
from the same analysis. To conduct Bayesian inference, we
need to specify a prior distribution for u. Following Gelman
et al. [34], we specify non-informative priors for each par-
ameter. Each constant segment cij of each function fi was
assigned an Exp(1) prior, such that fi is always non-negative,
and the prior mean of fi is equal to one, corresponding to neu-
trality. We assigned each parameter bi a normal N ð0, 1Þ prior
and standardized the corresponding features yit to have zero
mean and unit variance. Given these priors and the model
likelihood (defined in equations (5.18) and (5.19)), samples
were generated from the posterior distribution using the
Hamiltonian Markov Chain Monte Carlo sampler provided
by the Stan software package [41,42]. For this procedure,
we only consider the data from 1980 to 2019, since earlier
years have significantly less data available.

Many moves were played only a few times in the whole
dataset. To prevent extremely rare moves from inflating the
number of parameters, we have combined moves that indivi-
dually have average frequency less than 2% into a single
category called ‘other.’ In addition, it is commonly accepted
by professional players that rare moves serve the same pur-
pose: to take the opponent ‘out of theory’ into positions
where neither player had spent significant time preparing,
leading to more chaotic and tense games.

There are also years in which some move counts are equal
to zero, and in this case, our assumption that move counts are
non-zero is violated. To remedy this situation, in compu-
tational inference we replace the parameter a from equation
(5.19) by aþ 1, such that for all strategies,

ai ¼ 1þ expðbi � yitÞfiðxit=NtÞxit: ð5:20Þ
This approach is commonly used to deal with the potential
for zero counts of rare categories in models involving multi-
nomial likelihoods. For example, it is used in Dirichlet-
multinomial modelling of ecological data [30] and in multi-
nomial ‘assignment tests’ of individuals to populations in
genetics [43,44]. For moves with non-zero counts, this correc-
tion biases expectations from xit=Nt to ðxit þ 1Þ=ðNt þ KÞ,
where K is the number of strategies. The bias is negligible
when move counts are in the hundreds or above.
6. Modelling results
We discuss model fits for three positions at three different
depths in the game tree: the Queen’s Pawn opening at
ply 2 (1. d4), the Caro–Kann opening at ply 5 (1. e4 c6
2. d4 d5) and the Najdorf Sicilian at ply 11 (1. e4 c5 2. Nf3
d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6). The parameters
of the Stan HMC sampler and convergence diagnostics for
each position are reported in electronic supplementary
material, S1. In total, there are N = 1 083 146 games with the
Queen’s Pawn opening, N = 80 890 games with the Caro–
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Figure 4. Dirichlet-multinomial model fits for move choice in three different positions: the Queen’s Pawn opening at ply 2 (1. d4), the Caro–Kann opening at ply 5
(1. e4 c6 2. d4 d5) and the Najdorf Sicilian at ply 11 (1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6). (a,d,g) Move frequencies xit=Nt . (b,e,h) Posterior
means of probabilities of move choice in the year t, with grey lines marking the range containing the middle 98% of the posterior density. (c,f,i) Frequency-
dependent fitness fiðxit=NtÞ=�f t of moves over time, with the values computed using posterior medians of the fi. (a) Move frequencies, Queen’s Pawn, ply
2. (b) Mean move choice probability, Queen’s Pawn, ply 2. (c) Frequency-dependent fitness, Queen’s Pawn, ply 2. (d ) Move frequencies, Caro–Kann, ply 5.
(e) Mean move choice probability, Caro–Kann, ply 5. ( f ) Frequency-dependent fitness, Caro–Kann, ply 5. (g) Move frequencies, Najdorf Sicilian, ply 11.
(h) Mean move choice probability, Najdorf Sicilian, ply 11. (i) Frequency-dependent fitness, Najdorf Sicilian, ply 11. The curves for the ‘other’ category are omitted
in all plots as the category is too rare to give meaningful results. The model was fitted for years 1980–2019, and the move fitnesses are estimated for all years
except 2019.
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Kann opening, and N = 82 557 games with the Najdorf Sici-
lian opening. Input data such as raw strategy counts and
win rates in each year appear in electronic supplementary
material, S2.

Figure 4 shows the original frequency data, the move
choice probabilities as estimated by the model, and estimates
of frequency-dependent fitness fi0ðxit=NtÞ ¼ fiðxit=NtÞ=�f t of
moves over time, as defined in equations (5.12) and (5.13).
Comparing the first and second rows of panels in figure 4,
our model fits the data well, with estimated move choice
probabilities (figure 4b,e,h) matching the actual move fre-
quencies (figure 4a,d,g). The estimates of the parameters fi
and bi are presented in electronic supplementary material
S3, figures S3 and S4, respectively. For point estimates, the
posterior median is used and for quantifying uncertainty,
we report posterior 1% and 99% quantiles for each estimate.
In our analysis, we focus on effects b for which the middle
98% of the distribution does not contain zero and on signifi-
cant effects that have reasonable justifications in chess
literature or history. Finally, figure 5 illustrates frequency
dependence in the choice of strategies using posterior
predictive sampling. We discuss figure 5 in detail below.
(a) Frequency dependence: Queen’s Pawn opening
Considering the responses to the Queen’s Pawn opening in
figure 4a, from 1980 to 2005, the move d5 is, on average,
increasing in popularity, with this trend reversing after
2005. The move Nf6 shows the opposite dynamics. In fact,
in World Championship matches of 2016, 2018 and 2021,
players responded with Nf6 in all but one game in this pos-
ition (see e.g. [45]). Gradual changes can be caused by
cultural drift [22] or changes in metastrategy. However, our
model suggests that transmission biases may play a role as
well. In particular, the values of the fitness functions for d5
and Nf6 observed in figure 4c are higher when they are at
lower frequencies. The plots of frequency-dependent func-
tions fi(x) for x from 0 to 1 are shown in electronic
supplementary material, figure S3A, and there is a down-
ward slope in the values of fi(x) characteristic of negative
frequency-dependent bias, or anti-conformity. Win rates or
features related to top 50 players appear to have no effect
on the choice of d5 or Nf6 (electronic supplementary
material, figure S4A). The other strategies are played in
only a small proportion of games, and for those strategies,
it may be hard to distinguish meaningful effects from
statistical artefacts.

To further understand the nature of frequency depen-
dence, we plot expected deviations of move choice
probability E½pitþ1� from random choice (E½pitþ1� ¼ pit) for
initial frequencies xit=Nt ¼ 0, 0:02, . . . , 0:98, 1, keeping other
variables constant (see electronic supplementary material,
S4 for a detailed description of the calculation). For the
Queen’s Pawn opening, this plot appears in figure 5a. The
choice of move d5 clearly has negative frequency depen-
dence, as it is chosen with probability higher than what is
expected under random choice when its frequency is low
and with lower probability when its frequency is high, with
deviations from random choice as large as 1.9%. Similar
behaviour can be seen for the move Nf6.
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(b) Success bias: Caro–Kann
In the Caro–Kann opening, the move exd5 is used less and
less in more recent years (figure 4d ). The plot of move
fitnesses in figure 4f and the choice probability plot in
figure 5b suggest that negative frequency-dependent
dynamics play a role in determining this behaviour. How-
ever, the functions fi are not the only determinants of
move frequencies in our model; the coefficients bi shown
in electronic supplementary material, figure S4B suggest
that the choice to play the move exd5 is affected by the win
rate in the population, indicating success bias. The decrease
in the frequency of exd5 then comes from many players
losing after playing this move (see electronic supplementary
material, figure S2K). Indeed, computer engines have
shown that the move e5 provides the strongest winning prob-
ability for the player, while after exd5 the opponent can
‘equalize’ the position and take over the game [46].

(c) Prestige bias: Najdorf Sicilian
In the case of theNajdorf Sicilian, in §5(a), we highlightedh3 as
a recent strong trend. The frequency-dependent fitness function
fh3 shows that there is nonegative frequency-dependent bias for
a choice of h3 (electronic supplementary material, figure S3C);
in fact, figure 5c shows that h3 is, on average, chosenwith prob-
ability greater than random choice at every value of the
frequency in the previous year. This result suggests that the
move is a genuine innovation, becoming more popular ‘on its
own merit’ and not because of frequency-dependent trends.
The coefficient for the win rate among the top 50 players,
βh3,top50−win is large (electronic supplementary material,
figure S4C), meaning that the increase in the frequency of h3
could possibly be due to a trend started by elite players,
which then led to wider adoption and development of
theory.We conclude that the choice to play h3 is subject to pres-
tige bias. In chess literature, side pawn pushes such as h3, h4, a3
and a4 in various positions are ideas introducedbystrong chess
engines [47, ch. 9] in the most recent decade. This trend may
explain why top players, who often have teams analysing
engine suggestions for them, have been adopting the move
h3, subsequently influencing the general population.

(d) Game sample size Ns
Finally, we address the way our model characterizes the var-
iance of move counts in the data. As we have discussed in
§5(ii), the mean fitness �f t controls the variance of xitþ1 con-
ditional on model parameters and xit. Mathematically, this
influence can be seen as follows. As a shorthand, let

pi ¼ fiðxit=NtÞ xitPk
j¼1 fjðx j

t=NtÞ x j
t

ð6:1Þ

be the ‘frequencies’ of strategies assuming no effect of pres-
tige or success biases. Then the variance of xitþ1 is [27, p. 81]:

VarDMðxitþ1 j xitÞ ¼ Ntþ1pið1� piÞ Ntþ1 þNt
�f t

1þNt
�f t

 !
: ð6:2Þ

The last term of equation (6.2) is a decreasing rational func-
tion of �f t, so VarDMðxitþ1 j xitÞ decreases as �f t grows.

In the fitted models, the mean fitness �f t is consistently
below 1 for all three positions considered, equal to approxi-
mately 0.22 for the Queen’s Pawn, ply 2 position
(approximately constant over time), approximately 0.3 for
Caro–Kann, ply 5, and approximately 0.45 for Najdorf Sici-
lian, ply 11 (electronic supplementary material, figure S5A).
That we have observed �f t , 1 can be interpreted in relation
to players’ behaviour. Mechanistically, our model describes
players observing move counts in a previous year, adjusting
their preferences because of transmission biases, and then
selecting a move with higher variance than what is expected
if �f t ¼ 1, corresponding to multinomial choice. We define
game sample size NsðtÞ ¼ �f tNt to be the number of games in
the population at time t that achieves the same value for
the variance VarDMðxitþ1 j xitÞ as in equation (6.2) under the
condition �f t ¼ 1. Indeed, with game sample size defined as
NsðtÞ ¼ �f tNt, equation (6.2) becomes

VarDMðxitþ1 j xitÞ ¼ Ntþ1pið1� piÞ Ntþ1 þNsðtÞ
1þNsðtÞ

� �
, ð6:3Þ

so that now a mechanistic interpretation of our model consists
of players observing move counts in a population of sizeNs(t),
adjusting their preferences according to transmission biases,
and then choosing the strategy according to a multinomial
distribution.

As the game progresses from early to later positions, the
players sample a higher fraction of all games in their
decision-making process (electronic supplementary material,
figure S5). Possibly, the fraction of games sampled by players
is low for early positions because tens of thousands of pro-
fessional games each year start with a move d4 (electronic
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supplementary material, figure S2A), and it is likely that
players cannot monitor all of these games. However, a player
who specializes in playing the Najdorf Sicilian may pay atten-
tion to a larger proportion of games involving this opening,
because the total number of games to analyse is much smaller
for ply 11 in the Najdorf Sicilian (electronic supplementary
material, figure S2C) than in the Queen’s Pawn at ply 2 (elec-
tronic supplementary material, figure S2A).
 .org/journal/rspb

Proc.R.Soc.B
290:20231634
7. Discussion
We have developed a population-level model for the influence
of transmission biases on move choice in chess. We have
shown that many of the moves analysed are under negative
frequency-dependent cultural selection, having higher fitness
and being favourably selected with probability greater than
random choice at lower frequencies (figures 4 and 5). This
result suggests that anti-conformity is important in the trans-
mission of chess opening strategies. In addition, our model
is able to identify moves for which other factors play a role:
the dynamics of h3 in the Najdorf Sicilian are affected by the
win rate among the top 50 players (electronic supplementary
material, figure S4C), indicating the presence of prestige
bias, and the choice of exd4 in the Caro–Kann suggests success
bias (electronic supplementary material, figure S4B).

We have also inferred absence of significant success bias
for many strategies, consistent with our discussion in §3: a
win in chess is conditional on strong performance at every
move, so making decisions about the opening based on the
average eventual outcome may not be the best choice from
many positions. Similarly, following choices of top players
would be effective only if a strong continuation were found.
Support for our findings of strong success bias in the Caro–
Kann and prestige bias in the Najdorf Sicilian comes from
information commonly known to professional chess players,
such as new insights from extensive computer analysis, or
new styles of play introduced by computer players.

In addition to measuring transmission biases, we have
introduced a concept of ‘game sample size’ Ns that appears
naturally from the analysis of game counts (§6(d)). Ns can
be interpreted as the number of games that players observe
when making use of social information. We have shown
that later positions have a greater ratio Ns/N, which could
mean that players use more complete information when pos-
itions become more complicated and less standardized
(electronic supplementary material, figure S5).

The estimated game sample size relates to several theoretical
concepts. First, from the perspective of population genetics, Ns

is equivalent to variance effective population size NeðtÞ ¼ �f tNt

used to account for overdispersed allele counts relative to a stan-
dardWright–Fisher model [28,48]. Second, theoretical studies of
conformity typically involve individuals sampling role models
from the population and making a choice based on this
sample [23,36,37]. The number of role models is usually taken
to be equal to a small value such as 3, which is much smaller
than the population size. The value of Ns can be seen as relating
to these theoretical models, measuring how many role models
are sampled from the population.

(a) Related and complementary work
Our model complements other recent work on measuring the
strength of transmission biases in cultural datasets of
competitive activities, such as the studies by Beheim et al.
[9] on Go, Miu et al. [49] on programming contests and
Mesoudi [50] on football strategy. Beheim et al. [9] employed
multilevel logistic regression to study social and individual
learning involved in the board game Go. They observed
strong success bias and positive frequency dependence for
the choice of one of the opening moves. Positive frequency
dependence in Go and negative frequency dependence in
chess could be connected to the differences in the commu-
nities around each game. Among board games, chess is
unique in its use of computer engines. Computer chess
engines became widely available to elite players starting
from the late 1990s, revolutionizing tournament preparation.
Finding the best response in a position or solving a chess
puzzle became possible in a matter of seconds rather than
hours or days. Post-game analysis now helps players quickly
identify and address their weaknesses, which means that
players can no longer ‘catch’ many opponents with the
same ‘trick.’ Playing into popular lines can also lead to pos-
itions in which the opponent has the most preparation. In
contrast, the space of possible moves in the opening is
much larger in Go, and computers have reached human
level only in the most recent decade. Hence, the effectiveness
of studying a particular position in Go is diminished, and
players may choose to conform to a popular strategy for
their first move and hope to outplay the opponent later in
the game.

Transmission biases and social learning strategies in
various games have also been measured in field observations
and experiments (e.g. [38–40,51,52]). Studies using exper-
imental data typically involve models that estimate
parameters for each observed individual or category of
individuals, whereas we focus on analysis of large-scale
population-level data. Still, some aspects of such models
are similar to our Dirichlet-multinomial approach. For
example, in the experience-weighted attraction (EWA)
model employed by Barrett et al. [38] to analyse social learn-
ing in Capuchin monkeys (also used in [39,40]), decisions are
influenced by a convex combination of functions representing
individual and social learning, and different social biases are
encoded in a multiplicative way similar to equation (5.19) in
our model. This similarity suggests that our model could
potentially be modified to model move choice of each
player via a Dirichlet-multinomial likelihood, enabling com-
parisons of learning modalities between individual players.

Frequency-dependent selection has previously been
measured by Newberry & Plotkin [35] in other large datasets
such as baby name statistics and dog breed popularity data.
These authors focused on modelling ‘exchangeable’ entities,
for which selection acts on every variant in exactly the
same way. They estimate a single fitness function that is
shared by every cultural variant and that characterizes aver-
age frequency dependence in the population. Chess differs
from such contexts in that it contains the concept of a ‘win’.
Each chess move leads to a different position, altering the
winning chances of each player, so that strategies at different
stages of the game are dependent. Thus, our model assigns a
separate fitness function to each individual strategy, treating
strategies as nonexchangeable.

Our model also extends the multinomial model of
Newberry & Plotkin [35] by incorporating the Dirichlet
distribution into the model likelihood. This approach has a
clear mechanistic interpretation in terms of players’
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behaviours and allows us to perform efficient Bayesian infer-
ence of model parameters. Statistical models of count data
based on the Dirichlet-multinomial likelihood are known in
many related areas, including linguistics (e.g. [53]), human
genetics [54], molecular ecology [30] and microbiome data
analysis (e.g. [31,32]).

(b) Caveats
The parameters of our model can be represented in two
different ways. One uses k fitness functions fi that are only
constrained to be non-negative and are naturally suited to
Bayesian inference. Another uses k functions fi0 (equation
(5.13)) that are required to sum to one, together with the
mean fitness �f t (equation (5.16)). While estimates of fi (elec-
tronic supplementary material, figure S3) show presence of
frequency-dependent dynamics, it is hard to characterize
strength and significance of frequency dependence using
the values of fi. To understand strength and significance
of frequency-dependent effects we plot the growth rates
fi0 of strategies (figure 4) and compute expected deviation
of move counts from random choice (figure 5). Other
analyses could potentially be used, for example evaluating
whether the function fi is significantly different from a
constant function.

Another statistical issue that could affect our inferences is
the possibility of correlated input features, so that the b coef-
ficients might not be easily identifiable. However, features for
the games played by the top 50 players show behaviours that
differ from those of the total population of around 15 000
players (electronic supplementary material, figure S2). Thus,
for the factors we consider, it appears that distinguishing
the influence of the top 50 players from a general influence
of master-level players is indeed possible.

Our model incorporates only a subset of possible features
that could be relevant to move choice, such as highly devel-
oped theory or objective strength as determined by
computer evaluation (§3). However, the presence of signifi-
cant success bias and prestige bias could correspond to
mechanisms of social learning about these other features.
For example, suppose a player observes several successful
games in top tournaments with h3 in the Najdorf Sicilian,
and then studies the move. The player could learn about
the enthusiasm of modern computer engines for this move
and could incorporate it into future play. For our model,
this mechanism is indistinguishable from the player simply
copying a successful move. This reasoning about a player’s
mechanistic evaluation process suggests a potential direction
for further modelling that would incorporate varying indi-
vidual behaviours and knowledge about position evaluation.

(c) Conclusion
Data from the last five decades of high-level chess games
can be evaluated in the context of cultural transmission and
evolution. We have shown that the cultural ‘features’ of trans-
mission can be measured from move choice decisions in
various positions by professional players. In particular, we
have inferred influences of frequency-dependent bias, success
bias (win rate) and prestige bias (the use of the move by
the very top players). The prevalence of anti-conformity
and the lack of strong success bias for many strategies reflects
the nature of opening play in chess, which involves extensive
preparation and assessment of opponents’ likely preparation.
We have also connected the presence or absence of trans-
mission biases with chess theory. The fact that many of our
quantitative results correspond to ideas well known to pro-
fessional chess players suggests that our modelling could be
useful to chess analysts and historians. In particular, many
qualitative explanations are available for the popularity of
certain strategies, and a quantitative evaluation of move
frequency dynamics could help test the narratives familiar
to chess players with statistical evidence. More broadly, our
statistical approach could potentially be used to complement
the historical study of cultural trends in other games that con-
tain discrete choices, or even in other cultural domains in
which circumscribed discrete data are recorded.
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