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In many forensic settings, identity of a DNA sample is sought from poor-quality DNA, for which the typical STR loci tabulated in
forensic databases are not possible to reliably genotype. Genome-wide SNPs, however, can potentially be genotyped from such
samples via next-generation sequencing, so that queries can in principle compare SNP genotypes from DNA samples of interest to
STR genotype profiles that represent proposed matches. We use genetic record-matching to evaluate the possibility of testing SNP
profiles obtained from poor-quality DNA samples to identify exact and relatedness matches to STR profiles. Using simulations based
on whole-genome sequences, we show that in some settings, similar match accuracies to those seen with full coverage of the
genome are obtained by genetic record-matching for SNP data that represent 5–10% genomic coverage. Thus, if even a fraction of
random genomic SNPs can be genotyped by next-generation sequencing, then the potential may exist to test the resulting
genotype profiles for matches to profiles consisting exclusively of nonoverlapping STR loci. The result has implications in relation to
criminal justice, mass disasters, missing-person cases, studies of ancient DNA, and genomic privacy.
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INTRODUCTION
In forensic genetics, the identity of a DNA profile is often sought
from a biological sample with poor DNA quality, for which
standard molecular techniques used with high-quality samples are
unlikely to successfully produce genotypes. When the sample
originates from trace sources such as burned, degraded, or
ancient materials, only limited portions of the original genome
might remain in the sample.
Routine genotyping of short-tandem-repeat loci (STRs) assumes

that high-quality DNA samples contain DNA fragments in long
sections of sequence. Hence, in a high-quality sample, the
polymerase chain reaction can amplify the fragment that contains
the entire section of DNA that lies between a specified pair of
primer sequences [e.g., [1]]. The amplification relies on the
inclusion of both the primers and the fragment connecting
them—which contains an STR region—in the DNA sample
(Fig. 1A).
For degraded DNA samples, however, standard STR genotyping

procedures can be unlikely to succeed [2–4]. DNA fragments in the
biological sample might be short and scattered, so that it is
improbable that both primers and the DNA between them are
present to be amplified. Nevertheless, although STR genotyping
might fail, next-generation sequencing might be capable of
producing genotypes of the available fragments (Fig. 1B). Genetic
information might be possible to extract, and in particular,
genotypes might be possible to generate for some of the single-
nucleotide-polymorphism (SNP) sites in the genome [e.g., [5–12]].
With next-generation sequencing of fragmentary materials, no

particular genomic site can be reliably expected to appear in the

genotype data. In particular, the STR loci that underlie standard
forensic databases [13–15]—and that are genotyped by amplify-
ing specific genomic sites—are unlikely to be obtained from the
sample of interest, nor is any specific target set of SNPs. Thus,
when an investigator seeks to query an unknown degraded
sample for a match to STR genotypes of a known individual or
relative, or to search an STR profile database for a match, the
fragmentary genotypes represent different and apparently
incommensurable genetic loci from those available for potential
matches.
Is it possible to identify genetic matches between a fragmentary

SNP genotype profile from a degraded DNA sample and the
genotypes of a nonoverlapping set of STRs? In a technique termed
“genetic record-matching,” we have recently shown that, owing to
genotypic correlations between STRs and their neighboring SNPs,
it is frequently possible to identify matches between pairs of
profiles, when one member of the pair is a SNP profile and the
other is a forensic STR profile [16]. Furthermore, it can often be
determined that two profiles, one containing genome-wide SNPs
and the other with forensic STRs, represent close relatives [17].
Our calculations, however, have made use of genome-wide SNP

datasets with high genotyping quality, with high genomic
coverage around each forensic STR locus. What if the SNP data
were instead fragmentary, in the manner expected for degraded
DNA and fragmented genotyping? This problem of record-
matching between STR profiles and fragmentary SNP profiles
represents any of several possible scenarios: matching the SNP
profile of a degraded crime-scene sample to the STR profile of a
specific known suspect, querying a degraded crime-scene SNP

Received: 19 September 2022 Revised: 30 May 2023 Accepted: 3 July 2023
Published online: 11 August 2023

1Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA. 2Department of Biology, Stanford University, Stanford, CA 94305, USA.
✉email: noahr@stanford.edu

www.nature.com/ejhg

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-023-01430-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-023-01430-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-023-01430-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-023-01430-9&domain=pdf
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-5210-2004
http://orcid.org/0000-0002-1829-8664
http://orcid.org/0000-0002-1829-8664
http://orcid.org/0000-0002-1829-8664
http://orcid.org/0000-0002-1829-8664
http://orcid.org/0000-0002-1829-8664
https://doi.org/10.1038/s41431-023-01430-9
mailto:noahr@stanford.edu
www.nature.com/ejhg


profile against a database of STR profiles, matching the SNP profile
of an ancient DNA sample to specific STR profiles of possible living
relatives, matching the SNP profile of a degraded DNA sample in a
missing-persons or mass-disasters case to STR genotypes from
known missing persons or their relatives, or querying it against an
STR database of many potential candidates.
Here, we consider genetic record-matching between STRs and

fragmentary SNP data. We assess many genomic coverage levels,
examining scenarios in which the hypothesis is that a SNP profile
and an STR profile originate from the same person, from a
parent–offspring pair, or from siblings.

MATERIALS AND METHODS
Dataset
We examine two datasets containing both SNP and STR genotypes. First,
the Human Genome Diversity Panel dataset (HGDP), as studied by [16] and
[17], contains unphased genotypes at 642,563 SNPs and 17 CODIS STRs in
872 individuals from 52 populations—the 13 original CODIS loci and 4 in the
expanded set.
The second dataset is a phased reference SNP–STR haplotype panel of

Saini et al. [18] from the 1000 Genomes Project phase 3 [19, 20] with high-
quality SNP genotypes obtained from whole-genome sequencing. The
1000 Genomes dataset contains 2504 individuals from 26 populations,
with data at 11 of the 13 original CODIS core loci and all 7 expanded CODIS

core loci [15], and genomic data at 27,185,239 SNPs.
Tables S1 and S2 compare the HGDP and 1000 Genomes datasets. The

1000 Genomes has higher SNP density in the neighborhood of each CODIS

STR than does the HGDP, with an average of ~11,000 SNPs in a 1-Mb
window centered at an STR locus in the 1000 Genomes compared to ~275
SNPs for HGDP.
Our previous record-matching studies used the HGDP dataset [16, 17].

Using a larger number of SNPs, Saini et al. [18] showed that genotype
imputation accuracies at CODIS STRs from neighboring SNPs are slightly
higher when using denser 1000 Genomes data (see their Table S2). As
record-matching relies on imputation, we expect that the 1000 Genomes
will also produce higher record-matching accuracies than the HGDP.
To enable comparisons of record-matching accuracies in the 1000

Genomes and HGDP datasets, we focus on the 15 CODIS loci present in both
datasets (Table S2)—11 from the original CODIS STRs and 4 from the
expanded CODIS STRs—treating all individuals within a dataset as members
of a shared population.

Genetic record-matching
We examine familial relationships between a pair of individuals, one from
an STR dataset and the other from a SNP dataset typed at specified
genomic sequencing coverage.

The relatedness match score. We follow Kim et al. [17] in computing match
scores between profile pairs. For individual i, let the diploid genotype at
STR locus ℓ be Riℓ and let the diploid set of unphased genotypes at the
neighboring SNP loci be Siℓ. Considering L STR loci of individual i, Ri= {Ri1,
Ri2, …, RiL} is the STR profile from the STR dataset; Si= {Si1, Si2, ..., SiL} is the
SNP profile from the SNP dataset.
With no inbreeding, Δ= (Δ0, Δ1, Δ2) summarizes the relationship of two

diploid individuals, giving probabilities of three identity states C0, C1, C2 [21].

Each Ck represents a configuration in which, for their unordered diploid
genotypes at an autosomal locus, exactly k alleles are shared identically by
descent. Notation (Δ0, Δ1, Δ2) follows Kim et al. [17]; Jacquard’s (Δ9, Δ8, Δ7) or
Cotterman’s (k0, 2k1, k2) can also be used.
We test a specified relatedness hypothesis Δtest between individual A

with STR profile RA and individual B with SNP profile SB against a null model
in which the individuals are unrelated. The test uses the log-likelihood-ratio
relatedness match score comparing alternative and null hypotheses [17], or

λ RA; SBð Þ ¼
XL

‘¼1

ln P RA‘ SB‘; Δtestjð Þ½ � � ln P RA‘ð Þ½ �½ �; (1)

assuming independence of the STR loci (linkage equilibrium). We
decompose P(RAℓ | SBℓ, Δtest) over possible values of RBℓ, the STR profile
of individual B at locus ℓ:

P RA‘ SB‘; Δtestjð Þ ¼
X

RB‘2R‘

P RA‘ RB‘;Δtestjð ÞP RB‘ SB‘jð Þ: (2)

R‘ denotes the set of possible genotypes at locus ℓ. P(RAℓ | RBℓ, Δtest) is the
probability of the observed STR genotype of individual A at locus ℓ
conditional on a possible STR genotype of individual B at locus ℓ and the
assumed relatedness hypothesis [21]. Evaluation of P(RAℓ | RBℓ, Δtest) follows
Kim et al. [17].
P(RBℓ | SBℓ) is the probability of possible STR genotypes of individual B at

an STR locus ℓ conditional on the observed SNP profile surrounding STR
locus ℓ of individual B. We use BEAGLE and a phased SNP–STR haplotype
reference to impute and obtain probabilities of unobserved genotypes at
the STR locus ℓ; BEAGLE details appear in Section S1.1. We consider three
relationship hypotheses Δtrue for RA and SB: same individual, Δtrue= (0, 0, 1);
parent–offspring, Δtrue= (0, 1, 0); and sibling pairs, Δtrue ¼

�
1
4 ;

1
2 ;

1
4

�
.

Prior and posterior odds. We report some of our results in terms of prior
and posterior odds. Consider two hypotheses,

H0: A with STR profile RA and B with SNP profile SB are unrelated;
H1: A with STR profile RA and B with SNP profile SB are related with
relationship Δ.

Following Edge et al. [16], using Eq. (1), we can simplify the posterior odds
for hypothesis H1:

P H1jRA; SBð Þ
P H0jRA; SBð Þ ¼

P RAjH1; SBð Þ
P RAjH0; SBð Þ �

P H1jSBð Þ
P H0jSBð Þ ¼ eλ RA ;SBð Þ � P H1ð Þ

P H0ð Þ : (3)

The posterior odds for H1 is the product of the likelihood ratio P(RA | H1, SB)/
P(RA | H0, SB)= eλ RA ;SBð Þ and the prior odds for H1, P(H1)/P(H0). It is simplified
in terms of the match score λ(RA, SB) (Eq. (1)).

Match assignment. We assigned matches from pairwise match scores as
in Kim et al. [17]. For an STR dataset with IR individuals and a SNP dataset
with IS individuals, we evaluated the match score under a test hypothesis
Δtest (Eq. (1)) for all pairs of individuals, one with an STR profile and the
other with a SNP profile. Here, IR=IS=I.
We constructed an I × I match-score matrix M, where for all j, k in the set

[I]= {1, 2, …, I}, Mjk= λ(Rj, Sk) is the entry for STR profile Rj from individual
j and SNP profile Sk for individual k. From matrix M, we assigned matches
by one of four schemes [16, 17] (Section S1.2). Under one-to-one or one-to-
many matching (with a query SNP profile or query STR profile), record-

A B

Fig. 1 Genotyping of fragmented DNA might fail to amplify STRs, but it can amplify SNPs in the neighborhood of STRs. Each row depicts
a chromosome, with an STR locus in red. The blue regions represent genotyped segments. A In high-quality DNA samples, STRs are genotyped
by amplifying regions bracketed by PCR primers, depicted as gray boxes. B In low-quality DNA samples, PCR primers might not amplify, but
some of the SNPs near an STR can be genotyped.
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matching accuracy is defined as the fraction of pairs matched correctly
among I true matches. In needle-in-haystack matching, accuracy is defined
as the proportion of true matches with greater match scores than the
largest score across all non-matching pairs.

Pedigrees
To investigate familial record-matching, following Kim et al. [17], we
simulated random pedigrees from data on unrelated individuals. Details of
the pedigree simulation appear in Section S1.3.

Record-matching with HGDP and 1000 Genomes
We first evaluated HGDP and 1000 Genomes record-matching accuracies
with the 15 CODIS loci described in Section “Dataset.” Following Edge et al.
[16] and Kim et al. [17], we partitioned the data into disjoint training and
test sets, with 75% of the individuals in the training set. For all three
scenarios (same-individual, parent–offspring, sib-pair), we generated 100
random partitions (Section S1.4). We phased HGDP training sets using
BEAGLE to obtain SNP–STR haplotypes that we used as a reference. Next,
to estimate the unobserved STR genotype probabilities (P(RBℓ | SBℓ) in
Eq. (2)), we again used BEAGLE for imputing STR genotypes from test-set
SNP profiles with the phased SNP–STR haplotype reference panel from the
training set (Sections S1.1, S1.5).
For all three relatedness scenarios, for each of the 100 partitions, we

constructed the match-score matrix from the test set and assessed record-
matching accuracies for the four matching schemes (Section “Match

assignment”). Median, minimum, and maximum record-matching accura-
cies of the 100 replicates using the HGDP dataset appear in Table S3;
values with 1000 Genomes appear in Table 1 when Δtrue= Δtest, and in
Table S4 when Δtrue ≠ Δtest. For the median, we used the lesser choice
when the number of unique values was even.

Simulation of fragmentary genomic SNP data
To generate random fragmentary genomic SNPs for the 1000 Genomes, for
each relatedness scenario, we selected a partition corresponding to the
median one-to-one match accuracy with Δtrue= Δtest (Section “Record-
matching with HGDP and 1000 Genomes,” Table 1). The match accuracy
varies discretely across partitions; when multiple partitions all produce the
median value, we picked one at random. Because the HGDP dataset is
much smaller than the 1000 Genomes dataset, we conducted simulations
of fragmentary SNP data for the 1000 Genomes only.
Under each choice of relatedness, from the full-coverage SNP profiles in

the median-accuracy test set, we simulated fragmentary SNP data. For the
same-individual scenario, this test set has 626 individuals; for the
parent–offspring and the sib-pair scenarios, it has 313, one for each test-
set pedigree described in Section S1.4.
Among Nall= 27,185,239 SNPs in the 1000 Genomes, the number in the

1-Mb windows around the L= 15 STR loci was Nwin= 161,968 (Table S2).
We considered 30 values of genomic sequencing coverage c: {0.004, 0.006,
0.008, 0.01, 0.02, ..., 0.19, 0.2, 0.3, ..., 0.8, 0.9}. With the partition into training
and test sets fixed, for each c, we generated 100 random sets of
fragmentary SNP data of the test-set individuals (Fig. 2).

Fig. 2 Schematic for simulating fragmentary SNP datasets for the individuals in the test set. A An example of the SNPs in a 1-Mb window
(green) of a CODIS locus (red) in two specific individuals. We denote the total number of SNPs in the whole genome with full coverage (c= 1) by
Nall= 27,185,239. Dℓ (ℓ = 1, 2, ..., L) indicates the number of SNPs in the 1-Mb window of the ℓth CODIS locus, and Nwin ¼

PL
‘¼1 D‘ ¼ 161; 968

represents the number of SNPs in all L 1-Mb windows (Table S2). The symbol ‘|’ indicates phased genotypes. B The simulated set of
fragmentary SNPs for the individuals in (A). The symbol ‘/ ’ indicates unphased genotypes. C The simulation pipeline for generating simulated
fragmentary SNPs from the 1000 Genomes dataset. For a given sequencing coverage c, the total number of SNPs sequenced from the whole
genome is N cð Þ

all ¼ Nallc½ �. Given c, we repeat the following procedure 100 times to generate 100 random sets of fragmentary SNPs. We first
sample X, the number of sequenced SNPs in L 1-Mb windows combined, from a binomial distribution with parameters
N cð Þ
all and f ¼ Nwin=Nall � 0:006. Using the sampled value of X, for each test individual i (i= 1, 2, ..., I), we generate random sets of sequenced

SNPs in the 1-Mb windows by first sampling individual-specific dðiÞ ¼ ðdðiÞ1 ; dðiÞ2 ; :::; dðiÞL Þ—the vector of numbers of sequenced SNPs from each
of the L windows—from a multinomial distribution with parameters X and (D1/Nwin, D2/Nwin, ..., DL/Nwin). For each ℓ (ℓ= 1, 2, ..., L), we then
sample dðiÞ‘ SNPs uniformly at random without replacement from the Dℓ SNPs of the full-coverage set.
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We denote the number of SNPs within the 1-Mb window around the
ℓth CODIS locus by Dℓ, with

PL
‘¼1 D‘ ¼ Nwin, and we denote its

relative proportion by pℓ= Dℓ/Nwin. The values of Dℓ are listed in Table S2.
Of Nall SNPs, the fraction of SNPs present in the L windows is f= Nwin/Nall ≈
0.006.
We used a simple model in which distinct SNPs have independent

random variables for presence or absence of data. At coverage c, the total

number of SNPs sequenced is N cð Þ
all ¼ Nallc½ �. Assuming all have equal

probability of being sequenced, a sequenced SNP lies in one of the L 1-Mb
windows around the CODIS loci with probability f. For each simulated
fragmentary SNP dataset with coverage c, we sampled X—a total number

of SNPs sequenced in the L windows—from a binomial-(N cð Þ
all , f ) distribution.

For each test individual i in a simulated fragmentary dataset with X SNPs

sequenced in the L windows, we sampled a vector d ið Þ ¼ ðd ið Þ
1 ; d ið Þ

2 ; :::; d ið Þ
L Þ

from a multinomial-(X, p) distribution, p= (p1, p2, ..., pL). Here, d
ið Þ
‘ represents

a number of SNPs sequenced within the 1-Mb window of the ℓth CODIS locus
in fragmentary SNP data of individual i. For each 1-Mb window around the

ℓth CODIS locus, we sampled d ið Þ
‘ SNPs uniformly at random without

replacement from Dℓ SNPs in the full-coverage dataset. Figure 2 displays an
example.

Record-matching of STR profiles with fragmentary genomic
SNP data
We applied the record-matching pipeline of Section “Genetic record-
matching” to each simulated fragmentary SNP dataset of the test-set
individuals. As noted in Section “Simulation of fragmentary genomic SNP
data,” we fixed the training set at the median-accuracy partition generated
in Section “Record-matching with HGDP and 1000 Genomes”; it contained
the full-coverage SNP–STR haplotypes of the training-set individuals. For
each relatedness scenario, we used a same shared training set across all
100 simulated fragmentary SNP datasets.
We used the training set as a reference in imputing test-set STR profiles

from fragmentary SNP profiles according to Eq. (2). We also computed STR
allele frequencies from the training set in evaluating Eq. (1).
For the same-individual scenario, the training set contained 1878

individuals and the test set had 626. For each of 100 simulated
fragmentary SNP datasets at a given genomic coverage c, we computed
match scores of all pairs—one with a SNP profile and the other with an STR
profile—and obtained a 626 × 626 match-score matrix. We then computed
match accuracies under four matching schemes described in Section
“Match assignment.” We applied similar procedures for the
parent–offspring and sib-pair scenarios (Section S1.6).

RESULTS
We focus on correctly specified hypotheses, Δtrue= Δtest. Under
three relatedness scenarios, we examine the effect of the SNP
coverage c. This analysis follows the procedures in Section
“Record-matching of STR profiles with fragmentary genomic SNP
data.” Numerical summaries appear in Table 1. We focus our
comments on the same-individual scenario. Results for the
parent–offspring and sib-pair analyses are discussed in the
supplement (Sections S2.1, S2.2). For completeness, misspecified
hypotheses Δtrue ≠ Δtest also appear in the supplement (Sec-
tion S2.3, Fig. S1, and Tables S3 and S4).

Same individual
Figure 3A–D shows the record-matching accuracy for Δtrue =
Δtest = same individual. For each of four matching schemes, the
HGDP median accuracy across partitions produces slightly
greater values than in corresponding analyses in Table 2 of our
previous study [17], which used 13 rather than 15 loci.
For all four matching schemes, the median accuracy for the

larger and denser 1000 Genomes exceeds that for HGDP;
numerical values for HGDP appear in Table S3 and for 1000
Genomes in Table 1 and S4. As the coverage of 1000 Genomes
decreases in fragmentary datasets starting from c= 0.9, accuracy
decreases as well.
For one-to-one matching, decreasing the 1000 Genomes

coverage c from 0.9, the median accuracy across 100 fragmentary
SNP replicates begins at 1 at c= 0.9, remaining equal to 1 until
coverage c= 0.06, for which it drops to 0.997 (Fig. 3A). The HGDP
median of 0.991 is achieved in 1000 Genomes at c ≈ 0.05.
Accuracy drops quickly after c= 0.03, with median 0.906; it is
0.677 at c= 0.02 and 0.181 at c= 0.01.
For one-to-many matching with a SNP query (Fig. 3B) or STR

query (Fig. 3C), median accuracy drops somewhat faster than for
one-to-one matching. Near ~50% coverage (c= 0.5), it drops below
1, though it remains high at much lower coverage. The HGDP
median accuracies (0.922, 0.940) are achieved at c ≈ 0.05.
For the needle-in-haystack scheme (Fig. 3D), the median

accuracy is still lower. The value drops below 0.9 at c ≈ 0.3. The
HGDP median accuracy for this scheme (0.532) is achieved at
c ≈ 0.05.

Ratio of posterior and prior odds
Using Eq. (3), Table 2 and Fig. S2A display the minimum match
score λ required to achieve a desired ratio of posterior to prior
odds, the likelihood ratio. For example, to obtain posterior odds of
a match equal to 104 with prior odds 10−9, λ (Eq. 1) must reach the
threshold for likelihood ratio 1013, or 29.93.
For each relatedness scenario and a ratio of posterior and prior

odds, we computed the fraction of true matches with match score
above the minimum (Figure S2A) required for achieving a
prescribed ratio. When Δtrue= Δtest= same individual (Fig. S2B),
if the prior probability of two individuals being unrelated is 1010

times that of them being the same individual (prior odds 10−10),
then 67% of true matches achieve posterior odds above 1 (ratio
1010), and 9% achieve posterior odds above 107 (ratio 1017). When
the prior is uninformative, with prior odds of 1, 99% of true
matches exceed the match score required for attaining posterior
odds of 1 (ratio 100), and 85% of true match pairs have posterior
odds above 107 (ratio 107).

DISCUSSION
We have examined genetic SNP–STR record-matching on frag-
mentary SNP datasets. For the sequenced genomes of the 1000
Genomes, record-matching accuracies exceed those seen

Table 1. Record-matching accuracies using the 1000 Genomes dataset and 15 CODIS loci, for Δtrue = Δtest.

Same individual Parent-offspring Sib pairs Match-assignment scheme

Median Min, Max Median Min, Max Median Min, Max

1.000 1.000, 1.000 0.738 0.681, 0.812 0.693 0.623, 0.773 One-to-one

1.000 0.998, 1.000 0.649 0.581, 0.700 0.626 0.546, 0.674 One-to-many: SNP query

1.000 0.998, 1.000 0.649 0.597, 0.719 0.636 0.572, 0.703 One-to-many: STR query

0.992 0.941, 1.000 0.112 0.016, 0.256 0.160 0.019, 0.275 Needle-in-haystack

The table summarizes 100 partitions into training and test sets, applying record-matching to the 1000 Genomes dataset with the full unfragmented data. The
STRs used are listed in Table S2.
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previously in HGDP genotyping arrays (Fig. 3). Accuracies at the
level observed for arrays can be obtained in genome sequencing
with incomplete coverage, often 5–10% of the genome (Fig. 3).
When matching profiles from the same individual, accuracy with
the full genome is high in each of four matching schemes—and
with one-to-one matching, the record-matching accuracy seen
with the full genome is obtained with genomic coverage as
low as 6%.
The prior odds value is chosen based on the size of a search

population; in a calculation aiming to simulate if a true match could
be detected in the United States adult population at posterior
probability 10

11, Edge et al. [16] found that with 17-locus profiles, 8% of
SNP–STR profile pairs matched closely enough that the true match
would be detected at likelihood ratio threshold 2.3 × 109. Here, even
with 15-locus profiles, 67% of pairs would be detected at a more
stringent 1010 threshold (Table 2). This result indicates a sizeable
probability that a true match of interest could be identified by
record-matching with high confidence by a query of a SNP database
with an STR profile, or vice versa, even in a large population.

The increase in accuracy arises from multiple factors that can
improve imputation and in turn, record-matching. First, SNP
density in the sequenced 1000 Genomes greatly exceeds that of
the earlier HGDP SNP-genotyping studies [16, 17]. Second, the
1000 Genomes has more individuals. Indeed, in an additional
analysis of subsamples of the 1000 Genomes, considering full
genomic coverage (c= 1) and searching for same-individual
matches, particularly for the needle-in-haystack scheme, record-
matching accuracy increases with sample size (Fig. 4). Hence,
enlarging the reference panel to improve the estimation of
genotype probabilities in Eq. 2 (“improving the needle detector”)
may have a large enough effect in increasing record-matching
accuracy to counteract the increase in the number of pairs among
which matches are sought (“enlarging the haystack”).
We note that we did not distinguish profiles by source

population, considering the entire reference panel as one group.
This choice likely decreases record-matching accuracy compared
to a potential analysis that would take source populations into
account. In particular, conducting record-matching separately in
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different populations by relying on relevant reference panels for
imputation in different subgroups [22–24] could increase imputa-
tion accuracy of STRs from SNPs—and by consequence, the
record-matching accuracy.
The 1000 Genomes dataset, while larger than the HGDP dataset,

relies on imputation of STRs based on an additional (family-based)
reference panel; imputation accuracies are high in some 1000
Genomes samples in which direct genotypes are available [[18],
Supplementary Table 3]. However, imputation errors occurring
during the construction of the 1000 Genomes dataset by Saini
et al. [18] might have been replicated in our imputations; our
analysis would regard such cases as accurate imputations due to
concordance with Saini et al. [18]. While such errors are unlikely to
affect the qualitative pattern of imputation accuracy in relation to
coverage c, in future studies, it will be important to use panels
based on SNPs and STRs obtained directly.
Another limitation is that we used a simple simulation to

produce fragmentary SNP datasets, assuming that given coverage
c, SNPs amplify independently, that amplification patterns are
independent across individuals, and that genotypes are accurately
obtained. With actual degraded DNA, fragmentary datasets likely
possess spatial correlation across the genome, containing multiple
neighboring SNPs genotyped on the same DNA fragments
(Fig. 1B). Inclusion of spatial correlation would increase the
probability that given c, in some individuals some STRs would
possess no neighboring genotyped SNPs—and no information for
imputing those STR genotypes. Hence, high levels of spatial
correlation in amplification for a fixed coverage could reduce
record-matching accuracy, especially at coverage levels low
enough to eliminate all SNPs around some STRs. The simulation
we have considered is a first approximation; as degradation,
amplification, and genotyping error patterns differ for different
DNA sources, applications in different settings can deepen the
model in ways tailored to their associated fragmentary coverage
patterns (e.g. gargammel simulation for ancient DNA [25]).
The results have applications in settings in which an investi-

gator would have liked to test STRs for matches against an STR
database, but in which STR genotyping was impossible. If samples
are degraded so that only SNP genotypes can be obtained—as
might occur for older criminal-justice samples, mass disasters,
burned material, or ancient DNA—then our approach could be
used to test the resulting SNP profile against an STR database. In
such cases, genetic record-matching is used simply to overcome
the technical challenge of genotyping STRs in degraded material
—in existing investigative settings, not by introducing new ones.
Genetic record-matching can also produce new information

linkages if investigators or others possess access to both SNP and
STR databases [16, 17]. Profiles in different databases could in
principle be connected if biomedical or genealogical participants or
their close relatives also appear in forensic STR data. Our results
increase the potential accuracy for such efforts. The study
contributes to emerging work on cross-database linkages of genetic
data, with both investigative potential and privacy risks [26, 27]. We
previously [16, 17] discussed privacy risks from the linkages
between genetic databases—and possibly phenotype databases
—enabled by genetic record-matching; even before the 2018
advent of the long-range search method combining genetic and
genealogical data, Edge et al. [16] wrote “Contrary to the view that
CODIS genotypes expose no phenotypes, a CODIS profile on a person
together with a SNP database—if the person is in the database—in
principle may contain all of the phenotypic information that can be
reliably predicted from the SNP record. Conversely, participants in
biomedical research or personal genomics who have consented to
share their SNP genotypes may be subject to a previously
unappreciated risk: identification in a forensic STR database.”
The increased record-matching accuracy that we have detected

in a larger, denser dataset than that used by Edge et al. [16] and
Kim et al. [17] only magnifies the privacy concern. The potentialTa

bl
e
2.

Th
e
fr
ac
ti
o
n
o
f
tr
u
e
m
at
ch

es
w
it
h
m
at
ch

sc
o
re

ex
ce
ed

in
g
th
e
m
in
im

u
m

th
re
sh
o
ld

fo
r
ac
h
ie
vi
n
g
a
d
es
ir
ed

ra
ti
o
o
f
p
o
st
er
io
r
an

d
p
ri
o
r
o
d
d
s.

R
at
io

o
f
p
o
st
er
io
r
o
d
d
s
an

d
p
ri
o
r
o
d
d
s

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
1
0

10
1
1

10
1
2

10
1
3

10
1
4

10
1
5

10
1
6

10
1
7

M
in
im

u
m

m
at
ch

sc
o
re

0
2.
30

4.
61

6.
91

9.
21

11
.5
1

13
.8
2

16
.1
2

18
.4
2

20
.7
2

23
.0
3

25
.3
3

27
.6
3

29
.9
3

32
.2
4

34
.5
4

36
.8
4

39
.1
4

Fr
ac
ti
o
n
o
f
tr
u
e
m
at
ch

es
ex
ce
ed

in
g
th
e
m
in
im

u
m

m
at
ch

sc
o
re

Sa
m
e
in
d
iv
id
u
al

0.
99

0.
99

0.
98

0.
96

0.
95

0.
93

0.
89

0.
85

0.
81

0.
75

0.
67

0.
58

0.
47

0.
37

0.
27

0.
19

0.
12

0.
09

Pa
re
n
t-
o
ff
sp
ri
n
g

0.
88

0.
74

0.
58

0.
35

0.
18

0.
05

0.
02

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Si
b
p
ai
rs

0.
90

0.
74

0.
53

0.
33

0.
18

0.
07

0.
03

0.
01

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

N
o
te

th
at

th
e
ra
ti
o
o
f
p
o
st
er
io
r
an

d
p
ri
o
r
o
d
d
s
is
th
e
lik
el
ih
o
o
d
ra
ti
o
fo
r
th
e
h
yp

o
th
es
is
Δ
te
st
in

re
la
ti
o
n
to

th
e
n
u
ll
h
yp

o
th
es
is
th
at

tw
o
p
ro
fi
le
s
ar
e
u
n
re
la
te
d
.T

h
e
va
lu
es

co
rr
es
p
o
n
d
to

th
o
se

p
lo
tt
ed

in
Fi
g
.S

2.

J. Kim and N.A. Rosenberg

1288

European Journal of Human Genetics (2023) 31:1283 – 1290



for employing genetic record-matching to use one type of
individual-level information to reveal information of another type
enhances both the potential uses of the technique for individual
identification in degraded crime-scene samples, ancient samples,
and missing-persons and mass-disasters cases—as well as the
potential risks that excess information could be revealed, either by
an authorized user or by an attacker. Further consideration is
needed of the benefits and privacy risks emerging from cross-
database linkages involving SNPs and STRs—and phenotypes.

DATA AVAILABILITY
The datasets analyzed in the study are taken from refs. [16] and [18] and are available
at http://github.com/jk2236/RM_WGS; programs for implementing steps of the
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1000 Genomes and show the values for the 100 replicates summarized in Table 1. A One-to-one matching. B One-to-many matching with a
query SNP profile. C One-to-many matching with a query STR profile. D Needle-in-haystack matching. The pink line indicates the median one-
to-one matching accuracy of 100 trials. For comparison, the blue points indicate the corresponding results using the full HGDP dataset of 872
individuals, reporting the values for the 100 replicates summarized in the upper left corner of Table S3.
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