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effect on the performance of the inference methods than the 
branch lengths of the species network. Skewed hybridizations 
are as hard to detect as symmetric events when internal 
branches of the network are not long. If the branches are long, 
however, then most of the methods detect even highly skewed 
hybridizations.

Errors in gene trees

To address the possibility that errors in gene tree inference might 
influence the performance of species network inference methods, 
we infer species histories from erroneous gene trees, comparing 
the reconstructed history with the true assumed scenario.

As shown in Figure 3, Figure 7 displays the error in spe-
cies network topology estimation as a function of the num-
ber of sampled loci. Here, internal branch lengths t1 and t2 
are equal, taking values of 0.025, 0.25, and 2.5. The parental 
species contribution associated with the hybridization, �D, is 
set to .5. Different error rates applied to the gene genealo-
gies are shown in different rows. Figure 8 represents similar 
information to that depicted in Figure 4. Figure S7c shows 
the most frequently recovered species network topologies, 
similar to Figure S7a.

When t1 = t2 = 0.025, all methods already suffer from a 
high error rate in the inferred topology, which increases even 
further with added errors in gene trees. The error is especially 

Figure 7. Influence of the level of error in gene tree (GT) estimation and number of loci on the accuracy of the inferred topology of the species network. 

The error in the topology of the inferred network was measured as the mean cluster distance between true and inferred networks (equation (3)). For each 

choice of the number of loci used for species network or tree inference, standard error was computed using 10 replicate simulations. The number of loci 

used for species network inference is plotted along the x-axis. 
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pronounced for ML-PhyloNet, for which the highest error 
level of ~0.8 is observed for scenario 20 when 250 gene trees 
are used (Figure 7). The high level of error in the species 
network topology is not associated with strong overpredic-
tion of hybridizations, as all the methods except MP-PhyloNet 
predict 0 to 2 hybridizations (Figure 8). The methods gener-
ally do not have a single most frequently inferred network 
topology (Figure S7c).

When t1 = t2 = 0.25, the error in the species network topol-
ogy increases for ML-STEM-hy when a medium level of 
gene tree error is specified and for consensus at a high gene 
tree error level (Figure 7, scenarios 23 and 24). ML-PhyloNet 
never finished with 250 highly erroneous gene trees, but a 
high error rate in inferred species networks was obtained for 
100 loci (Figure 7).

When t1 = t2 = 2.5, inference is more robust to gene tree 
errors, and accuracy generally remains the same for all the 
methods for low and medium gene tree error levels. If a high 
level of gene tree errors is used, however, then methods relying 
on likelihood exhibit more errors in the inferred network 
topology (Figure 7, scenario 27). The decrease in accuracy in 
this case is also associated with an elevated number of pre-
dicted hybridizations (Figure 8). At the same time, consensus 
remains robust and infers the correct species network when 
250 gene trees are used (Figure S7c).

In summary, this analysis shows that although likelihood 
methods perform better on the true gene trees, they are often 
more sensitive to error in gene tree inference than the consen-
sus approach, and in some cases, they might overpredict the 
number of hybridizations.

Discussion
The occurrence of hybridization in eukaryotic species has 
prompted development of tools to reconstruct reticulate spe-
cies histories. Although a number of approaches have been 
developed for this task, little data have been generated to com-
paratively assess the properties of the methods. We have 
reported a systematic simulation–based comparative study of 
the performance of several methods for species network 
reconstruction.

Comparative performance of methods

We find that ML-PhyloNet performs generally well and is 
often robust to extensive ILS and errors in gene tree estimation 
when symmetric hybridization events are considered (Figure 3, 
scenarios 11 and 12; Figure 7, scenarios 22 and 23). Although 
it does not usually overpredict hybridizations, it fails to recover 
skewed hybridizations in the presence of non-negligible ILS 
(Figure 6, scenario 10). As an additional note, ML-PhyloNet also 
suffers from a long computing time, making this approach 
unsuitable for large data sets.

The next best method is ML-STEM-hy, which uses con-
sensus-based identification of potential hybridization events 

and refines the list of those events by testing them in an ILS-
aware framework. This method is also reasonably robust to ILS 
(Figure 3, scenarios 12 and 14). It is, however, sensitive to errors 
in gene trees. It can underpredict the number of hybridizations 
(Figure 8, scenario 23), and it also underidentifies skewed 
hybridization events in the presence of ILS (Figure 6, scenario 
10). A sometimes sizable difference in the sensitivity of the 2 
ML approaches to errors in gene tree estimation is likely attrib-
utable to the fact that STEM-hy uses gene tree branch lengths, 
which are affected by gene tree errors, in the likelihood calcula-
tion, whereas PhyloNet uses only the somewhat more robust 
gene tree topology.

Another method that performs reasonably well is the con-
sensus method, which is often robust to errors in gene trees 
(Figure 7, scenario 27). However, it can be more sensitive to 
ILS than methods built upon the coalescent model when it is 
applied to detect symmetric (Figure 3, scenarios 11 and 12) or 
skewed hybridizations (Figure 5, scenarios 9 and 10). Consensus 
underpredicts symmetric hybridizations when ILS is suffi-
ciently large, but branches of the species network have similar 
lengths (Figure 6, scenario 11). It also underpredicts highly 
skewed hybridizations even when ILS is low (Figure 6, sce-
nario 16). However, the method overpredicts hybridizations 
under some circumstances, for instance, when the species net-
work includes both short and long branches (Figure 4, scenar-
ios 6, 12, 13, and 14).

The method with the highest error in species topology 
estimation was MP-PhyloNet. Recall that the strategy we 
implemented for MP-PhyloNet involves adding hybridiza-
tion events to the network until they become highly skewed 
toward one of the parental lineages or until the number of 
hybridizations reaches a critical value of 3. This method 
recovered the correct species history only for scenarios 15 
and 17 (Figure 5), which included only long species network 
branches and no hybridizations or skewed hybridizations. 
With the same time settings but symmetric hybridization, 
for this approach, we observed increasing error in the species 
network topology with a growing number of loci (Figure 3, 
scenario 18). This pattern of increasing error with more loci 
might indicate statistical inconsistency of the MP-PhyloNet 
strategy. Networks inferred with MP-PhyloNet often con-
tain a large number of hybridizations.

Simulation conditions

We examined several simulation conditions. For the species 
divergence, we evaluated long (2.5 coalescent units), short 
(0.25), and very short (0.025) species network branch lengths. 
These species tree branch lengths are likely to reasonably rep-
resent a range of values that occur in empirical phylogenies. 
The great ape tree is estimated to have some longer branches 
several coalescent units in length,37 whereas larger phylogenies 
with many species often contain various branch lengths that 
span the range we consider.38
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We found that when species network branch lengths are 
long (2.5 time units), almost all the methods performed well 
and often recovered the correct species history, even with a 
small number of loci and in the case of skewed hybridizations 
(Figure 5, scenarios 15-18). When internal species network 
branches became shorter (0.25), however, only ML-PhyloNet 
had minimal error with symmetric hybridization when applied 
to 250 loci (Figure 5, scenario 11). Although none of the meth-
ods detected a skewed hybridization in these time settings 
(Figures 5 and 6, scenarios 9 and 10), most were more 

successful when hybridization was absent (Figure 6, scenario 
8). With the shortest species network branch lengths (0.025), 
almost none of the methods recovered the correct species his-
tory even when hybridization was absent (Figure 5, scenario 1), 
suggesting that this setting might be too difficult for all of the 
methods.

Skew in parental species contributions toward hybridization 
has a major effect on the performance of the consensus method, 
which fails to detect highly skewed hybridizations even when 
species network branches are long (Figure 6, scenario 16). This 

Figure 8. Influence of the level of error in gene tree (GT) estimation on the inferred number of hybridization events in the inferred species networks. 

Histograms on the y-axes show the distribution of the number of hybridization events in the networks reconstructed using various species network 

inference methods, across 10 sets of 250 gene trees. Methods are shown on the x-axes: Con, consensus network; MP, MP network inferred using 

PhyloNet; ML-PN, ML network inferred using PhyloNet; ML-STEM, ML network inferred using STEM-hy. The maximum number of hybridizations was 6 

and only occurred for consensus networks; in other cases, our implementation limited the maximum to 3. ML indicates maximum likelihood; MP, maximum 

parsimony; PN, PhyloNet.
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factor has a similar effect on ML-PhyloNet and ML-STEM-hy 
when network branches are short (Figure 6, scenarios 9 and 10).

Conclusions
We note that the study remains limited due to several factors. 
First, only 4 approaches for hybridization network reconstruction 
were evaluated, and a number of other methods and strategies 
exist14,39–43 or can be envisioned. Indeed, multiple promising 
methods, including SnaQ43 and new algorithms in PhyloNet,44 
have been reported since the time that our simulations began and 
hence were not included in our pipeline; it will be important to 
include such methods in future simulation studies. We do note 
that we included representative methods from multiple method-
ological categories: consensus, parsimony, and likelihood.

We designed our simulations with a focus on homoploid 
hybridization events that form new species, a perhaps less com-
mon type of hybridization in comparison with hybridization 
that produces polyploids6,45 or introgression from one species 
into an existing species.5 It will be useful to perform a similar 
evaluation of the properties of hybridization detection meth-
ods in such scenarios.

Our computationally convenient strategy for generating 
erroneous gene trees from true trees differs from the com-
monly used approach of simulating alignments with the true 
gene trees and then inferring (potentially erroneous) gene 
trees from the alignments using gene tree inference meth-
ods.22,46 Although such simulations are informative for 
gaining mechanistic understanding of gene tree error pro-
duction, we note that they require multiple parameters to 
describe sequence evolution, and our approach, although 
less mechanistically interpretable, makes it possible to char-
acterize the effect of gene tree error in relation to a single 
error parameter.

Another limitation is the small number of parameter val-
ues included in the simulations; we also considered only a 
single species network, with a fixed time for the hybridiza-
tion event, with only a single hybridization, and with sub-
stantial contributions from each hybridizing species. We did 
not explore the impact of the species network shape, the 
choice of which species to hybridize, or the number of 
hybridization events in the true species network. We also did 
not consider introgressive scenarios with very limited contri-
butions to the hybridization of one of the ancestral species as 
we focused on methods designed for large contributions 
from both parental species. However, even with this limited 
sampling of the parameter space, we covered a wide range of 
data sets with different properties, testing methods in condi-
tions ranging from difficult to easy.

Finally, we examined a relatively small maximum number 
of loci and a relatively small number of species in our model 
species network. Although the size of data sets now often 
exceeds the 250 loci that we consider,38,47 the sizes that we 
have examined continue to be relevant to many studies.48,49  
In the future, as methods continue to develop, it will be of 

interest to evaluate relative performance using data sets of 
larger size. An important concern for large data sets is com-
putational scalability, which has been of great interest in the 
study of species network methods.22,50 The computational 
cost, particularly for likelihood methods, can become prohibi-
tive quickly if the number of taxa grows to ~25 or more.50

In summary, based on our results, we recommend 
ML-PhyloNet for data sets that include small numbers of 
taxa and few enough loci for computation to be feasible. For 
larger data sets, due to computational overhead associated 
with ML-PhyloNet, we also recommend a hybrid approach 
in which candidate hybridizations are detected using con-
sensus and then tested in an ILS-aware ML framework; such 
a strategy with ML-STEM-hy performed reasonably well, 
although it did have the weakness that it was sensitive to 
errors in gene trees.
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