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Abstract

The composition of genetic variation in a population or species is shaped by the number of events that led to the founding of the

group. We consider a neutral coalescent model of two populations, where a derived population is founded as an offshoot of an ancestral

population. For a given locus, using both recursive and nonrecursive approaches, we compute the probability distribution of the number

of genetic founding lineages that have given rise to the derived population. This number of genetic founding lineages is defined as the

number of ancestral individuals that contributed at the locus to the present-day derived population, and is formulated in terms of

interspecific coalescence events. The effects of sample size and divergence time on the probability distribution of the number of founding

lineages are studied in detail. For 99.99% of the loci in the derived population to each have one founding lineage, the two populations

must be separated for X9:9N generations. However, only �0:87N generations must pass since divergence for 99.99% of the loci to have

o6 founding lineages. Our results are useful as a prior expectation on the number of founding lineages in scenarios that involve the

evolution of one population from the splitting of an ancestral group, such as in the colonization of islands, the formation of polyploid

species, and the domestication of crops and livestock from wild ancestors.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The composition of genetic variation in a population
that recently diverged from an ancestral population is
shaped by the nature of its founders. That a few founding
individuals of a new offshoot population can strongly
influence the properties of genetic variation of the
population has been known for a long time (Wright,
1931; Nei et al., 1975; Hedrick, 2000). Founder effects are
expected to cause an offshoot population to have fewer
rare alleles in comparison with its ancestral population, as
well as decreased genetic variation. After a founder event,
the new population may diverge genetically. For example,
colonization of the small Galapagos island Daphne Major
in 1982 by five large ground finches caused this newly
established population to diverge, both morphologically
e front matter r 2007 Elsevier Inc. All rights reserved.
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and genetically, from its ancestral population (Grant et al.,
2001). Another example comes from the remote south
Atlantic island of Tristan de Cunha, which was settled by
humans in the early 1800s. Genealogical records show that
15 settler women contributed to a population of �300
individuals at the time that the settlement was evacuated.
However, only five founding mitochondrial DNA lineages
remained in a sample of 161 individuals taken from the
modern population (Soodyall et al., 1997).
Several studies have attempted to estimate the number of

founding individuals in diverse evolutionary contexts. For
example, investigations of the initial sizes of populations of
domesticated crops and livestock have contributed to the
understanding of human agricultural expansion (Luikart
et al., 2001; Matsuoka et al., 2002; Harter et al., 2004; Wright
et al., 2005). The sizes of founding populations have also
been studied in humans themselves; for example, Hey (2005)
estimated that the effective size of the founding population of
the Americas may have been fewer than 80 individuals.
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An alternative to studying the number of founding
individuals of a population or species is to study the
number of ancestral genetic lineages that have contributed
to the group, since the actual number of founding
individuals of a present-day population may be more
difficult to infer. The number of founding lineages that
contributed to the present-day population has a natural
interpretation in the coalescent framework, and provides
an informative quantity that can be studied in a reasonably
straightforward manner. For example, the number of
founding lineages has been studied in polyploid species,
which are founded by discrete polyploidization events. For
an (at least partly) outbreeding polyploid species, each
polyploidization event can be expected to have contributed
to a fraction of the genome of the contemporary polyploid
species. In this context, the number of founding lineages
that contributed to the species can be considered to be the
number of distinct origins that have contributed to the
present-day polyploid species. This fact has been used to
infer from molecular data the number of origins in several
polyploid species (e.g. Segraves et al., 1999; Ainouche et al.,
2004; Evans et al., 2005; Jakobsson et al., 2006). Another
example of founding lineages is the identification of five
main mtDNA haplogroups—A, B, C, D and X—among
Native Americans (Schurr et al., 1990; Brown et al., 1998;
Smith et al., 1999), a result that has been used to examine
alternative scenarios for the peopling of the Americas
(Bonatto and Salzano, 1997; Crawford, 1998; Mulligan
et al., 2004; Schurr and Sherry, 2004).

Consider two populations A and B that have been
separated for some length of time. Population B is
considered to be ancestral, and population A was founded
as an offshoot from population B. For a particular
genomic region, a lineage of population A may coalesce
with other lineages from population A starting at the
present and going backwards in time. When the separation
time is passed, lineages of population A may also coalesce
with lineages of population B. We are interested in the
number of times that a lineage from population A coalesces
with a lineage from population B—in other words, the
number of founding lineages of population A that
contributed to the present population A. This quantity is
related to other aspects of interspecific coalescence that
have previously been investigated (e.g. Takahata, 1989;
Rosenberg, 2002); however, previous studies have not
focused on the number of interspecific coalescences.

In this article, using a coalescent model of population
divergence, we derive the probability distribution of the
number of founding lineages of a population or species. We
solve this problem by generalizing results in Rosenberg
(2003) on the probability distribution of genealogical shape
for two species. Because the exact expression becomes
cumbersome to evaluate for large sample sizes, a recursion
expression is also given to simplify the calculations. We
then explore the effects of sample size, divergence time and
differing population sizes on the number of founding
lineages. We also consider implications of our results for
samples of lineages at a single locus for the whole
population, and implications for the number of founding
lineages across the whole genome. The results are useful for
describing under a simple null model the properties of the
number of founding lineages that contributed to a
population or a species.
2. Theory

2.1. The basic model

Consider two populations (or species) A and B that have
been separated for T coalescent units of time (Fig. 1).
Population A is founded by population B in such a way
that an ancestral lineage of an A lineage and a B lineage is
defined to be a B lineage. In other words, when an A
lineage and a B lineage coalesce, the single ancestral lineage
is defined as a B lineage. The ancestral lineage of two A
lineages is an A lineage and the ancestral lineage of two
B lineages is a B lineage. The numbers of sampled A and B
lineages are denoted rA and rB. The numbers of A and B
lineages ancestral at time T (backwards in time) to the
samples of rA and rB lineages are denoted qA and qB,
respectively. We define the number of genetic founding
lineages of a sample from population A as the number of
coalescences that involve an A lineage and a B lineage. The
random number of such interpopulation coalescence events
is denoted K. The probability of k interpopulation
coalescences given rA and rB is then PðK ¼ kjrA; rB;TÞ,
or for convenience, PðkjrA; rB;TÞ. The sizes of populations
A and B (total number of haploid lineages) are denoted NA

and NB. The numbers of lineages that are ancestral to the
full populations of NA and NB lineages at time T are
denoted sA and sB. The random number of founding
lineages that contributed to the whole present-day
A population (not just the sample of rA lineages) is
denoted L. The probability of l interpopulation coalescence
events given sA and sB is then PðljsA; sB;TÞ. In most
practical scenarios, the investigator will be interested in the
number of founding lineages of the whole population, but
will only have access to samples from this population. We
are therefore interested in both probability distributions
PðljsA; sB;TÞ and PðkjrA; rB;TÞ. We henceforth use the
term founding lineages when referring to the founding
individuals that contributed to present-day lineages.
Time, measured in generations, t, is rescaled to

coalescent time T by dividing by the haploid effective
population size, so that T ¼ t=Ne. We make use of the
standard approximation to finite populations of coalescent
results that are based on the assumption of Ne !1

(Nordborg, 2001). In our model we assume NA and NB are
finite with NB=NA ¼ b. If we assume that the genera-
tion times in populations A and B are equal, then
TA=TB ¼ NB=NA ¼ b. We begin by assuming that b ¼ 1.
Cases with ba1 will be considered after we have developed
the general theory.



ARTICLE IN PRESS

qA = Lineages ancestral to rA

sA = Lineages ancestral to NA

sA qA qB sB

qB = Lineages ancestral to rB

sB = Lineages ancestral to NB

TB

NB = Population size of B

rB = Sample size of B

Population B

NA = Population size of A

rA = Sample size of A

Population A

TA

Fig. 1. A model of two populations (A and B) that diverged from an ancestral population. The (effective) population sizes are NA and NB for populations

A and B. The sample sizes are denoted rA and rB. The numbers of lineages ancestral to the sample at divergence are denoted qA and qB, and the numbers of

lineages ancestral to the whole population are denoted sA and sB. Time is measured in coalescent units for each population, TA and TB. Sampled lineages

(and lineages ancestral to these) are shown as solid lines. In this example, rA ¼ 6, rB ¼ 5, NA ¼ 10, NB ¼ 10, qA ¼ 3, qB ¼ 4, sA ¼ 4 and sB ¼ 4.
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We are here considering both recently separated species
as well as recently diverged populations that do not
exchange individuals after divergence. We henceforth make
no distinction between these cases, and we use the term
‘‘population’’ throughout this article.

2.2. Labeled histories

Under the coalescent model all pairs of lineages have
equal probabilities of coalescing, and the particular
lineages that coalesce do so independently of when the
coalescence event occurs. For n lineages, the coalescent
process randomly joins pairs of lineages until only one
lineage remains—the most recent common ancestor
(MRCA). The number of ways to coalesce n lineages is
equivalent to the number of labeled histories of n taxa, and
can be obtained by considering the number of possible
choices for each coalescence event. There are nC2 (n choose
2) possible pairs of lineages at the first coalescence event,

n�1C2 pairs at the second coalescence, and so on. For n

lineages, the total number Hn of coalescence sequences, or
labeled histories, is (Edwards, 1970)

Hn ¼

�
n

2

�
n� 1

2

� �
� � �

3

2

� �
2

2

� �
¼

n!ðn� 1Þ!

2n�1
. (1)

The total number of ‘‘k-truncated labeled histories’’
(Rosenberg, 2006) for n lineages coalescing to k lineages
ðkpnÞ is

In;k ¼

�
n

2

�
n� 1

2

� �
� � �

k þ 2

2

� �
k þ 1

2

� �
¼

n!ðn� 1Þ!

2n�kk!ðk � 1Þ!
.

(2)

Note that In;kHk ¼ Hn. More generally, if a1Xa2X � � �Xan,
then

Ia1;a2Ia2 ;a3 � � � Ian;1 ¼ Ia1;1 ¼ Ha1 . (3)
We also need two identities, which follow directly from
Eqs. (1) and (2):

nIn;k ¼
2

nþ 1
Inþ1;k, (4)

In;kHk�1 ¼
2

kðk � 1Þ
Hn. (5)

Using Eq. (4) we have (ni41)

Ia;n1

Yk�1
i¼1

Ini�1;niþ1

 !
Hnk�1 ¼

2kHaQk
i¼1 niðni � 1Þ

. (6)

Consider two sequences of coalescence events, or nodes
of the coalescent tree. Suppose the first sequence has s1
nodes and the second sequence of coalescences has s2 nodes
(Fig. 2). There are then s1þs2Cs1 ways to order these s1 and
s2 nodes, keeping intact the order of events within each of
the two sequences. The number of ways that s1 and s2
nodes can be ordered is denoted

W 2ðs1; s2Þ ¼
s1 þ s2

s1

� �
. (7)

In our model, populations A and B have been separated
for some time T, and they behave according to the
standard coalescent model from the present back to T.
The probability that n lineages have j ancestors T units of
coalescent time in the past is given by (Tavaré, 1984,
Eq. (6.1))

gn;jðTÞ ¼
Xn

k¼j

e�kðk�1ÞT=2 ð2k � 1Þð�1Þk�j jðk�1Þn½k�

j!ðk � jÞ!nðkÞ
, (8)

where aðkÞ ¼ aðaþ 1Þ � � � ðaþ k � 1Þ and a½k� ¼ aða� 1Þ � � �
ða� k þ 1Þ for kX1, with að0Þ ¼ a½0� ¼ 1. Except when
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T

Ordered sequence of events:

Population A Population B

(A, A) nodes above T = s1

Sequence of events in A sample:

(B, B) nodes above T = s2

Sequence of events in B sample:

B4

A3

A1

A2

B3

B2 B1

B1

B1 B2A1 A2B3 A3

A1 A2 A3

B4

B2 B3 B4

Fig. 2. Above time T and more recently than the first coalescence event of

an A lineage and a B lineage, there is a sequence of s1 coalescence events of

A lineages, and a sequence of s2 coalescence events of B lineages. For these

two sequences of events, there are s1þs2Cs1 possible ways to order them. In

this example, s1 ¼ 3 and s2 ¼ 4. There are then 3þ4C3 ¼ 35 ways to order

the s1 and s2 nodes.

M. Jakobsson, N.A. Rosenberg / Theoretical Population Biology 71 (2007) 502–523 505
1pjpn, gn;jðTÞ ¼ 0. If n!1, we have (Tavaré, 1984,
Eq. (6.3)):

g1;jðTÞ ¼
X1
k¼j

e�kðk�1ÞT=2 ð2k � 1Þð�1Þk�j jðk�1Þ

j!ðk � jÞ!
. (9)

For TX0:1, gn;jðTÞ becomes negligible for large n and j. In
our numerical computations, similarly to Rosenberg
(2003), we assume gn;jðTÞ ¼ 0 if jX50, nX90 and TX0:1.

2.3. The probability of one founding lineage given a sample

of one A lineage

First, we consider the history of the populations
that is above the divergence time T (see Fig. 1), that is,
the case of T ¼ 0 (rA ¼ qA and rB ¼ qB). We will then
add the population history below time T to describe
the full model in Fig. 1. To compute the probability
distribution of the number of founding lineages condi-
tional on qA and qB, we employ a general approach of
counting labeled histories that satisfy a required condition,
and dividing by the total number of labeled histories for
qA þ qB lineages, HqAþqB . This approach can be used
because each of the labeled histories is equally likely to
occur.

To illustrate the approach, we begin with the simplest
case, the probability of one founding lineage given a
sample of one A lineage, PðK ¼ 1jqA ¼ 1; qBÞ. We start
by counting the number of labeled histories that lead to
one founding lineage (given qA ¼ 1). This case is trivial
because if only one A lineage is sampled then there must be
exactly one (A,B) event. This can be verified easily using
the strategy that we will use to derive the main results of
this article. Let m1 be the number of ancestral B lineages
at the time of the (first) coalescence between an A lineage
and a B lineage. Let Em1

be the event that there were
exactly m1 ðm1X1Þ ancestral B lineages when the
first interpopulation coalescence occurs. If K ¼ 1 then
there are IqB;m1

ways for qB B lineages to coalesce to m1

lineages before the (A,B) event. The single A lineage may
then coalesce with any of the m1 remaining B lineages.
There are Hm1

ways to coalesce the m1 remaining B
lineages. Thus,

PðEm1
Þ ¼

IqB;m1
m1Hm1

HqAþqB

¼
HqBm1

HqAþqB

. (10)

If we sum over all possible values of m1, then

PðK ¼ 1jqA ¼ 1; qBÞ ¼
XqB

m1¼1

PðEm1
Þ ¼

HqB

HqAþqB

XqB
m1¼1

m1

¼
2

ðqB þ 1ÞqB

ðqB þ 1ÞqB

2
¼ 1. ð11Þ

2.4. The probability of one founding lineage

A more general case, the probability of one founding
lineage, PðK ¼ 1jqA; qBÞ, was studied by Rosenberg (2003)
in the context of the probability of monophyly of the
lineages of a species. As we will see, this previously studied
result is a special case of the general calculation described
in this paper. We first note that to have K ¼ 1, all qA A
lineages must coalesce to one lineage before coalescing with
any B lineage. In other words the qA A lineages must be
monophyletic. There are HqA

ways to coalesce qA lineages
to one lineage. There are IqB;m1

ways to coalesce qB lineages
to m1 lineages. There are W 2ðqA � 1; qB �m1Þ ways to
order the qA � 1 and qB �m1 coalescence events. The
single remaining A lineage may now coalesce with any of
the m1 remaining B lineages. For the m1 remaining B
lineages there are Hm1

ways to coalesce. This leads to (this
corrects an error on the first line of Eq. (10) in Rosenberg,
2003)

PðEm1
Þ ¼

HqAIqB ;m1
W 2ðqA � 1; qB �m1Þm1Hm1

HqAþqB

¼
2m1

qB
m1

� �
qAþqB

qA

� �
qAþqB�1

m1

� �
qB

. ð12Þ

We retrieve the result of Rosenberg (2003, Eq. (11)) for the
probability of one founding lineage:

PðK ¼ 1jqA; qBÞ ¼
XqB

m1¼1

PðEm1
Þ ¼

2ðqA þ qBÞ

qAþqB
qA

� �
qAðqA þ 1Þ

.

(13)
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2.5. The probability of two founding lineages

For the probability of two founding lineages,
PðK ¼ 2jqA; qBÞ, m1 is again defined as the number of B
lineages at the time that the first (A,B) event occurs. We
define m2 as the number of B lineages at the second (A,B)
event (going backwards in time). By definition, m2pm1.
We also define the number of A lineages at the first (A,B)
event as n1. Note that if qAo2, then PðK ¼ 2jqA; qBÞ ¼ 0.
In order that at least one A lineage remains available to
participate in the second (A,B) event, n1 must be at least 2.
Thus, we assume here that qAX2. There are IqB;m1

ways
to coalesce qB B lineages to m1 lineages. There are IqA;n1
ways to coalesce qA A lineages to n1 lineages. There are
W 2ðqA � n1; qB �m1Þ ways to order the nodes up until the
first (A,B) event, and n1m1 ways to choose this event from
n1 A lineages and m1 B lineages. After the first (A,B) event,
there are Hn1�1 ways to coalesce the remaining n1 � 1 A
lineages and Im1 ;m2

ways to coalesce m1 B lineages to m2

lineages. There are then n1 � 2 nodes for n1 � 1 A lineages
coalescing to one lineage, and m1 �m2 nodes for m1 B
lineages coalescing down to m2 lineages. These nodes can
be ordered in W 2ðn1 � 2;m1 �m2Þ ways. The single
remaining A lineage has m2 choices of B lineages with
which to coalesce. Finally, there are Hm2

ways for the
remaining m2 B lineages to coalesce. Let En1;m1 ;m2

be the
event that there were exactly n1 ancestral A lineages and m1

ancestral B lineages at the first (A,B) event, and exactly m2

ancestral B lineages at the second (A,B) event. Using (3)
and (4) to simplify, we have

PðEm1;m2;n1 Þ ¼ ½IqA ;n1IqB ;m1
W 2ðqA � n1; qB �m1Þm1n1

�Hn1�1Im1;m2
W 2ðn1 � 2;m1 �m2Þm2Hm2

�=HqAþqB

¼
2HqA

HqB

HqAþqB ðn1 � 1Þ
m1W 2ðqA � n1; qB �m1Þ

�m2W 2ðn1 � 2;m1 �m2Þ.

By noting that

W 2ðn1 � 2;m1 �m2Þ ¼
n1 � 2þm1 �m2

n1 � 2

� �

¼

m1
m2

� �
n1�2þm1

m1

� �
n1�2þm1

m2

� � , ð14Þ

we obtain

PðEm1 ;m2;n1 Þ ¼
2HqA

HqB

HqAþqB ðn1 � 1Þ

�m1W 2ðqA � n1; qB �m1Þm2

�

m1
m2

� �
n1�2þm1

m1

� �
n1�2þm1

m2

� � . ð15Þ
Then by summing over all possible values of n1, m1 and m2,
PðK ¼ 2jqA; qBÞ becomes

PðK ¼ 2jqA; qBÞ ¼
XqA
n1¼2

XqB
m1¼1

Xm1

m2¼1

PðEm1 ;m2;n1Þ

¼
2HqA

HqB

HqAþqB

XqA
n1¼2

XqB
m1¼1

m1

n1 � 1

�W 2ðqA � n1; qB �m1Þ

�
n1 � 2þm1

m1

� � Xm1

m2¼1

m2

m1
m2

� �
n1�2þm1

m2

� � .

Using combinatorial Identity 1 (Appendix A) on the sum
over m2,

PðK ¼ 2jqA; qBÞ ¼
2HqA

HqB

HqAþqB

XqA
n1¼2

XqB
m1¼1

m1

n1 � 1

�W 2ðqA � n1; qB �m1Þ
n1 � 2þm1

m1

� �

�
m1ðn1 � 1þm1Þ

n1ðn1 � 1Þ

¼
2HqA

HqB

HqAþqB

XqA
n1¼2

1

ðn1 � 1Þ2n1

�
XqB

m1¼1

m2
1ðn1 � 1þm1Þ

n1 � 2þm1

m1

� �"

�
qA � n1 þ qB �m1

qB �m1

� �#
.

We can then use Identity 2 (Appendix A) on the part within
the brackets, which yields

PðK ¼ 2jqA; qBÞ

¼
4ðqA � 1Þ!ðqB � 1Þ!

ðqA þ qB � 1Þ! qAþqB
qA

� �XqA
n1¼2

1

ðn1 � 1Þ2n1

�
n1ðn1 � 1Þðn1qB � n1 þ qB þ qA þ 1ÞqB

ðqA þ 2ÞðqA þ 1Þ

qA þ qB

qA

� �� �

¼
4ðqA þ qBÞ

ðqA þ 2ÞðqA þ 1ÞqA
qAþqB

qA

� �

�
XqA
n1¼2

n1qB � n1 � qB þ 1

n1 � 1
þ ð2qB þ qAÞ

XqA
n1¼2

1

n1 � 1

" #

¼
4ðqA þ qBÞ

ðqA þ 2ÞðqA þ 1ÞqA
qAþqB

qA

� �

� ðqA � 1ÞðqB � 1Þ þ ðqA þ 2qBÞ
XqA
n1¼2

1

n1 � 1

" #
. ð16Þ
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The last sum is approximated by gþ lnðqA � 1Þ for large qA,
where g � 0:577216 is Euler’s constant. Thus, for large qA

PðK ¼ 2jqA; qBÞ �
4ðqA þ qBÞ

ðqA þ 2ÞðqA þ 1ÞqA
qAþqB

qA

� �
�½ðqA � 1ÞðqB � 1Þ þ ðqA þ 2qBÞ

�½gþ lnðqA � 1Þ��. ð17Þ

2.6. The probability of three founding lineages

We now derive an expression for the probability of three
founding lineages, PðK ¼ 3jqA; qBÞ, in order to find a
pattern that can be used to set up the general case of the
probability of k founding lineages. For K ¼ 3, we retain
the definitions of m1, m2 and n1 from above. We define n2

as the number of A lineages at the second (A,B) event and
m3 as the number of B lineages at the third (A,B) event. It
must be true that m3pm2pm1pqB, qAXn1X3 and
n1 � 1Xn2X2. This case reduces to an expression with
two sums (over n1 and n2). To simplify the expression
we follow the strategy used for solving PðK ¼ 2jqA; qBÞ,
and we use Identity 1 followed by Identities 2 and 3
(Appendix A). Simplifying using (3)–(5) we obtain

PðEm1 ;m2;m3;n1;n2Þ

¼ IqA;n1In1�1;n2Hn2�1IqB;m1
Im1;m2

Im2;m3
Hm3

�W 2ðqA � n1; qB �m1Þ

�W 2ðn1 � 1� n2;m1 �m2Þ

�W 2ðn2 � 2;m2 �m3Þm1m2m3n1n2=HqAþqB

¼
4HqAHqBm1m2m3

HqAþqB ðn1 � 1Þðn2 � 1Þ

�W 2ðqA � n1; qB �m1ÞW 2ðn1 � 1� n2;m1 �m2Þ

�W 2ðn2 � 2;m2 �m3Þ

¼
4HqAHqBm1m2m3

HqAþqB ðn1 � 1Þðn2 � 1Þ

qA � n1 þ qB �m1

qB �m1

� �

�
n1 � 1� n2 þm1 �m2

m1 �m2

� � m2
m3

� �
n2�2þm2

m2

� �
n2�2þm2

m3

� � , ð18Þ

where the last step follows from (14) with n2, m2, and m3 in
place of n1, m1, and m2. Then the desired probability is

PðK ¼ 3jqA; qBÞ ¼
XqA
n1¼3

Xn1�1
n2¼2

XqB
m1¼1

Xm1

m2¼1

Xm2

m3¼1

PðEm1;m2 ;m3;n1 ;n2Þ

¼
4HqAHqB

HqAþqB

XqA
n1¼3

1

n1 � 1

Xn1�1
n2¼2

1

n2 � 1

XqB
m1¼1

m1

�
qA � n1 þ qB �m1

qB �m1

� �

�
Xm1

m2¼1

m2
n1 � 1� n2 þm1 �m2

m1 �m2

� �
�
n2 � 2þm2

m2

� � Xm2

m3¼1

m3
m2
m3

� �
n2�2þm2

m3

� � . ð19Þ
We now use Identity 1 on the last sum of (19) to obtain

PðK ¼ 3jqA; qBÞ ¼
4HqA

HqB

HqAþqB

XqA
n1¼3

1

n1 � 1

Xn1�1
n2¼2

1

n2ðn2 � 1Þ2

�
XqB

m1¼1

m1
qA � n1 þ qB �m1

qB �m1

� �

�
Xm1

m2¼1

m2
2ðn2 � 1þm2Þ

n2 � 2þm2

m2

� �"

�
n1 � 1� n2 þm1 �m2

m1 �m2

� �#
. ð20Þ

Applying Identity 2 on the part within the brackets in (20)
yields

PðK ¼ 3jqA; qBÞ

¼
4HqA

HqB

HqAþqB

XqA
n1¼3

1

n1 � 1

Xn1�1
n2¼2

1

n2ðn2 � 1Þ2

�
XqB

m1¼1

m1
qA � n1 þ qB �m1

qB �m1

� �

�
n2ðn2 � 1Þðn2m1 � n2 þm1 þ n1 � 1þ 1Þm1

ðn1 þ 1Þn1

�

�
n1 � 1þm1

m1

� ��

¼
4HqAHqB

HqAþqB

XqA
n1¼3

1

ðn1 þ 1Þn1ðn1 � 1Þ

Xn1�1
n2¼2

1

n2 � 1

�
XqB

m1¼1

m2
1ðn2m1 � n2 þm1 þ n1Þ

"

�
n1 � 1þm1

m1

� �
qA � n1 þ qB �m1

qB �m1

� �#
. ð21Þ

Using Identity 3 on the part within the brackets in
expression (21)

PðK ¼ 3jqA; qBÞ ¼
4HqA

HqB

HqAþqB

XqA
n1¼3

1

ðn1 þ 1Þn1ðn1 � 1Þ

�
Xn1�1
n2¼2

1

n2 � 1

ðn1 þ 1ÞðqA þ qBÞ!

ðqA þ 3Þ!ðqB � 1Þ!

�

� ½n1qAqB � n1qA þ q2
Bn1 � n1 þ 1

þ 2qA þ 3qB þ q2
A þ 2q2

B þ 3qAqB

þ n2ð2n1 � 3n1qB þ n1q2
B þ 2qAqB

� 2� 2qA þ 2q2
BÞ�

�
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¼
8ðqA þ qBÞ

qAþqB
qA

� �
ðqA þ 3ÞðqA þ 2ÞðqA þ 1ÞqA

�
XqA
n1¼3

1

n1ðn1 � 1Þ
Dþ E

Xn1�2
n2¼1

1

n2

" #
, ð22Þ

where

D ¼ ðqB � 1Þðn1 � 2Þðn1qB � 2n1 þ 2qB þ 2qA þ 2Þ

and

E ¼ n1qAqB � n1qA þ 2n1q
2
B þ n1 þ 3qB þ q2

A

þ 4q2
B þ 5qAqB � 3n1qB � 1.

2.7. The probability of k founding lineages

For the general case, the probability of k founding
lineages, PðK ¼ kjqA; qBÞ, we need some additional defini-
tions. Let ni be the number of A lineages at the ith (A,B)
event. For i ¼ 2; . . . ; k � 1 it is true that 1þ k � ipnio
ni�1. Also kpn1pqA and nk ¼ 1. Let mi be the number of B
lineages at the ith (A,B) event. For each i, mipmi�1. Then

PðEm1 ;...;mi ;...;mk ;n1 ;...;ni ;...;nk�1
Þ

¼ IqA ;n1

Yk�2
i¼1

Ini�1;niþ1

 !
Hnk�1�1IqB;m1

"

�
Yk�1
i¼1

Imi ;miþ1

 !
Hmk

W 2ðqA � n1; qB �m1Þ

�W 2ðn1 � 1� n2;m1 �m2Þ

� � � � �W 2ðni � 1� niþ1;mi �miþ1Þ

� � � � �W 2ðnk�2 � 1� nk�1;mk�2 �mk�1Þ

�W 2ðnk�1 � 2;mk�1 �mkÞmk

Yk�1
i¼1

nimi

#,
HqAþqB .

ð23Þ

From Eqs. (6) and (3),

IqA;n1

Yk�2
i¼1

Ini�1;niþ1

 !
Hnk�1�1 ¼

2k�1HqAQk�1
i¼1 niðni � 1Þ

,

IqB;m1

Yk�1
i¼1

Imi ;miþ1

 !
Hmk
¼ HqB .

We can therefore rewrite (23) so that

PðEm1 ;...;mi ;...;mk ;n1 ;...;ni ;...;nk�1
Þ

¼
2k�1HqA

HqB

HqAþqB

mk

Qk�1
i¼1 nimiQk�1

i¼1 niðni � 1Þ
W 2ðqA � n1; qB �m1Þ

�W 2ðn1 � 1� n2;m1 �m2Þ

� � � � �W 2ðni � 1� niþ1;mi �miþ1Þ

� � � � �W 2ðnk�2 � 1� nk�1;mk�2 �mk�1Þ

�W 2ðnk�1 � 2;mk�1 �mkÞ
¼
2k

qB
qAþqB

qA

� �
qAþqB�1

qB

� �mk

Yk�1
i¼1

mi

ni � 1

 !

�W 2ðqA � n1; qB �m1Þ

�
Yk�2
i¼1

W 2ðni � 1� niþ1;mi �miþ1Þ

" #

�W 2ðnk�1 � 2;mk�1 �mkÞ. ð24Þ

By summing over the indices n1 to nk�1 and m1 to mk we
obtain

PðK ¼ kjqA; qBÞ ¼
XqA

n1¼1þk�1

� � �
Xni�1�1

ni¼1þk�i

� � �
Xnk�2�1

nk�1¼2XqB
m1¼1

� � �
Xmi�1

mi¼1

� � �
Xmk�1

mk¼1

PðEm1 ;...;mi ;...;mk ;n1;...;ni ;...;nk�1
Þ

¼
2k

qB
qAþqB

qA

� �
qAþqB�1

qB

� � XqA
n1¼1þk�1

� � �
Xni�1�1

ni¼1þk�i

� � �
Xnk�2�1

nk�1¼2

XqB
m1¼1

� � �
Xmi�1

mi¼1

� � �
Xmk�1

mk¼1

mk

Yk�1
i¼1

mi

ni � 1

 !
W 2ðqA � n1; qB �m1Þ

"

�
Yk�2
i¼1

W 2ðni � 1� niþ1;mi �miþ1Þ

" #

�W 2ðnk�1 � 2;mk�1 �mkÞ

#
. ð25Þ

If k ¼ 2 or 3, (25) reduces to (16) or (22), respectively. If k ¼ 1,
(25) reduces to (13) by noting that nk ¼ n1 ¼ 1 and letting
empty sums and products and W 2 of negative integers equal 1.

2.8. The probability of qA founding lineages

A special case is the probability of exactly qA founding
lineages, PðK ¼ qAjqA; qBÞ. To have exactly qA founding
lineages, the qA A lineages cannot coalesce with each other:
they must coalesce exclusively with B lineages. The number
of A lineages will therefore decrease by one at each (A,B)
event. Then n1 ¼ qA, n2 ¼ qA � 1; . . . ; nk�1 ¼ 2, nk ¼ 1, and
IqA ;n1 ¼ 1 and Ini�1;niþ1

¼ 1. Note that all possible coales-
cence events [(A,B) and (B,B)] occur in one sequence and we
do not have to worry about the ordering of nodes. We have

PðEm1 ;...;mi ;...;mk ;n1 ;...;ni ;...;nk�1
Þ ¼

HqB

HqAþqB

Yk

i¼1

mi

 ! Yk�1
i¼1

ni

 !
.

Because in this case
Qk�1

i¼1 ni ¼ qA!,

PðEm1 ;...;mi ;...;mk ;n1 ;...;ni ;...;nk�1
Þ ¼

2qA ðqB � 1Þ!
Qk

i¼1mi

qAþqB
qB

� �
ðqA þ qB � 1Þ!

. (26)
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By summing over the indices m1 to mk, we obtain

PðK ¼ qAjqA; qBÞ ¼
2qA ðqB � 1Þ!

qAþqB
qB

� �
ðqA þ qB � 1Þ!

�
XqB

m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�1

mk¼1

mk. ð27Þ

Note that when qB ¼ 1, Eq. (27) reduces to

PðK ¼ qAjqA; qB ¼ 1Þ ¼
qA!

HqAþ1
¼

2qAqA!

ðqA þ 1Þ!qA!
¼

2qA

ðqA þ 1Þ!
.

In the limit as qB!1 (see Appendix B) we have

lim
qB!1

PðK ¼ qAjqA; qBÞ ¼ 1. (28)

From this result it follows that when qA is held constant, K

converges in probability to qA as qB!1, since for all �40

lim
qB!1

PðjK � qAjo�jqA; qBÞ ! 1. (29)

Eqs. (28) and (29) provide information about the waiting
times to coalescence for (A,A), (A,B), and (B,B) events. At a
given time, the next coalescence event to take place is chosen
as either an (A,A) event, an (A,B) event, or a (B,B) event. As
qB increases, the number of possible (B,B) lineage pairs
increases, as does the number of (A,B) pairs, while the
number of (A,A) pairs remains constant. Thus, the prob-
ability increases that (B,B) and (A,B) events will occur, rather
than (A,A) events. The qA A lineages will tend to be absorbed
by (A,B) events as the waiting times between (A,B) events
decrease in comparison with the times between (A,A) events.

2.9. Recursion

By inspecting PðK ¼ 2jqA; qBÞ and PðK ¼ 3jqA; qBÞ

(Eqs. (16) and (22)), we see that

PðK ¼ 2jqA; qBÞ ¼
22

CqA ;qB

XqA
n1¼2

1

n1 � 1

XqB
m1¼1

m1

�W 2ðqA � n1; qB �m1Þ

�
Xm1

m2¼1

m2W 2ðn1 � 2;m1 �m2Þ,

where

CqA;qB ¼ qB

qA þ qB

qA

� �
qA þ qB � 1

qB

� �
,

and

PðK ¼ 3jqA; qBÞ ¼
23

CqA;qB

XqA
n1¼3

1

n1 � 1

XqB
m1¼1

m1

�W 2ðqA � n1; qB �m1Þ

�
Xn1�1
n2¼2

1

n2 � 1

Xm1

m2¼1

m2

"

�W 2ðn1 � 1� n2;m1 �m2Þ

�
Xm2

m3¼1

m3W 2ðn2 � 2;m2 �m3Þ

#
. ð30Þ

By replacing m2;m3; n2;m1 and n1 � 1 with m1;m2; n1; qB

and qA inside the brackets in Eq. (30), it can be observed
that the part within the brackets has the same form as

PðK ¼ 2jn1 � 1;m1Þ
m1

n1�1þm1
n1�1

� �
n1�2þm1

m1

� �
22

¼ PðK ¼ 2jn1 � 1;m1Þ
Cn1�1;m1

22
.

This suggests the following recursion for k42:

PðK ¼ kjqA; qBÞ ¼
2

CqA;qB

XqA
n1¼k

1

n1 � 1

XqB
m1¼1

m1

�W 2ðqA � n1; qB �m1ÞCn1�1;m1

�PðK ¼ k � 1jn1 � 1;m1Þ. ð31Þ

To verify this recursion, we can obtain the probability
of k founding lineages recursively from the probability of
k � 1 founding lineages as follows. At the time of the first
(A,B) event, the number of A lineages, n1, must be at
least k, because after the first (A,B) event, at least k � 1
lineages from population A must be available to participate
in the remaining k � 1 (A,B) events. The number of B
lineages at the time of the first (A,B) event, m1, can be any
value in ½1; qB�.
The number of ways that qA lineages can coalesce to n1

lineages is IqA;n1 , and the number of ways that qB lineages
can coalesce to m1 lineages is IqB ;m1

. The number of ways of
ordering the qA � n1 and qB �m1 events that occur more
recently than the first (A,B) event is W 2ðqA � n1; qB �m1Þ.
The number of ways of choosing an A lineage and a B
lineage to participate in the first (A,B) event is n1m1.
Among the coalescences that reduce the remaining

n1 � 1 lineages from population A and m1 lineages from
population B to one lineage, in order to produce k total
founding lineages, k � 1 interpopulation coalescences must
occur. The number of ways of obtaining k � 1 founding
lineages when starting with n1 � 1 lineages from population
A and m1 lineages from population B is the product of
the number of possible sequences of coalescences for
n1 � 1þm1 lineages and the probability of k � 1 founding
lineages, or Hn1�1þm1

PðK ¼ k � 1jn1 � 1;m1Þ.
Dividing by the total number of sequences of coales-

cences for qA and qB lineages, HqAþqB ,

PðK ¼ kjqA; qBÞ ¼
1

HqAþqB

XqA
n1¼k

XqB
m1¼1

IqA ;n1IqB;m1

�W 2ðqA � n1; qB �m1Þm1n1Hn1�1þm1

�PðK ¼ k � 1jn1 � 1;m1Þ. ð32Þ

This equation can be simplified to produce the form of the
equation in (31).
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In situations where the exact expression (25) is cumber-
some to evaluate, we can use the recursion expression to
compute the probabilities for large numbers of founding
lineages. Even when the maximal value of K is relatively
small (Kp3), it can be much faster to compute the
probability distribution of K using the recursion (31) than
using (25).

2.10. Divergence times larger than zero

Until now, we have assumed that populations A and B
have not been separated: T ¼ TA ¼ TB ¼ 0. In this case,
which describes the events that occur above time T (Fig. 1),
the sampled numbers of A and B lineages, rA and rB, equal
the numbers of ancestral A and B lineages, qA and qB. If
TA40 and TB40, we have to consider the probabilities
that the rA and rB sampled lineages have qA and qB

ancestors at the time of divergence (note that TA need
not equal TB, as an effect of different sizes of popula-
tions A and B). If we assume TA ¼ TB ¼ T , then the
events in populations A and B before T (going backwards
in time) are independent of each other and the events
after T depend only on qA and qB. Thus, we must sum
over all possible values of qA and qB to obtain
PðK ¼ kjrA; rB;TA;TBÞ:

PðK ¼ kjrA; rB;TA;TBÞ ¼
XrA
qA¼1

XrB
qB¼1

grA;qA
ðTAÞgrB;qB

ðTBÞ

�PðK ¼ kjqA; qBÞ. ð33Þ

The numbers of ancestral lineages of rA and rB decrease
with TA and TB because grA ;1

ðTAÞ and grB;1
ðTBÞ incre-

ases monotonically with TA and TB. The probability
PðK ¼ 1jqA; qBÞ monotonically increases with decreasing
qA and qB, and because qA and qB decrease with TA and
TB, PðK ¼ 1jrA; rB;TA;TBÞ is monotonically increasing
with TA and TB.

2.11. Expected number of founding lineages

The expected number of founding lineages for a given
sample size can be computed from the probability
distribution PðK jrA; rB;TA;TBÞ,

EðK jrA; rB;TA;TBÞ ¼
XrA
k¼1

kPðkjrA; rB;TA;TBÞ. (34)

When T ¼ 0, a lower bound on (34) is

EðK jqA; qBÞ ¼
XqA
k¼1

kPðK ¼ kjqA; qBÞ ð35Þ

XqAPðK ¼ qAjqA; qBÞ

þ 1½1� PðK ¼ qAjqA; qBÞ�

¼ ðqA � 1ÞPðK ¼ qAjqA; qBÞ þ 1. ð36Þ

Since KX1 and KpqA and because we have shown that
limqB!1PðK ¼ qAjqA; qBÞ ¼ 1 (28), we have convergence
in mean when qB!1:

lim
qB!1

EðK jqA; qBÞ ¼ qA. (37)

As qB!1, the sequence of random variables KqA ;qB
converges in probability to qA, where KqA;qB denotes the
random number of founding lineages when the present-day
sample sizes are qA and qB. Since KqA;qB is bounded above
by the same constant qA for any value of qB, Eq. (37)
follows from Serfling (1980, 1.3.6).
3. Results

3.1. The number of founding lineages when no time has

passed since the divergence

We first assume that no time has passed since population
divergence (TA ¼ TB ¼ T ¼ 0), so that the sample sizes rA
and rB from the present populations A and B are equal to
the numbers of lineages ancestral to the samples (rA ¼ qA

and rB ¼ qB). The number of founding lineages (of the
sample of population A) naturally cannot exceed the
sample size of population A.
Fig. 3i shows an example of the probability distribution

of the number of founding lineages, in which 50 individuals
have been sampled from each population and the
divergence time is zero. This distribution is almost
symmetrical around k ¼ 39.
Fig. 4 displays as functions of sample size the

probabilities of k founding lineages when no time has
passed since divergence, showing how the probabilities of
particular values of k depend on the sample size. When rA
(or both rA and rB) is small, only a few values of k are
likely, whereas when rA (or rA and rB) becomes larger, the
number of likely values of k increases. As rA increases,
the maximal probability over all values of k decreases at
the same time as a wider range of values of k becomes
likely. Only for small sample sizes does the probability
exceed 0:5 for any particular k.
Fig. 3ii shows the cumulative probability distribution of

the number of founding lineages for different sample sizes
when no time has passed since divergence. It is clear from
Figs. 4 and 3ii that increasing the sample size of either
population makes larger values of k more likely. However,
increasing the sample size of population A has a much
larger effect on the probable values of k than increasing the
sample size of population B (Fig. 3ii). This result is not
surprising, as k is upwardly bounded by the sample size rA
from population A, while there is no corresponding upper
bound based on the value of rB.
It is noteworthy that for a sample of size rA the number of

founding lineages with the highest probability need not equal
rA even if T ¼ 0 (Fig. 5). For example, for rA ¼ rB ¼ 15,
k ¼ 12 founding lineages has the highest probability,
and the probability of 15 founding lineages is low,
PðK ¼ 15j15; 15Þ ¼ 0:0268. This effect is also seen in
Fig. 3i for a sample of size 50 lineages from both
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sample sizes from populations A and B.
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populations. The difference between the probability
of rA founding lineages and that of the value of k with the
highest probability (arg maxk½PðK ¼ kÞ�) depends on rB (see
Fig. 4). When rB is large and T ¼ 0, arg maxk½PðK ¼ kÞ�

approaches rA (Fig. 5). In fact, we know that
PðK ¼ rAjrA; rBÞ ! 1 when rB!1 (see Eq. (28)). Thus,
if rB � rA (and T ¼ 0) then there will very likely be exactly
rA founding lineages.

The expected number of founding lineages of a sample
from population A is also dependent on the size of
the sample from population B (Fig. 6). Unless the sample
from population A is very small or the sample from
population B is very large, the expected number of
founding lineages is substantially lower than the number
of lineages sampled from population A. In fact, we know
that the expected number of founding lineages of a sample
from population A approaches the sample size qA when
qB!1 [see Eq. (37)].

3.2. Effect of sample size

The effect of sample size on the probability distribution
of the number of founding lineages of a sample from
population A when no time has passed since the divergence
can be seen in Figs. 3ii, 4–6. For a symmetric sample of the
two populations (Fig. 4i), the number of likely values of k

(say with probability 40:01) increases with sample size.
For a given sample size, however, the likely values of the
number of founding lineages are confined to a relatively
small range. For example, given a sample size of 20
individuals from both populations, the probability that
there are between 12 and 19 founding lineages is 0.9768.
The probability functions for given values of k are in
general wider for small samples from population B
(Fig. 4iii) than for large samples (Fig. 4v). This result
affects the number of founding lineages that is most likely
for a given sample from population A. For a sample size of,
say, 20 individuals from population A, the most likely
number of founding lineages is 9 if 3 B lineages are sampled
and 17 if 30 B lineages are sampled (Figs. 4iii and 4v).
How large a sample from population B is necessary for

the most likely value of k to equal rA? When rA is small, a
relatively small rB is needed before the most likely value
equals rA. For example, in Fig. 4iv, where rA ¼ 3, for rB ¼

2 the probability PðK ¼ 3Þ already is the largest (although
a much larger rB is necessary to approach the asymptotic
value of 1 for PðK ¼ 3Þ). On the other hand, if rA ¼ 10, a
sample of at least 29 B lineages is necessary for k ¼ 10 to
have the highest probability (Fig. 4ii).
For T ¼ 0:2, the probability distribution of K is still

dependent on sample size (Fig. 7i). However, if T ¼ 2, the
probability distribution of K changes very little when the
sample size exceeds 10 (Fig. 7ii). Note that PðK ¼ 2Þ is
almost unaffected by changes in sample size when T ¼ 2,
which is not the case when T ¼ 0:2 (Fig. 7i and 7ii). If the
divergence time is even larger ðT ¼ 4Þ, then regardless of
sample size, almost all A lineages have coalesced to one
lineage before they are able to coalesce with any B lineages.
Hence, PðK ¼ 1jrA; rB;TA ¼ 4;TB ¼ 4Þ is close to 1 even
for relatively large sample sizes (Fig. 7iii). The value of T

clearly affects the impact of the sample size. For small
T the sample size rB has a large effect on qA, whereas when
T is large, the sample size rB has only a weak effect on qA.
Thus, increasing the sample size rB would improve the
accuracy of an estimate of the number of founding lineages
of the whole population, if the population is recently
diverged. On the other hand, if population B was founded
a long time ago, increasing the sample size rB would have a
small effect on the accuracy of an estimate of the number
of founding lineages of population B.
Fig. 8i shows the expected number of founding lineages

EðKÞ as a function of sample size for different values of the
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divergence time. When no time has passed since divergence
and with a symmetrical sample from the two populations,
EðK jrA ¼ r; rB ¼ r;T ¼ 0Þ is almost perfectly linear
(y ¼ 0:7725xþ 0:2302). The residual sum-of-squares
for r ¼ 1; . . . ; 50 is approximately 2:9� 10�5 and
R2 � 1� 4:7� 10�9. When T ¼ 0:2, the expected number
of founding lineages EðK jrA ¼ r; rB ¼ r;T ¼ 0:2Þ increases
slowly with sample size and no longer fits a straight line.
When T ¼ 4 or even T ¼ 2, the expected number of
founding lineages is very close to 1.

3.3. Effect of time

If we assume that NA ¼ NB we only need to consider the
case where T ¼ TA ¼ TB. Fig. 7iv–vi shows probabilities
of the number of founding lineages as functions of time for
various sample sizes. In Fig. 7iv the probabilities of various
values of k are shown as functions of T for a sample of size
3 for both populations. The probability of one founding
lineage increases with T, whereas the probability of two
founding lineages has a maximum at T � 0:3307. PðK ¼ 3Þ
decreases with T. Thus, when no time has passed, k ¼ 3 has
the highest probability, but it is only slightly higher than
PðK ¼ 2Þ. As time passes, the probability increases that
one pair among the three A lineages coalesce with each
other before they coalesce with any B lineage, causing
PðK ¼ 2Þ to be the highest until T � 0:705, when it is
overtaken by PðK ¼ 1Þ. The probability PðK ¼ 1Þ is
monotonically increasing in the whole interval of T. To
obtain PðK ¼ 1Þ ¼ 0:95 the time needed is T � 3:008. In
Fig. 7v, when the sample size is 10 for both populations,
the probabilities PðK ¼ kÞ for k ¼ 1; 2 and 3 are shifted to
the right, that is, towards higher values of T. The time
required to obtain PðK ¼ 1Þ ¼ 0:95 is slightly higher in Fig.
7vi, in which the sample size is 30 from each population,
equaling T � 3:634.
Fig. 9 shows the cumulative probabilities of the number
of founding lineages for four different values of the
divergence time T, given sample sizes of 30 individuals
from each population. Even though the likely values of K

decrease relatively quickly with T, for moderate divergence
times the likely numbers of founding lineages include
values that are larger than one (Fig. 9). The probability
that the present population A has one founding lineage
increases slowly, and substantial divergence times are
required for that probability to approach one.
From Fig. 7 we see that when T42, the probability

distribution of K is quite similar for different sample sizes.
When To2 the probability distribution is very different for
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differing sample sizes. This result is also visible in Fig. 8ii,
which shows the expected number of founding lineages as a
function of time, and in Fig. 10, which shows the most
likely number of founding lineages for different values of
the divergence time.

3.4. Effect of different population sizes

By varying the divergence time T, the impact of varying
population sizes on the probability distribution of K can be
explored. To investigate the properties of different sizes of
populations A and B, we set TA ¼ bTB, where b is a
constant. Time then elapses faster in population A if b41
and slower if bo1. Using (33), the probabilities of various
values of k can be computed as functions of time for
different values of b (Fig. 11). From Figs.11i, 11iii and 11v,
we see that small sizes of population A lead to high
probabilities of one founding lineage when the sample size
is 30 (the results are similar for larger sample sizes, results
not shown). If NA ¼ NB=5 and r ¼ 30, then PðK ¼ 1Þ
almost equals 1 after one unit of coalescent time has passed
in population B (5 units of coalescent time in population
A). If NA is large in comparison with NB, then PðK ¼ 1Þ
increases slowly with time (Fig. 11ii, iv and vi). However,
PðK46Þ decreases relatively fast, and the possible values of
K are much smaller than qA. Suppose, for example, that
population A was founded by population B 3TB coalescent
units ago. Then PðK ¼ 1Þ4PðK41Þ if NAo2NB. On the
other hand, if NA ¼ 5NB, the most likely number of
founding lineages is 2, and if NA ¼ 20NB, then k ¼ 4 has
the highest probability.

3.5. Implications for the whole population

Given a finite sample, what is known about the number
of founding lineages of the whole A population? Since the
expected number of founding lineages grows almost
linearly with sample size when T ¼ 0 (solid line in
Fig. 8i), we would need a sample size that is close to the
total population size to infer the number of founding
lineages correctly when no time has passed since the
divergence of the two populations (or one could use the
linear relationship in Fig. 8i if the total population size was
known). However, if T40, the expected number of
founding lineages grows slowly with the sample size (see
Fig. 8i). Assuming that NA and NB are large, we can use (9)
to compute the expected number of ancestral lineages T

units of time in the past. The expected number of founding
lineages L of the whole population A can now be obtained
from (34)

EðLjNA ¼ 1;NB ¼ 1;TA;TBÞ

¼
X1
k¼1

k
X1
sA¼1

X1
sB¼1

g1;sA ðTAÞg1;sB ðTBÞPðkjsA; sBÞ.

ð38Þ

It is clear that a larger sample from both populations will
estimate the number of founding lineages of the whole
population more accurately than will a small sample
(Fig. 12i). With a sample size of 50 individuals and
T ¼ 0:1, the ratio of the expected number of founding
lineages of the sample and the expected number of
founding lineages of the whole population, EðKÞ=EðLÞ,
equals � 0:72. When TX0:62, for the same sample size,
EðKÞ=EðLÞX0:95. For a fixed sample size from population
A, little information about L is gained by increasing
the sample size from population B (Fig. 12ii). Conversely,
for a fixed sample size from population B, the information
about L is greatly increased just by increasing a small
sample size from population A to a moderate sample size
(Fig. 12iii).
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3.6. Implications for the whole genome

If the sample sizes rA and rB are large enough, the
probability of a certain k can be viewed as the fraction of
the genome of population A that has exactly k founding
lineages. In the same way, the probability PðKpgÞ can be
thought of as the fraction of the whole genome of
population A that has at most g founding lineages. Let
MiðTAÞ be Eq. (33) for i ¼ k when rA ¼ rB ¼ 1, TA ¼

bTB and b is a constant. The probability that there were at
most g founding lineages is

MgðTAÞ ¼
Xg
i¼1

MiðTAÞ. (39)

Mg is an increasing function of TA, and let M�1
g be its

inverse function. The waiting time Ta until a fraction 1� a
of the genome of population A has at most g founding
lineages is then

Ta ¼M�1
g ð1� aÞ. (40)

Table 1 shows the waiting times for different values of a
and g. The waiting time until a large fraction of the genome
of population A has one founding lineage is much longer
than the time until the population has at most two
founding lineages. Increasing the allowed number of
founding lineages decreases the waiting time considerably.
For example, the waiting time is �9.904 units of coalescent
time until one founding lineage contributed to 99:99% of
the genome of population A (the corresponding waiting
time for three founding lineages is �1.860). This does not
mean that the genome of population A was founded by the
same founding individual; it just means that for 99:99% of
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Table 1

Waiting times Ta until a fraction 1� a of the genome of population A has

at most g founding lineages

a Maximal no. founding lineages, g

1 2 3 5 10

0.5 1.440 0.737 0.498 0.302 0.153

0.05 3.701 1.491 0.894 0.479 0.212

0.01 5.301 1.997 1.144 0.583 0.244

0.001 7.601 2.735 1.500 0.725 0.286

10�4 9.904 3.487 1.860 0.866 0.325

10�5 12.206 4.246 2.225 1.007 0.364

10�6 14.509 5.010 2.595 1.149 0.403

10�7 16.811 5.776 2.969 1.292 0.441

The population sizes of both populations were assumed to be equal

ðb ¼ 1Þ. The waiting times are measured in coalescent units and were

computed using Eq. (40).0.1 1 2 3 4
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the genome, all individuals of the current population have
one common ancestor before they coalesce with any lineage
from population B. It is a well-known property of the
coalescent model that the number of lineages decreases
rapidly with time when the number of lineages is large (e.g.
Nordborg, 2001). Thus, the number of A lineages decreases
rapidly down to a small number in a relatively short
amount of time, and this is the reason for short waiting
times when gb1.
Consider a genome (of population A) of finite size F base

pairs approximated by u unlinked subunits of length l so
that F ¼ ul. The probability that each subunit u of the
genome of population A has pg founding lineages is given
by Eq. (39). The probability 1� a that the whole genome
has at most g founding lineages then equals ½MgðTaÞ�

u, and
the waiting time is

Ta ¼M�1
g ½ð1� aÞ1=u

� �M�1
g ðe

�a=uÞ. (41)

Suppose that the individuals in population A have a
genome size of 3000 megabases (Mb). If we assume that
sites separated by 0.2Mb have independent genealogies,
then the genome has u ¼ 15; 000 independent units. The
maximum number of founding lineages, genome wide, in a
finite genome can then be computed using Eq. (41). The
waiting time is 13.305 until the probability is 0.95 that only
one founding lineage (though not necessarily from the
same ancestral individual) has contributed to each unit of
the genome of population A. The waiting times (until the
probability is 0.95) for larger values of g are much shorter:
for example when g ¼ 2, Ta ¼ 4:610, and when g ¼ 10,
Ta ¼ 0:383.
The waiting time until the probability is 0.95 that only

one founding lineage has contributed to each unit of the
genome of population A is the same as the time until
population A is monophyletic across 95% of the genome
(but population B does not have to be monophyletic).
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Rosenberg (2003) computed the waiting time until two
species are reciprocally monophyletic with probability 0.95
using the same assumptions about genome size and
independent units of the genome. The waiting time until
reciprocal monophyly, Ta ¼ 13:972 (Rosenberg, 2003), is,
as expected, longer than the time to monophyly of only one
population, Ta ¼ 13:305. However, the difference is very
small. On the other hand, the waiting time until a
population has two founding lineages, Ta ¼ 4:610, is only
about a third of the waiting time until the population has
one founding lineage.

4. Discussion

Using a neutral coalescent model of two populations,
where an offshoot population is assumed to be founded
from an ancestral population, we have derived an
expression for the probability distribution of the number
K of genetic founding lineages of the offshoot population.
We have also obtained a recursion expression that enables
rapid computation of the probabilities for more than one
founding lineage. The sample size heavily affects the
probability distribution of K when the divergence time is
small, whereas if the divergence time is large, the sample
size has a relatively small effect on the distribution. We
have also found that for estimating the number of founding
lineages of an offshoot population when the sizes of the
two populations are similar, if one is forced to choose
between increasing the sample size either in population A
or in population B, one should choose to increase the
sample size of the former. For a large fraction of the loci in
the whole offshoot population to each have one founding
lineage, the two populations have to be separated for a
Table 2

The probability Pðkj10; 10;TÞ of k founding lineages from a sample of 10 lineag

10 lineages have k ancestors T units of time in the past

T Probability k

1 2 3 4

0.0 Pðkj10; 10;TÞ – – 0.001 0.005

g10;kðTÞ – – – –

0.1 Pðkj10; 10;TÞ – 0.008 0.049 0.158

g10;kðTÞ – – 0.002 0.022

0.5 Pðkj10; 10;TÞ 0.088 0.363 0.385 0.142

g10;kðTÞ 0.025 0.205 0.405 0.279

1.0 Pðkj10; 10;TÞ 0.372 0.502 0.119 0.007

g10;kðTÞ 0.228 0.526 0.222 0.024

2.0 Pðkj10; 10;TÞ 0.769 0.226 0.005 –

g10;kðTÞ 0.675 0.312 0.013 –

4.0 Pðkj10; 10;TÞ 0.970 0.030 – –

g10;kðTÞ 0.955 0.045 – –

Pðkj10; 10;TÞ was computed from (33) and g10;kðTÞ was computed from (8). P
long time. A much shorter divergence time is required for
the same fraction of the loci in the whole offshoot
population to have some small number (41) of founding
lineages.
In many biological scenarios, new populations have

been founded by relatively few individuals. The contribu-
tions of most of the founding individuals will quickly
be lost over time due to drift unless the population is
growing rapidly. The hope of estimating the number of
founders in a population with a small present-day
population size is often not great, simply because
the contributions of many founding individuals may have
been lost (see for example Fig. 11v). In many cases,
however, we may be more interested in the number
of founding individuals that contributed to the popula-
tion. If that is the case, then we could instead ask:
how many founding individuals contributed to the
present-day population, that is, what is the number
of founding lineages of the present-day population?
Attempting to answer this question is potentially more
straightforward using methods based on the results of
this article.

4.1. Comparison with the number of ancestral lineages

It is of interest to compare the probability distribution
of the number of founding lineages with Eq. (8), the
distribution of the number of ancestors of a sample at a
given point in the past. Both the number of founding
lineages and the number of ancestral lineages decrease as T

increases. When T is large, the distribution of the number
of founding lineages is driven by events that occur within
population A, that is, by coalescence within the population
es in each population after T units of time, and the probability g10;kðTÞ that

5 6 7 8 9 10

0.027 0.092 0.210 0.307 0.261 0.098

– – – – – 1.000

0.280 0.282 0.163 0.052 0.008 0.001

0.099 0.239 0.317 0.227 0.081 0.011

0.021 0.001 – – – –

0.077 0.009 – – – –

– – – – – –

0.001 – – – – –

– – – – – –

– – – – – –

– – – – – -

– – – – – –

robabilities below 0.0005 are denoted by –.
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as time passes. However, as can be seen from the difference
between the probabilities Pðkj10; 10;TÞ and g10;kðTÞ in
Table 2, for small and moderate values of T, the coalescent
process within population A has only a minor effect on the
distribution of the number of founding lineages of
population A. Instead, the combinatorial nature of
interspecific coalescence events in the ancestral population,
as described in this article, tends to dominate. Thus, in
many cases, the behavior of the number of founding
lineages is quite different from the behavior of the number
of ancestors.

Because many of the events affecting the properties
of the former distribution occur within the ancestral
population, that is, above T, events within the ancestral
population are important to take into account in
order to avoid misleading conclusions. For example, as
was pointed out by Hudson and Turelli (2003), Palumbi
et al. (2001) in defining the ‘‘three-times rule’’ used
the number of ancestral lineages of a population in a
scenario where accounting for interpopulation coalescence
in the ancestral population would have been more
appropriate.

4.2. Sample size and experimental design

The expected number of founding lineages of population
A increases approximately linearly with a symmetric
sample size when no time has passed since the divergence
of populations A and B (Fig. 8i). However, when
either sample size is fixed, the linear relationship of
the number of founding lineages and sample size is lost
(Fig. 6). Note that for any value of T, an estimate of the
expected number of founding lineages of the whole
population based on a subsample of the two populations
may underestimate the true value, regardless of sampling
strategy.

If the divergence time is larger than zero, assuming that
the population sizes are the same for the two populations,
the expected number of founding lineages of a sample
from population A decreases quickly as the divergence
time increases (Fig. 8ii). Given a certain divergence time,
what sampling strategy would then be best able to
capture as much information as possible about the
number of founding lineages of population A? From
Fig. 8ii, when T\1:5, the expected number of founding
lineages is close to 1, and to estimate the expected number
of founding lineages of the whole population, there is no
need for large sample sizes. Note, however, that the
divergence time has to be much longer for PðK ¼ 1Þ to
exceed 0.95 (Fig. 7).

For moderate divergence times (0:1pTp1), sample sizes
of 50, or even 30 individuals from each of the two
populations, give good estimates of the expected number of
founding lineages of the whole A population (Fig. 12i).
Suppose that one were restricted to a fixed sample size—
say 60 individuals from both populations—for estimating
the number of founding lineages of population A. Suppose
also that the two populations have similar population sizes
and that divergence time is somewhere between 0.1 and 1
units of time. A sample of equal numbers of individuals (30
from each population, dotted line in Fig. 12i) is only
marginally preferable to a sample of 50 individuals from
population A and 10 from population B (dotted-dashed
line in Fig. 12iii). On the other hand, a sample of 10
individuals from population A and 50 from population B
(dotted-dashed line in Fig. 12ii) is less informative than
either of the two previous sampling strategies. Thus, if one
were to choose between increasing the sample size in either
population A or population B, one should choose the
former.
4.3. Comparing nonrecombining haploid DNA and

autosomal DNA

Nonrecombining haploid DNA, such as mitochondrial
DNA, chloroplast DNA and Y-chromosomal DNA,
has been used extensively in demographic studies of
numerous species. However, inferences from nonrecombin-
ing haploid DNA are in many cases not expected to
agree with those from autosomal DNA. For instance,
under neutrality, in a diploid species with two sexes
and with equal distributions of the number of offspring
for males and females, coalescent time elapses four
times faster in uniparentally inherited haploid DNA than
in autosomal DNA. As described above, the number of
founding individuals that contributed to a set of present-
day individuals is heavily dependent on time since
divergence (see e.g. Figs. 7 and 8).
For example, if two units of time have passed for

the Y-chromosome, only 1=2 unit has passed for auto-
somes. In this case we expect 1.29 founding lineages
for the Y-chromosome and, on average, 3.53 founding
lineages for autosomal loci (assuming infinite samples of
both populations in Eq. (34); see also Fig. 8ii). The
probability is 0.716 that one founding individual contrib-
uted to the Y-chromosome, 0.274 that two founding
individuals contributed, and 0.010 that more than two
founding individuals contributed. For an autosomal locus,
the probability distribution is quite different: the prob-
abilities of 1, 2, 3, 4, 5, 6 and 46 founding lineages are
0.020, 0.148, 0.337, 0.317, 0.142, 0.032 and 0.004,
respectively. Thus, this type of discrepancy should be
considered when drawing conclusions about the demo-
graphic history of a species or population based on
different types of DNA.
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Appendix A

Identity 1: For positive integers m and n (Rosenberg, 2003)

Xn

k¼0

k n
k

� 	
mþn�1

k

� 	 ¼ nðmþ nÞ

mðmþ 1Þ
.

Identity 2: For positive integers n, a, b with aX2 and bXa

Xn

k¼0

k2
ða� 1þ kÞ

a� 2þ k

k

� �
b� aþ n� k

n� k

� �
¼

aða� 1Þðan� aþ nþ bþ 1Þn

ðbþ 2Þðbþ 1Þ

bþ n

n

� �
.

Proof. By noting that ða� 1þ kÞða�2þkCkÞ ¼ ða� 1Þða�1þkCkÞ we see that both sides of this identity have a factor of a� 1,
so that the identity is equivalent to

S2 ¼
Xn

k¼0

k2 a� 1þ k

k

� �
b� aþ n� k

n� k

� �
¼

aðan� aþ nþ bþ 1Þn

ðbþ 2Þðbþ 1Þ

bþ n

n

� �
. ð42Þ

We now provide a proof for Eq. (42). The proof utilizes two very useful combinatorial identities (see e.g. Graham et al.,
1994), an absorption identity,

r
r� 1

s� 1

� �
¼ s

�
r

s

�
integers r; s40 (43)

and a version of the Vandermonde convolution (Graham et al., 1994, Eq. (5.26)),

Xl

k¼0

l � k

m

� �
qþ k

n

� �
¼

l þ qþ 1

mþ nþ 1

� �
; integers l;mX0; integers nXqX0. ð44Þ

Replacing b�aþn�kCb�a with Y ðkÞ,

S2 ¼
Xn

k¼0

k2 a� 1þ k

k

� �
b� aþ n� k

n� k

� �
¼
Xn

k¼0

k2 a� 1þ k

a� 1

� �
Y ðkÞ. ð45Þ

We use a simple trick of rewriting k as �aþ ðaþ kÞ and splitting the sum S2 into two sums:

S2 ¼
Xn

k¼0

k½�aþ ðaþ kÞ�
a� 1þ k

a� 1

� �
Y ðkÞ

¼ � a
Xn

k¼0

k
a� 1þ k

a� 1

� �
Y ðkÞ þ

Xn

k¼0

kðaþ kÞ
a� 1þ k

a� 1

� �
Y ðkÞ

¼ � a
Xn

k¼0

k
a� 1þ k

a� 1

� �
Y ðkÞ þ

Xn

k¼0

ka
aþ k

a

� �
Y ðkÞ,

where the last equality follows from Eq. (43). We now use the same trick as above on these two sums, obtaining

S2 ¼ � a
Xn

k¼0

½�aþ ðaþ kÞ�
a� 1þ k

a� 1

� �
Y ðkÞ þ a

Xn

k¼0

½�a� 1þ ðaþ k þ 1Þ�
aþ k

a

� �
Y ðkÞ

¼ a2
Xn

k¼0

a� 1þ k

a� 1

� �
Y ðkÞ � a2

Xn

k¼0

aþ k

a

� �
Y ðkÞ � aðaþ 1Þ

Xn

k¼0

aþ k

a

� �
Y ðkÞ

þ aðaþ 1Þ
Xn

k¼0

aþ k þ 1

aþ 1

� �
Y ðkÞ.
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We then use Eq. (44) on each of the four sums and obtain

S2 ¼ a2
Xn

k¼0

a� 1þ k

a� 1

� �
b� aþ n� k

b� a

� �
� a2

Xn

k¼0

aþ k

a

� �
b� aþ n� k

b� a

� �

� aðaþ 1Þ
Xn

k¼0

aþ k

a

� �
b� aþ n� k

b� a

� �
þ aðaþ 1Þ

Xn

k¼0

aþ k þ 1

aþ 1

� �
b� aþ n� k

b� a

� �

¼ a2 bþ n

b

� �
� a2 bþ nþ 1

bþ 1

� �
� aðaþ 1Þ

bþ nþ 1

bþ 1

� �
þ aðaþ 1Þ

bþ nþ 2

bþ 2

� �

¼
an bþn

b

� 	
ðbþ 1Þðbþ 2Þ

an� aþ nþ bþ 1ð Þ: &

Identity 3: For real c and positive integers n, a, b with bXa

Xn

k¼0

k2
ðaþ k þ ck � cÞ

a� 1þ k

k

� �
b� aþ n� k

n� k

� �

¼
ðaþ 1Þðbþ nÞ!

ðbþ 3Þ!ðn� 1Þ!
ðabn� abþ n2a� 3ancþ 2acþ an2c� aþ 1þ 2bncþ 2b� 2cþ 3nþ b2

þ 2n2 � 2bcþ 3bnþ 2n2cÞ.

ð46Þ

Proof. The desired sum can be written as ðcþ 1ÞS3 þ ða� cÞS2 where S2 was obtained in Identity 2.

S3 ¼
Xn

k¼0

k3 a� 1þ k

k

� �
b� aþ n� k

n� k

� �
¼
Xn

k¼0

k3 a� 1þ k

a� 1

� �
b� aþ n� k

b� a

� �
. ð47Þ

We derive an expression for S3 using the same approach as was used for S2. Then Identity 3 is obtained by combining sums
of the form S2 and S3. As before, let b�aþn�kCb�a ¼ Y ðkÞ. Then

S3 ¼
Xn

k¼0

k3 a� 1þ k

a� 1

� �
Y ðkÞ ¼ a2

Xn

k¼0

k
a� 1þ k

a� 1

� �
Y ðkÞ � a2

Xn

k¼0

k
aþ k

a

� �
Y ðkÞ

� aðaþ 1Þ
Xn

k¼0

k
aþ k

a

� �
Y ðkÞ þ aðaþ 1Þ

Xn

k¼0

k
aþ k þ 1

aþ 1

� �
Y ðkÞ

¼ � a3
Xn

k¼0

a� 1þ k

a� 1

� �
Y ðkÞ þ a3

Xn

k¼0

aþ k

a

� �
Y ðkÞ þ a2ðaþ 1Þ

Xn

k¼0

aþ k

a

� �
Y ðkÞ

� a2ðaþ 1Þ
Xn

k¼0

aþ 1þ k

aþ 1

� �
Y ðkÞ þ aðaþ 1Þ2

Xn

k¼0

aþ k

a

� �
Y ðkÞ

� aðaþ 1Þ2
Xn

k¼0

aþ 1þ k

aþ 1

� �
Y ðkÞ � aðaþ 1Þðaþ 2Þ

Xn

k¼0

aþ 1þ k

aþ 1

� �
Y ðkÞ

þ aðaþ 1Þðaþ 2Þ
Xn

k¼0

aþ 2þ k

aþ 2

� �
Y ðkÞ. ð48Þ

By using Eq. (44) on each sum in Eq. (48) we then obtain

S3 ¼ � a3 bþ n

b

� �
þ a3 bþ nþ 1

bþ 1

� �
þ a2ðaþ 1Þ

bþ nþ 1

bþ 1

� �

� a2ðaþ 1Þ
bþ nþ 2

bþ 2

� �
þ aðaþ 1Þ2

bþ nþ 1

bþ 1

� �
� aðaþ 1Þ2

bþ nþ 2

bþ 2

� �

� aðaþ 1Þðaþ 2Þ
bþ nþ 2

bþ 2

� �
þ aðaþ 1Þðaþ 2Þ

bþ nþ 3

bþ 3

� �

¼
an bþn

b

� 	
½a2ðn� 2Þðn� 1Þ þ 3aðn� 1Þðbþ nþ 1Þ þ ðbþ 2nþ 1Þðbþ nþ 1Þ�

ðbþ 1Þðbþ 2Þðbþ 3Þ
: & ð49Þ
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Appendix B. Proof of Eq. (28)

Eq. (27) gives

PðK ¼ qAjqA; qBÞ ¼
2qA ðqB � 1Þ!

qAþqB
qB

� �
ðqA þ qB � 1Þ!

XqB
m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�1

mk¼1

mk.

PðK ¼ qAjqA; qBÞ can be written as the quotient f ðqBÞ=gðqBÞ of two polynomials in qB. The numerator f ðqBÞ, based on the
sums on the right side of (27), has leading term q

2qA
B =ð2qAqA!Þ since

f ðqBÞ ¼
XqB

m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�1

mk¼1

mk ¼
XqB

m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�2

mk�1¼1

mk�1 �
1

2
ðmk�1 þ 1Þmk�1

¼
XqB

m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�2

mk�1¼1

1

2
ðm3

k�1 þm2
k�1Þ

¼
XqB

m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�2

mk�1¼1

1

2
m3

k�1 þQðm2
k�1Þ ¼

XqB
m1¼1

m1 � � �
Xmj�1

mi¼1

mi � � �
Xmk�3

mk�2¼1

1

2

1

4
m4

k�2 þQðm3
k�2Þ

¼
1

2

1

4
� � �

1

2k
q2k
B þQðq2k�1

B Þ ¼
q2k
B

2kk!
þQðq2k�1

B Þ ¼
q
2qA
B

2qAqA!
þQðq

2qA�1
B Þ,

where QðnrÞ is a polynomial in n of degree r or less. Here we have used the fact that as a polynomial in n,
Pn

i¼1i
r has leading

term nrþ1=ðrþ 1Þ (see e.g. Conway and Guy, 1996, p. 106). The denominator gðqBÞ, based on the first part of Eq. (27), has
leading term q

2qA
B since

1

gðqBÞ
¼

2qA ðqB � 1Þ!
qAþqB

qB

� �
ðqA þ qB � 1Þ!

¼
2qA ðqB � 1Þ!qA!qB!

ðqA þ qBÞ!ðqA þ qB � 1Þ!

¼ 2qAqA!
1

ðqAþqB�1Þ!
ðqB�1Þ!

ðqAþqBÞ!
qB!

¼ 2qAqA!
1

q
2qA
B þ Rðq

2qA�1
B Þ

,

where RðnrÞ is a polynomial in n of degree r or less. We can now use L’Hôpital’s rule for evaluating f ðqBÞ=gðqBÞ. As
qB!1, we obtain

PðK ¼ qAjqA; qBÞ ¼
f ðqBÞ

gðqBÞ
¼

q
2qA
B

2qAqA!
þQðq

2qA�1
B Þ

" #
2qAqA!

q
2qA
B þ Rðq

2qA�1
B Þ

" #
! 1.
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