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Genotype-Imputation Accuracy
across Worldwide Human Populations

Lucy Huang,1,2,* Yun Li,1 Andrew B. Singleton,3 John A. Hardy,4 Gonçalo Abecasis,1

Noah A. Rosenberg,1,2,5 and Paul Scheet1,6

A current approach to mapping complex-disease-susceptibility loci in genome-wide association (GWA) studies involves leveraging the

information in a reference database of dense genotype data. By modeling the patterns of linkage disequilibrium in a reference panel,

genotypes not directly measured in the study samples can be imputed and tested for disease association. This imputation strategy

has been successful for GWA studies in populations well represented by existing reference panels. We used genotypes at 513,008 auto-

somal single-nucleotide polymorphism (SNP) loci in 443 unrelated individuals from 29 worldwide populations to evaluate the ‘‘porta-

bility’’ of the HapMap reference panels for imputation in studies of diverse populations. When a single HapMap panel was leveraged for

imputation of randomly masked genotypes, European populations had the highest imputation accuracy, followed by populations from

East Asia, Central and South Asia, the Americas, Oceania, the Middle East, and Africa. For each population, we identified ‘‘optimal’’

mixtures of reference panels that maximized imputation accuracy, and we found that in most populations, mixtures including individ-

uals from at least two HapMap panels produced the highest imputation accuracy. From a separate survey of additional SNPs typed in the

same samples, we evaluated imputation accuracy in the scenario in which all genotypes at a given SNP position were unobserved and

were imputed on the basis of data from a commercial ‘‘SNP chip,’’ again finding that most populations benefited from the use of combi-

nations of two or more HapMap reference panels. Our results can serve as a guide for selecting appropriate reference panels for impu-

tation-based GWA analysis in diverse populations.
Introduction

The recent availability of high-density single-nucleotide

polymorphism (SNP) genotype databases from several

human populations has facilitated the mapping of

complex-disease loci in genome-wide association (GWA)

studies. These databases, such as The International

HapMap Project (2.5 to 4 million SNPs genome-wide1,2)

and SeattleSNPs (~7 Mb of gene-resequencing data),

provide high-resolution information about allele frequen-

cies and patterns of linkage disequilibrium (LD) among

SNPs typed in the samples. They serve as ‘‘reference

panels,’’ useful for diverse purposes in human genetics.

Information in reference panels can be leveraged in

a mapping context by merging the reference genotype

data with collections of data from individual GWA studies

(Figure 1). Because typical GWA studies contain genotype

data on, at most, a few hundred thousand to a million

SNPs, a very specific missing-data pattern emerges from

the union of a reference panel with a GWA data set. That

is, for most SNPs, observations exist for the reference panel

but not for the GWA study (Figure 1D). By modeling the

pattern of LD in the reference panel and then applying

the fitted model to the observed GWA study data, one

can effectively impute the ‘‘missing’’ GWA SNP geno-

types.3–9 Imputed genotypes at these SNP loci can then

be used to test for association with disease, in the same
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way that testing occurs for SNPs that were actually geno-

typed in the GWA study.

To date, most GWA studies have been conducted in pop-

ulations that are well represented by the available high-

density reference panels. Specifically, study samples have

typically derived from populations of Northern European

ancestry, for which the HapMap CEU panel—based on

individuals of Northern and Western European descent,

sampled in Utah—has provided additional information

for imputation in association testing.10–13 However, for

the purpose of genotype imputation, it is unclear how

well the HapMap panels represent the patterns of genetic

variation in other populations, particularly those that are

more distant from the available panels, either in terms of

demographic history or in terms of geographic proximity.

Here, we attempt to evaluate the ‘‘portability’’ of these

panels for imputation-based studies of diverse human pop-

ulations; this work is analogous to recent assessments of

the portability of informative SNPs chosen from reference

panels in providing LD-based genomic coverage in diverse

populations.14–18

Recently, two studies examined patterns of SNP varia-

tion in multiple human populations from around the

world, providing data on samples from the Human

Genome Diversity Project (HGDP) at more than 500,000

SNPs.19,20 We select one of these databases,19 and we eval-

uate the behavior of a missing-data-imputation algorithm
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A B C D Figure 1. Schematic of Experimental Designs
The ‘‘Study sample’’ row represents data used in evaluting impu-
tation accuracy in each design, with SNPs under consideration
colored yellow. The ‘‘Study sample with missing genotypes’’ row
represents corresponding data, with the unknown genotypes
that are imputed colored in red. The ‘‘Reference panel’’ row
represents example reference panels based on which imputation
of missing genotypes or genotypes of untyped markers is per-
formed. In a data set, each row corresponds to a haplotype
and each column corresponds to a SNP position.
(A) Inference of missing genotypes, without additional refer-
ence haplotypes.
(B) Inference of missing genotypes, with a reference panel of
haplotypes from a single reference sample (CEU, YRI, or
CHBþJPT).
(C) Inference of missing genotypes, with a mixture reference
panel, formed by the taking of a specified ratio of haplotypes
from the HapMap CEU, YRI, and CHBþJPT samples.

(D) Inference of genotypes of untyped markers, with a mixture reference panel, formed by the aggregation of two or more HapMap samples.
We evaluated imputation accuracy in (A–C) for randomly masked genotypes, and in (D) for genotypes of untyped markers.
in each of the sampled populations in several ways. First,

using the sampled populations alone, we assess average

imputation accuracy when imputing masked genotypes

in the absence of a reference panel (Figure 1A). Second,

we use the European American (CEU), Yoruba (YRI), and

combined Chinese and Japanese (CHBþJPT) panels from

the HapMap project in various combinations as reference

panels, and we evaluate the properties of imputation in

the sampled populations using the reference-panel data

(Figures 1B and 1C). Finally, using data from a targeted

high-density scan of several genomic regions on chromo-

some 21 in the HGDP samples,14,21 we also assess the accu-

racy with which genotypes of untyped markers can be

imputed in these populations from the ~500,000 typed

SNPs and various combinations of HapMap reference

panels (Figure 1D).

We find that when employing HapMap reference panels

for imputation, genotypes from European HGDP samples

are imputed with the highest accuracy, followed by

samples from East Asia, Central and South Asia, the Amer-

icas, Oceania, the Middle East, and Africa. The choice of

preferred HapMap reference panels for imputation in

worldwide populations follows major geographic group-

ings. For most HGDP populations, we obtain additional

gains in imputation accuracy when imputing genotypes

on the basis of a mixture of available reference panels.

These findings can serve as a basis for the application of

imputation methods to analysis of genomic data in world-

wide populations.

Material and Methods

Data
We examined a subset of 443 unrelated individuals from 29 popu-

lations in the HGDP-CEPH Human Genome Diversity Cell Line

Panel, a worldwide collection of individuals from diverse loca-

tions.22 Individual genotypes obtained through the Illumina
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HumanHap550 SNP platform had been previously reported by

Jakobsson et al.19 at 513,008 biallelic autosomal genetic markers

(246 SNPs ultimately discarded by Jakobsson et al.,19 for produc-

tion of their final data set of 512,762 SNPs, were included here

as potentially informative for imputation).

For some analyses, we incorporated additional individuals for

use as reference data in imputing missing genotypes. The reference

data consisted of phased haplotypes of 210 individuals from the

International HapMap Project:1,2 60 European Americans sampled

from Utah, USA (abbreviated CEU), 60 Yoruba individuals from

Ibadan, Nigeria (YRI), 45 Chinese individuals from Beijing, China

(CHB), and 45 Japanese individuals from Tokyo, Japan (JPT). The

phased HapMap data (release 21) were downloaded from the

HapMap phase II data website (see Web Resources). The CHB

and JPT haplotypes were combined into a single panel (CHBþJPT),

and the specific origins of individual haplotypes (either CHB or

JPT) were ignored. The CEU and YRI sets consisted of parents

from trios; the offspring were omitted from our study but had

been used in inferring haplotypes in the parents. A total of

1,958,375 autosomal markers that were polymorphic in the set

of 210 HapMap individuals were used in our analyses. All except

two of these SNPs (rs7008731 and rs13332778) were separately

polymorphic in the CEU, YRI, and CHBþJPT panels.

In some analyses, we used data from Conrad et al.,14 in which

some of the genotypes imputed with the data of Jakobsson

et al.19 were measured directly in the same HGDP samples. These

analyses used an updated version of the Conrad et al.14 data from

Pemberton et al.21

LD-Based Imputation
Multiple models exist for accurate imputation of missing geno-

types on the basis of LD information.4–6,8,23–26 For our investiga-

tions of variation in genotype-imputation accuracy across popula-

tions, we used a recent implementation of a model related to the

approach of Li and Stephens:27 the Markov Chain Haplotyping

algorithm (MACH-1.0.15) of Li et al.3 (see Web Resources).

The intuition underlying this imputation approach is that

collections of individuals, even those who are ‘‘unrelated,’’ share

short stretches of DNA sequence derived identically by descent

from their common ancestors. Once these stretches are identified
y 13, 2009



with the use of a set of SNPs, it is possible to probabilistically

predict alleles for intervening SNPs that are not measured in

a given individual but are measured in other individuals. Using

a hidden Markov model, the algorithm resolves a collection of un-

phased genotypes into imperfect mosaics of several ‘‘template’’

haplotypes, from which it obtains an imputation, or a ‘‘best

guess,’’ of each unknown genotype in each individual under

consideration. All of our analyses rely on these ‘‘best guess’’ impu-

tations, ignoring uncertainty in the genotype estimates. Exact

software settings are given in the Appendix.

Inferring Missing Genotypes without Additional

Reference Individuals
To assess the impact of the proportion of missing genotypes on

imputation accuracy in each population, we masked a fraction

of the genotypes at random, and we then compared the esti-

mated genotypes to the actual, masked genotypes (Figure 1A).

The proportion of missing genotypes varied between 5% and

50%, with a 2.5% increment. That is, each diploid genotype

was masked independently with probability equal to the speci-

fied proportion of missing genotypes. The proportion of

correctly imputed alleles is reported as ‘‘imputation accuracy’’

throughout our analyses. For example, if the correct genotype

was homozygous at a locus for a particular individual and

a heterozygous genotype was imputed, then the algorithm

was viewed as having produced one of two correct alleles. Simi-

larly, if the algorithm imputed a homozygous genotype at

a locus where the correct genotype was heterozygous, then

we considered the algorithm to have produced one of two

correct alleles. It follows that the maximum number of incor-

rectly imputed alleles was 2 when the unknown genotype

was homozygous and 1 when the unknown genotype was

heterozygous.

In each of the 29 population samples, we measured the imputa-

tion accuracy for each proportion of missing genotypes, averaging

across all markers. We summarized genome-wide imputation accu-

racy by the weighted average of chromosome-specific imputation

accuracy, using the numbers of SNPs on individual chromosomes

as the weights. In our analysis of the role of the proportion of

missing genotypes, an individual’s missing genotypes were esti-

mated on the basis of information strictly from other individuals

in the same population sample. To obtain comparable results

across populations, we restricted our analyses to a sample size of

six individuals per population, the smallest sample size among

the 29 populations. For each population, the six individuals

were chosen randomly.

To evaluate the effect of sample size on imputation accuracy, we

generated subsamples for each population and each sample size by

sequentially removing individuals one at a time from the full

sample. To ensure that random subsamples of individuals were

used in the evaluation of imputation accuracy in each population,

each of the population samples was permuted prior to the

construction of subsamples. In each data set, genotypes were

hidden, with a proportion of missing genotypes equal to 15%,

and missing genotypes were estimated by MACH. We assessed

imputation accuracy for various sample sizes for each population,

and we again summarized it by the weighted average allelic-impu-

tation accuracy across autosomes. Because imputation accuracy

varies across individuals in a population, the sequence in which

individuals were removed from a full population sample could

conceivably influence the relationship between imputation accu-

racy and sample size. Therefore, to examine the importance of the
The America
particular sequence of individuals utilized in the estimation proce-

dure, we repeated the analysis with the use of a second randomly

chosen sequence of individuals in each population. Differences in

imputation accuracy between the two sequences (i.e., imputation

accuracies based on the first permuted sample minus correspond-

ing values based on the second permuted sample) were negligible

for most populations and sample sizes (Figures S1 and S2, available

online).

Inferring Missing Genotypes with Additional

Reference Individuals
Imputation Accuracy versus Panel Size

Using a single HapMap panel (either the CEU, YRI, or CHBþJPT

sample) as a reference group for inferring missing genotypes

(Figure 1B), we investigated the relationship between imputation

accuracy and reference-panel size. For each HapMap panel, we

permuted the panel and constructed random subpanels of size

10, 20, ., 120 haplotypes by sequentially adding 10 haplotypes

in the order specified by our permutation. Note that each of the

resulting subpanels, when viewed independently, represented

a random sample of haplotypes from the appropriate HapMap

panel and that a consecutive pair of haplotypes did not neces-

sarily correspond to two haplotypes of the same individual. To

obtain comparable results across HapMap panels, we considered

(only in this analysis) subpanels of % 120 haplotypes, despite

the fact that the CHBþJPT panel had 180 haplotypes. In all pop-

ulations, we utilized for imputation the same set of subpanels

derived from the HapMap samples. With the use of each

reference panel and its subpanels, we performed genotype

imputation and evaluated the accuracy across various sizes for

a given reference panel, as well as across reference panels for a

given size. This analysis used the full sample from each HGDP

population.

Imputation Accuracy versus Panel Composition

In addition to assessing imputation accuracy using each of the

three HapMap panels in isolation, we also considered the panels

combined together, and we considered other mixtures of the

various panels as well (Figure 1C). To identify the mixture that

produced the maximal imputation accuracy, we imputed missing

genotypes in each population using mixed reference samples

formed by combining individuals from the three HapMap groups.

In contrast to our previous analyses, in which we considered

missing genotypes on the entire autosomal genome, we imputed

only unknown genotypes on one chromosome, chromosome 2,

in the interest of reducing computation time. We considered

a variety of mixtures, with each mixture consisting of combina-

tions of HapMap reference haplotypes chosen according to a spec-

ified ratio.

For each ratio, we used a reference panel of maximal size, con-

strained by the fact that most ratios involving two or more refer-

ence panels do not permit use of all available haplotypes from

the panels under consideration. The set of mixtures that we

considered corresponded to the set of vectors (i1, i2, i3) of nonneg-

ative integers with i1 þ i2 þ i3 ¼ 7. For each vector, we constructed

a mixture sample consisting of a1 CHBþJPT haplotypes, a2 CEU

haplotypes, and a3 YRI haplotypes, so that a1, a2, and a3 were as

large as possible and so that they satisfied a1: a2: a3 ¼ i1: i2: i3.

For example, the vector (i1, i2, i3) ¼ (4, 2, 1) led to (a1, a2, a3) ¼
(180, 90, 45).

In each population, using all individuals sampled from the pop-

ulation, we assessed imputation accuracy using each of 36 mixed

collections of haplotypes from the three HapMap panels
n Journal of Human Genetics 84, 235–250, February 13, 2009 237



(corresponding to the 36 solutions to i1 þ i2 þ i3 ¼ 7). For each (i1,

i2, i3), within HapMap groups, haplotypes were chosen randomly

among the haplotypes present, and the same randomly chosen

subsets of the three HapMap panels were used as the reference

panel in all HGDP populations. The random sets of haplotypes

were chosen so that if h haplotypes from a HapMap population

were used in one mixed collection and h0 > h haplotypes from

the same HapMap population were used in another mixed collec-

tion, then it was always true that the set of h haplotypes was

a subset of the set of h0 haplotypes. For (i1, i2, i3) given, the solution

for the number of haplotypes, (a1, a2, a3), was obtained as

described in the Appendix.

Application to Untyped Markers
In current GWA studies, genotypes are collected at densities on

the order of ~500,000 SNPs spread across the genome. In such

a study, with the use of a reference panel, additional information

can be obtained about the genotypes of SNPs not typed directly in

the GWA study but measured in an external reference panel. To

assess the accuracy with which the genotypes of these markers

can be imputed, we used the 513,008 SNPs typed in samples

from 29 populations19 in combination with the HapMap refer-

ence panels to impute genotypes of 1,445,367 SNPs. We then

compared the imputed genotypes to those measured directly by

Conrad et al.14 and updated by Pemberton et al.,21 which, for

limited regions of the genome, consist of SNPs at higher density

than those in a typical GWA study. Using this protocol, we as-

sessed imputation accuracy at 218,345 diploid genotypes, as

described below. We note that in contrast with our other analyses,

in which genotypes were imputed in randomly chosen SNP posi-

tions that varied across individuals, in this analysis, for certain

markers genotyped only in the reference panel, the genotypes

of all individuals in the study sample were imputed. To distin-

guish this scenario from the ‘‘missing genotypes’’ scenarios of

our other analyses, we refer to such markers as ‘‘untyped

markers.’’

Among the 2810 SNPs reported by Pemberton et al.,21 1272

were located on chromosome 21, so we restricted this analysis

to chromosome 21 for convenience. Among these 1272 SNPs,

1008 had not been included in the SNP set studied by Jakobsson

et al.19 Of the 1008 SNPs, 513 were genotyped in the HapMap

individuals. We thus assessed imputation accuracy at these 513

SNPs by using the genotypes at 6068 SNPs from Jakobsson

et al.19 and the 26,716 SNPs available on chromosome 21 in

the HapMap data. Using the HapMap reference panels to impute

genotypes of untyped markers in all 443 individuals studied by

Jakobsson et al.,19 we measured imputation accuracy for the

513 SNPs in a set of 426 individuals. This set of 426 individuals

is the intersection of the set of 927 unrelated HGDP individuals

studied by Conrad et al.14 and Pemberton et al.21 with the set

of 443 unrelated HGDP individuals studied by Jakobsson

et al.19 The set contains at least five individuals from each of

29 populations. In total, of the 2(426)(513) ¼ 437,076 possible

alleles in which imputation accuracy could be measured,

436,690 alleles were available (that is, 386 alleles were not re-

ported by Pemberton et al.21). As the data of Pemberton et al.21

are based on a set of individuals that overlaps with that of

Jakobsson et al.,19 this experiment mimics the scenario in which

a genotyping chip is used on a set of samples and imputation

of additional genotypes at marker positions that were not previ-

ously typed in the same samples is of interest (Figure 1D). This
238 The American Journal of Human Genetics 84, 235–250, February
scenario occurs, for instance, in meta-analyses of multiple GWA

studies.28–31

In addition to reporting the proportion of alleles estimated

correctly as the measure of imputation accuracy, we also calculated

the square of a linear correlation coefficient between the imputed

and directly measured genotypes. At each SNP for which the true

genotypes were masked, we coded the possible genotypes as 0, 1,

or 2, representing the possible counts of the minor allele at this

SNP in the target population. Let xi denote the imputed genotype

for individual i, and let x denote the mean value of the imputed

genotypes across individuals. Similarly, let gi and g denote the

analogous quantities for the true genotypes. Then, the statistic,

r2, is computed as

r2 ¼

0
BBBB@

Pn
i¼1

ðxi � xÞðgi � gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xÞ2
Pn
i¼1

ðgi � gÞ2
s

1
CCCCA

2

,

in which n is the number of individuals in the population sample.

This squared correlation coefficient was then averaged across SNPs

to obtain a summary measurement for each population.

Results

Inferring Missing Genotypes without Additional

Reference Individuals

Imputation accuracies for each population, as a function

of the proportion of missing data, are displayed in

Figure 2. Here, no reference panel has been used, and

we observe a decrease in accuracy with an increasing

proportion of missing data. The Pima and Colombian

groups exhibited the highest imputation accuracies

(>92% with 15% of genotypes missing). Across popula-

tions, the degree to which the proportion of missing

genotypes affects imputation accuracy is relatively

constant, as is evident in the parallel trajectories across

populations in the figure. Over the range of missing-

data proportions examined, we did not observe a qualita-

tive difference in population rankings by imputation

accuracy. Populations from the Americas and from Oce-

ania had the highest imputation accuracy, followed by

populations from Asia and Europe; African populations

had the lowest imputation accuracy. Because the choice

of the proportion of missing genotypes had relatively

little influence on population rankings by imputation

accuracy, especially for proportions less than ~30%, we

proceeded to subsequent analyses with a single propor-

tion of missing genotypes equal to 15%.

Figure 3 shows the relationship between imputation

accuracy and sample size when unknown genotypes were

imputed on the basis of only information from within

a population sample (i.e., without a reference panel). The

imputation accuracy, as measured by the proportion of

alleles imputed correctly, increases as sample size increases.

The pattern across populations is similar to that in Figure 2,

with populations from the Americas and Oceania having

the highest imputation accuracy and African populations
13, 2009



having the lowest imputation accuracy. The boost in accu-

racy provided by increasing the sample size is greatest

when the sample size is small.

To assess the importance of the particular sequence of

individuals employed in evaluating the role of sample

size, for each population sample we used an additional

random ordering of individuals. Figure S1 shows the

imputation accuracy as a function of sample size in the

absence of a reference panel for each of two sets of

permuted samples. The pointwise differences between

the values in the two plots in Figure S1 are shown in

Figure S2, which displays no systematic difference in

imputation accuracy as a function of sample size between

the two permuted samples. The maximal difference in

imputation accuracy between the two permuted samples

was less than 0.5% in most populations. Consequently,

the impact of using a particular sequence of individuals

in the evaluation of imputation accuracy appears to be

minimal.

Figure 2. Imputation Accuracy versus Proportion
of Missing Genotypes, in Each of 29 Populations
This analysis was based on samples of six individuals per pop-
ulation and it did not use any reference panel.

Inferring Missing Genotypes with Additional

Reference Individuals

Imputation Accuracy versus Panel Size

Figure 4 shows the relationship between imputation

accuracy, based on each of the three HapMap reference

panels, and the size of the panels. In the first three

columns, we plot the imputation accuracy from infer-

ence of missing genotypes in each population, on the

basis of a single HapMap panel. In the final (right-

most) column, we plot the maximal imputation accu-

racy for each population, taken pointwise from the

first three columns. Generally, when we used a single

HapMap reference panel, higher imputation accuracies

occurred in populations from the same geographic

region as those of the reference panel and lower impu-

tation accuracies occurred in African populations.

With the YRI sample as the reference panel, both the

highest and the lowest imputation accuracies occurred

in populations from Africa (Yoruba and San, respec-

tively).

We generally observed increasing imputation accu-

racy with increasing reference-panel size. With results

averaged across all 29 populations and all three

HapMap reference panels, the increase in imputation

accuracy was 3.21% when the reference-panel size

increased from 10 to 20 haplotypes; for subsequent

additions of 10 reference haplotypes, the associated

increases were 1.06%, 0.56%, 0.35%, 0.23%, 0.18%,

0.13%, 0.11%, 0.10%, 0.07%, and 0.06%. When we

used the HapMap CEU or CHBþJPT sample as the refer-

ence panel, the imputation accuracy appeared to reach

a plateau as the reference-panel size approached 120

haplotypes. However, we did not observe as clear a plateau

when using the HapMap YRI sample as the reference panel,

particularly for the Yoruba HGDP sample.

When we considered the maximal imputation accuracy

attained by use of a single HapMap reference panel of

120 haplotypes, European populations generally had the

highest accuracy, followed by populations from East Asia,

Central and South Asia, the Americas, the Middle East,

Oceania, and Africa (Figure 4). The maximal imputation

accuracies of populations within a geographic region dis-

played more variation in Africa and the Middle East than

in other geographic regions. For example, when using

120 haplotypes from the reference panel, we found that

African and Middle Eastern populations had a wider range

of maximal imputation accuracies (9.8% for African popu-

lations and 2.8% for Middle Eastern populations) than, for

instance, the Central and South Asian populations (<1%

between the highest and lowest accuracies).
The American Journal of Human Genetics 84, 235–250, February 13, 2009 239



Figure 5 summarizes with a bar plot the maximal impu-

tation accuracy achieved by one of the HapMap reference

panels, each 120 haplotypes in size, for each population.

The colors of the bars indicate which HapMap panel was

utilized for producing the maximal imputation accuracy.

In African populations, we obtained the maximal imputa-

tion accuracy by using the HapMap YRI sample as the refer-

ence panel. Populations from Europe, Central and South

Asia, and the Middle East, as well as the Maya population

from the Americas, attained their maximal imputation

accuracies with the HapMap CEU panel, whereas popula-

tions from East Asia and Oceania, as well as the Pima and

Colombian populations from the Americas, achieved their

maximal accuracies with the HapMap CHBþJPT reference

panel.

Imputation Accuracy versus Panel Composition

For each population, Figure 6 displays the imputation

accuracy on the basis of mixtures of HapMap reference

panels, indicating with a darkened circle the mixture of

HapMap samples that produced the maximal imputation

accuracy. The vertices of a triangle in Figure 6 represent

imputation accuracies based solely on a single HapMap

group, and the interior points represent imputation accu-

racies achieved by the use of mixtures of HapMap reference

haplotypes (see Material and Methods). The colors corre-

spond to the nine quantiles of the observed imputation

accuracies across all mixtures and all populations, with

darker colors representing higher imputation accuracies.

Each point in a triangle is colored according to the imputa-

tion accuracy produced by the panel mixture correspond-

ing to the point.

With only a few exceptions, the panel mixture that led

to the maximal imputation accuracy for a particular popu-

lation had as its primary component the same HapMap

reference panel that individually produced the maximal

imputation accuracy shown in Figure 5. Specifically, the

YRI panel was the primary component of the mixture for

Figure 3. Imputation Accuracy versus
Sample Size, in Each of 29 Populations
This analysis used a proportion of missing
genotypes equal to 15% and did not use
any reference panel.

all African populations, the CEU

panel was the primary component

for all European populations, and

the CHBþJPT panel was the primary

component for populations from

East Asia, Oceania, and the Americas.

However, populations from the

Middle East and Central or South

Asia did not display such homoge-

neous patterns for the major contrib-

uting HapMap panel in the optimal

mixture. In two Middle Eastern

groups, Mozabite and Bedouin, the HapMap YRI and

CEU samples contributed equally to their optimal mixtures

of reference haplotypes, whereas in the other two Middle

Eastern groups, Palestinian and Druze, the CEU sample

alone served as the major contributing HapMap reference

panel. For populations from Central or South Asia, the

major contributing HapMap panels were the CEU sample

in the Balochi group and the CHBþJPT sample in the

Kalash and Uygur groups; the optimal mixture for the

Burusho group contained equal contributions from the

HapMap CEU and CHBþJPT samples.

Compared with imputation accuracy obtained with only

a single HapMap reference group (Figures 4 and 5), in 23 of

29 populations, the major contributing HapMap sample in

the mixtures that produced the maximal imputation accu-

racies corresponded to the single highest-accuracy panel in

the analysis of individual HapMap panels. In the Kalash,

Uygur, and Maya populations, the major contributing

HapMap samples differed from the samples that produced

the highest imputation accuracy when we evaluated

HapMap panels separately; the Mozabite, Bedouin, and

Burusho populations each had two HapMap panels

contributing the same number of reference haplotypes in

the optimal mixtures.

When we considered imputation accuracy across popu-

lations on the basis of the 36 mixtures of reference panels,

European and East Asian populations had generally higher

imputation accuracies that fell within the top quantiles.

With the exception of the Yoruba population, African pop-

ulations had substantially lower imputation accuracies

that fell mostly within the bottom quantiles. The highest

imputation accuracy across all points in Figure 6 was

97.83%, in the Basque population (based on a mixture

consisting of 48 CHBþJPT haplotypes, all 120 CEU haplo-

types, and no YRI haplotypes). The lowest imputation

accuracy among all points tested—the minimum value

across all 29 3 36 choices of a population sample and
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Figure 4. Imputation Accuracy versus Reference-Panel Size, in Each of 29 Populations, Given a Proportion of Missing Genotypes
Equal to 15%
To obtain comparable results, we used the entire HapMap YRI and CEU samples but only 120 of 180 HapMap CHBþJPT reference haplo-
types. The rightmost column of ‘‘maximal’’ imputation accuracy represents the highest accuracy achieved by one of the HapMap reference
panels, taken pointwise. Populations are color-coded and symbol-coded in the same manner as in Figure 3.
a reference panel—was 78.20%, in the San population

(based on the entire CHBþJPT panel of 180 haplotypes).

Whereas the use of mixed reference panels resulted in

increased imputation accuracy in all populations, the

choice of all 210 HapMap individuals as the reference

panel did not yield the highest imputation accuracy in

any of the 29 populations. However, this choice generally

produced imputation accuracy similar to that of the

optimal mixture; across populations, the mean difference

between imputation accuracy based on the optimal

mixture and that based on the full HapMap sample was

0.0059. This value was less than the mean difference

between imputation accuracy based on the optimal

mixture and that based on the optimal vertex (0.0079).

Application to Untyped Markers

Figure 7 and Table S1 present imputation accuracy for

inference of unknown genotypes in the untyped chromo-

some 21 markers of Jakobsson et al.,19 based on individual

HapMap panels and on mixtures of two or three HapMap

panels. As indicated by the bar plot in Figure 7, five of
The Americ
seven combinations of HapMap panels produced the high-

est imputation accuracy in at least one population. The

two combinations that did not serve as the optimal refer-

ence panel in any of the populations were the HapMap

CEU sample and the combination of the YRI and CHBþJPT

samples. With the exception of five groups (San, Mbuti

Pigmy, Yoruba, Mandenka, and Lahu), most of the popula-

tions that we examined benefited from use of a combina-

tion of two or more HapMap samples as the reference

panel for imputation of genotypes at untyped markers on

chromosome 21. The highest maximal imputation accu-

racy was 96.05%, occurring in a European population,

Adygei, and the lowest maximal imputation accuracy was

89.12%, occurring in an African population, San.

In this setting, where mixtures of HapMap panels are

coarser than those displayed in Figure 6, for 11 of 29 pop-

ulations, the imputation accuracy was the highest when

we constructed the reference panel from all available

HapMap individuals. Seven of these 11 groups represent

populations of Eurasia, with some degree of dissimilarity

from the HapMap groups in northern and western Europe
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and in China and Japan; the other four are from Oceania

and the Americas.

We obtained comparable results for the choice of refer-

ence panel when, in place of imputation accuracy, we

considered the squared correlation of imputed and

measured genotypes, r2, as a measure of the performance

of the genotype-imputation procedure (Figure 8 and Table

S2). Unlike in Figure 7, however, populations from the

Americas had the highest values of r2. Across populations,

the highest maximal r2, 0.9618, occurred in the Pima pop-

ulation and the lowest maximal r2, 0.7397, occurred in the

Mbuti Pygmy population. Among the seven combinations

of the HapMap panels, the CHBþJPT sample was the only

panel that did not serve as the optimal panel for any of the

populations. In 25 of 29 populations, the use of two or

three HapMap samples produced the maximal r2 between

the imputed genotypes and those directly measured by

Figure 5. The Maximal Imputation Accuracy Achieved by One
of the Three HapMap Reference Panels, in Each of 29 Popula-
tions, Given a Proportion of Missing Genotypes Equal to 15%
This plot corresponds to the imputation accuracy obtained with
a reference-panel size of 120 haplotypes, shown in the rightmost
column (MAX) of Figure 4. For convenience in interpreting the
figure, the vertical dashed line indicates 90% imputation accuracy.
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Conrad et al.14 A single HapMap panel (YRI) produced

the highest r2 in San, Yoruba, and Mandenka populations;

another individual panel (CEU) produced the highest r2 in

the Russian population. When we used all available

HapMap individuals as the reference panel, we obtained

the maximal r2 in nine populations, eight of which were

among the 11 populations for which imputation accura-

cies were the highest when the full HapMap set was used

(Figure 7).

Discussion

Until now, nearly all imputation-based GWA studies have

been performed in populations of European descent. As

genotyping costs decrease, it is likely that such studies

will begin to include individuals from an increasing

diversity of populations. As a result of the success of

recent studies that have leveraged external reference

samples for imputation of unmeasured genotypes and

of the potential that we have demonstrated for accurate

genotype imputation in diverse populations, it is likely

that the imputation approach can be successfully applied

to GWA studies in which the sampled individuals are

more distantly related to the samples that make up avail-

able reference panels. This investigation can therefore

serve as an initial resource for the design and analysis

of imputation-based GWA studies in these diverse popu-

lations.

We characterized the levels of LD in 29 HGDP popula-

tions using the practical metric of imputation accuracy,

the ability to estimate missing genotypes on the basis of

patterns of LD. Although our evaluations of imputation

accuracy on the basis of the HGDP samples alone (without

the use of a reference database) are somewhat constrained

by the small sample sizes, we obtained relative imputation

accuracies among the HGDP populations that reflect previ-

ously observed levels of LD. For example, these imputa-

tion-accuracy comparisons correspond closely to the pair-

wise LD calculations described by Jakobsson et al.19

Indeed, the Spearman correlation coefficient of population

rankings by imputation accuracy at 15% missing data

(Figure 2) and population rankings by the pairwise LD

statistic, r2, for markers at 10 kb distance (Figure S4 of

Jakobsson et al.19) was 0.9680 (Tables 1 and 2).

Our assessments of which reference panels are most

appropriate for imputation in different populations are

reminiscent of evaluations of tag SNP portability in the

same populations.14,15,21 When considering the three

HapMap samples separately, for nearly all populations,

we obtained the maximal imputation accuracies in the

data of Conrad et al.14 and Pemberton et al.21 by using

the same HapMap groups that produced the highest

proportion of variation tagged (PVT) as reported by these

studies. The only exception was the Mozabite population,

in which the CEU panel achieved the highest imputation

accuracy and the YRI panel achieved the highest PVT.

Nonetheless, these results were compatible, because both
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optimal mixtures of HapMap samples in Mozabites—the

one that produced the highest imputation accuracy and

the one that produced the highest PVT21—contained equal

proportions of the HapMap CEU and YRI panels.

More generally, we observed a notable consistency in the

PVT and imputation-accuracy results for mixture reference

panels. In 24 of 29 populations, the major contributing

HapMap group in the optimal mixture for the purpose of

genotype imputation (Figure 6) corresponded to the major

group in the optimal mixture for the purpose of tag SNP

selection.21 In the Burusho population, the optimal mix-

ture for imputation contained equal numbers of HapMap

CEU and CHBþJPT components, whereas the CEU panel

alone served as the major contributing HapMap group in

the optimal mixture for tag SNP selection.21 In the other

four populations (Uygur and Kalash from Central and

South Asia and Colombian and Maya from the Americas),

the major contributing HapMap group was the HapMap

CHBþJPT panel in the optimal mixture for imputation

and the CEU panel in the optimal mixture for selection

of tag SNPs.

Caution needs to be exercised in comparing imputation-

accuracy results from our study with tag SNP results from

Conrad et al.14 and Pemberton et al.21 In our evaluation

of the effect of panel size on imputation accuracy with

the use of individual HapMap panels (Figure 3), we

adjusted for differences in panel size by studying

HapMap samples of equal size (120 haplotypes), whereas

in assessing the potential of mixture panels for use in infer-

ring unknown genotypes (Figure 6), we utilized up to 180

haplotypes from the CHBþJPT reference group to allow

for the use of all available HapMap samples. Pemberton

et al.,21 on the other hand, used subsets of the CHBþJPT

panel of 120 haplotypes throughout their mixture anal-

yses. Our decision to utilize the HapMap CHBþJPT panel

in its entirety could in part explain the increased utility

of the CHBþJPT panel in the optimal mixtures for the

five aforementioned Central and South Asian and Amer-

ican populations.

Although LD levels predicted imputation accuracy

extremely well when we imputed genotypes without refer-

ence panels, with reference panels, LD levels were less

predictive of imputation accuracy (e.g., Tables 1 and 2,

Spearman correlation coefficient of 0.5795 between the

maximal imputation accuracy in Figure 6 and the pairwise

LD statistic, r2, at 10 kb). African populations, whose levels

of LD were generally quite similar,19 varied considerably in

imputation accuracy, with the highest values occurring in

the lower-LD Yoruba population and the lowest values

occurring in the higher-LD Mbuti Pygmy and San popula-

tions. Instead of being highest for populations from the

Americas and Oceania, who exhibit the highest LD levels,

imputation accuracy was highest in most analyses for

European and East Asian populations that are closely

related to populations from the reference panels. When

the squared correlation coefficient between imputed and

measured genotypes was used as the measure of imputa-
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tion performance, however, the rankings of populations

matched the pattern expected on the basis of LD levels

somewhat more closely (Tables 1 and 2).

The accuracy with which genotypes can be imputed

with the use of a reference panel is a function of multiple

factors, including the similarity of haplotypes in the study

sample and reference panel, as well as the allele frequencies

and levels of LD in the study sample. For most populations

in which imputation accuracy was high, the high value

might have been expected on the basis of at least one of

these factors. For the Basque population, who had the

highest imputation accuracy in some analyses, a lower

imputation accuracy might have been expected because

of the status of the population as a linguistic isolate.

However, previous analyses of the same samples have

found this population to be genetically similar to other

European populations, with similar levels of LD,19,20 so

that a similar imputation accuracy for Basques and other

European populations is not surprising. Another factor

that could have contributed to high imputation accuracy

in Basques and other Europeans is the possibility that Euro-

pean reference haplotypes might have been estimated

more accurately than East Asian reference haplotypes, as

a result of the availability of offspring in trios. Finally,

the properties of the markers studied in the HapMap refer-

ence samples might influence imputation accuracy; many

of the markers used were probably chosen for being infor-

mative about LD in Europeans, potentially leading to

increased imputation accuracy in European populations.

Here, we have not extensively examined the ability of

LD-based algorithms to impute genotypes at SNPs of

specific allele frequencies. Our data do, however, permit

a preliminary investigation of the effect of allele frequency

on imputation accuracy in different populations. For each

population, Figure 9 compares imputation accuracy for un-

typed markers with MAF greater than 0.2 and untyped

markers with MAF % 0.2. In all 29 populations, the geno-

types of markers in the lower-MAF category were imputed

with fewer errors. African populations showed a high vari-

ability in the difference in imputation accuracy between

lower-MAF and higher-MAF markers (Figure S3), with

a difference as high as 8.2% in the San population. In

most non-African populations, genotypes of higher-MAF

markers were imputed almost as accurately as were those

of lower-MAF markers—most notably in the Mozabite pop-

ulation, for whom the difference in imputation accuracies

was only 0.3%. These observations are due, in part, to the

distributions of allele frequencies at the imputed SNPs;

populations whose MAF > 0.2 and MAF % 0.2 markers

had a larger difference in mean MAF (Table S3) tended to

display larger differences in imputation accuracy between

the two SNP sets. A larger reference-panel size will be of

some help in increasing the potential for accurate imputa-

tion; the extent to which rare alleles are satisfactorily

imputed will be more easily tested in projects that include

larger reference sample sizes and, consequently, that

include rarer alleles.
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Figure 6. Imputation Accuracy in Each of 29 Populations Achieved by Utilizing Mixtures of HapMap Samples Chosen According
to Specified Ratios
Each triangle represents imputation accuracy, for a given population, based on various mixtures of HapMap reference panels. The vertices
of a triangle represent imputation accuracy based on single HapMap groups, whereas the edges and interior points represent imputation
accuracy attained by the use of mixtures of HapMap reference panels. Darker colors indicate higher imputation accuracy; a darkened circle
indicates the maximal imputation accuracy for a population. The spacing of the cutoffs for the various colors was set so that across all 29
populations, each color would be used equally often. The set of mixtures corresponded to the set of vectors (i1, i2, i3) of nonnegative
integers, with i1 þ i2 þ i3 ¼ 7. For each vector, we used as the reference panel the largest possible mixture sample that consisted of
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Figure 7. Imputation Accuracy for Inference of Genotypes of Untyped Markers, Based on One, Two, or All Three HapMap Refer-
ence Panels
The plot on the left shows imputation accuracy based on each of seven choices. The bar plot on the right represents the maximal impu-
tation accuracy among the seven choices, and it is colored according to the choice of optimal reference panel. For convenience in in-
terpreting the figure, the vertical dashed line indicates 90% imputation accuracy. Each HapMap panel was used with its original size.
An examination of reference-panel size could assist in

characterizing the way in which imputation accuracy

changes for alleles in different frequency categories as

reference panels are enlarged; we note, however, that our

analysis of imputation accuracy and reference-panel size

is restricted to the marker sets directly measured in the

genome scan itself, whereas in practice, the accuracies of

all imputed SNPs would be of interest. Because they were

included on a commercial SNP chip, the SNPs available

for testing are tag SNPs that have a somewhat regular

spacing. If alleles at a tag SNP are masked, then the distance

from that SNP to the nearest tag SNPs used in imputation
The America
might be greater than the corresponding distance for

a randomly chosen SNP. Additionally, tag SNPs tend to

have higher allele frequencies, at least for the populations

in which the SNPs were discovered and the populations

for which the chips were designed. Conclusions about

the value of larger reference panels should be interpreted

in this light and might potentially benefit from results

obtained in simulations.32

In evaluating genome-wide imputation accuracies,

results from rare SNPs are hidden by the large number of

testable genotypes at SNPs with more frequent minor

alleles. Furthermore, assessment of imputation accuracy
a1, a2, and a3 HapMap CHBþJPT, CEU, and YRI individuals, respectively, and that satisfied a1:a2:a3 ¼ i1:i2:i3. Corresponding numbers of
HapMap haplotypes in the mixtures, (a1, a2, a3), are shown in the larger triangle. Imputation accuracy was evaluated with the use of only
chromosome 2, with a proportion of missing genotypes equal to 15%.
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Figure 8. Squared Correlation Coefficient, r2, between the Genotypes Imputed from the Data of Jakobsson et al.19 and Those
Directly Measured in the Data of Pemberton et al.,21 Based on One, Two, or All Three HapMap Reference Panels
The plot on the left shows r2 based on each of seven choices. The bar plot on the right represents the maximal r2 among the seven choices
and is colored according to the choice of optimal reference panel. For convenience in interpreting the figure, the vertical dashed line
indicates a squared correlation coefficient of 0.9. Each HapMap panel was used with its original size.
of heterozygous genotypes at rare SNPs is obscured by the

imputation-accuracy statistic that we use here. For

instance, a procedure that always imputes the major allele

will, on average, achieve 99.9% accuracy at a SNP with

MAF of 1/1000. However, this high level of accuracy can

hide a high error rate for individuals with the rare allele.

As detection of rare alleles and their interactions becomes

more feasible in association studies, it will be of interest

to more carefully assess the accuracy with which rare

alleles can be imputed.

We note that whereas our investigations that did not

rely on a reference panel were affected by the sizes of

the HGDP samples, our imputation-accuracy evaluations

that utilized reference panels were not strongly depen-

dent on sample size. This result is due to the manner

in which we conducted our investigations, which was

motivated by current strategies for imputation-based
246 The American Journal of Human Genetics 84, 235–250, February
mapping in GWA studies. Specifically, conditional on

the reference haplotypes, we analyzed the study samples

independently rather than including other study individ-

uals when imputing genotypes of each particular study

individual. Therefore, average imputation accuracies re-

ported here are unbiased estimates of what would be

obtained from study of the entire population, provided

that the individuals chosen were sampled randomly

from the population.

Because of the conditional independence of study indi-

viduals during the analysis (given the reference haplo-

types), the scheme that we used to evaluate optimal

mixtures (e.g., Figure 6) also mimicked the current setting

for analyses of GWA data, in which the information for

imputing a single unobserved genotype comes entirely

from the reference panel. Although for this particular

investigation we did not force all genotypes to be
13, 2009



Table 1. Statistics Compared across Imputation Scenarios

Scenario

Number

Figure Displaying

Scenario Results Type of Statistic Description of Imputation Scenario

1 2 Imputation accuracy 15% randomly missing genotypes; imputation without reference panels

2 5 Imputation accuracy 15% randomly missing genotypes; imputation with the optimal single

HapMap reference panel (among 3 choices)

3 6 Imputation accuracy 15% randomly missing genotypes; imputation with the optimal mixture

HapMap reference panel (among 36 choices)

4 7 Imputation accuracy Untyped markers; imputation with the optimal combination of HapMap

reference panels (among 7 choices)

5 8 Squared correlation coefficient

between imputed and measured

genotypes

Untyped markers; imputation with the optimal combination of HapMap

reference panels (among 7 choices)

6 S4 in Jakobsson et al.19 Linkage disequilibrium statistic,

r2, at 10 kb

N/A
unobserved at specified loci, instead masking individual

genotypes completely at random, our imputation-accuracy

results obtained with the use of randomly masked geno-

types (Figures 4–6) were similar to those obtained with

completely untyped markers (Figures 7 and 8). Results

from our detailed investigation of optimal mixtures might

therefore serve as a basis for methods that appropriately

weigh reference samples from the various panels while

utilizing all available information.

An alternative approach to evaluating optimal reference-

panel composition, which we did not pursue, is to identify

the mixture that produced the maximal imputation accu-

racy among mixtures of a fixed panel size, in order to

more thoroughly evaluate the maximal imputation accu-

racy as a function of reference-panel size. This approach

is constrained by the difference in the HapMap reference-

panel sample sizes, so it cannot consider a mixture sample

larger than 120 haplotypes (60 individuals), the smallest

HapMap reference-panel size. Thus, taking into consider-

ation the effect of reference-panel size on imputation accu-

racy (Figure 4), our use of the largest mixed sample

permitted by a given ratio is motivated by the goal of

imputing based on as many reference individuals as

Table 2. Spearman and Pearson Correlation Coefficients
between Measures of Imputation Accuracy in Various
Scenarios

Scenario Number 1 2 3 4 5 6

1 0.3910 0.5499 0.5217 0.6177 0.9680

2 0.3008 0.8852 0.8035 0.7453 0.4263

3 0.3755 0.9760 0.8744 0.8980 0.5795

4 0.3601 0.9699 0.9856 0.9034 0.5542

5 0.4405 0.9301 0.9653 0.9683 0.6507

6 0.9677 0.4225 0.5100 0.4971 0.5732

For each scenario in Table 1, we obtained a list of values of the appropriate

statistic for the 29 populations, and the correlation coefficients between

pairs among these lists are shown in this table. An entry in the table repre-

sents the correlation coefficient between lists for the scenarios in the

appropriate row and column. The Spearman and Pearson correlation coeffi-

cients are shown in the upper and lower triangular areas on either side of

the blank cells, respectively.
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possible, given currently available databases. Although

the optimal mixtures shown in Figure 6 for the 29 popula-

tions were not composed of all 420 haplotypes (from 210

unrelated HapMap individuals), the difference between

the maximal accuracy and that obtained with the use of

all haplotypes was relatively small in many cases, and for

such populations, the collection of all haplotypes would

form a convenient reference.

Appendix

Software Settings

The MACH-implemented options that we used included

mle, mldetails, interimInterval, rounds, errorRate,

compact, greedy, autoFlip, and mask. The first two options

generate SNP-specific information (e.g., marker name, allele

labels, minor-allele frequency [MAF], etc.), as well as geno-

type-level maximum-likelihood estimates of genotypes,

allele dosage, confidence scores, and posterior probabilities

for the three possible genotypes; ‘‘interimInterval’’ outputs

intermediate imputation results; ‘‘rounds’’ specifies the

number of runs for the Markov sampler (set to 20); ‘‘error-

Rate’’ provides to the algorithm an omnibus measure

reflecting a combination of genotyping error, gene conver-

sion, recurrent mutation, and assay inconsistencies

between multiple platforms or laboratories (set to 10�3);

‘‘compact’’ reduces memory requirements at the cost of

computational time; ‘‘greedy’’ treats the reference panel

(not the combination of study and reference samples) as

the only source of reference haplotypes; ‘‘autoFlip’’switches

the alleles at a given locus in the study samples to the

complementary alleles when it is discovered that the refer-

ence panel uses the complements of the alleles used for the

study sample. The ‘‘mask’’ option, used throughout our

analyses except in application to untyped markers, specifies

the proportion of genotype data to be randomly masked for

evaluation of imputation accuracy.

Obtaining Mixtures of HapMap Reference Panels

Here, we solve for the numbers of haplotypes, (a1, a2, a3),

that maximize the total number of haplotypes present
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Figure 9. Imputation Accuracy for
Genotypes at Untyped Markers in the
Jakobsson et al.19 Data with Minor-Allele
Frequency> 0.2 versus Imputation Accu-
racy for Genotypes at Untyped Markers
with Minor-Allele Frequency % 0.2
For a given population, we separated
markers into two categories on the basis
of their MAF in the population, on average
placing 220 markers into the lower-MAF
category and 293 into the higher-MAF cate-
gory. Using the imputed genotypes
described in Figures 7 and 8 for each of
the seven reference-panel choices, we
determined the imputation accuracy, sepa-
rately restricting our attention to low-MAF
markers and high-MAF markers. For each
population, the highest of these seven
numbers for the high-MAF markers is
plotted on the y axis and the highest of
these seven numbers for the low-MAF
markers is plotted on the x axis (in some
cases, the underlying optimal reference
panel differed for the high-MAF and low-
MAF markers). The diagonal dashed line
indicates identical imputation accuracy
for the two MAF categories. The difference
between the imputation accuracy of the
low-MAF markers and that of the high-
MAF markers is plotted in Figure S3.
when a ratio of integers, i1:i2:i3, is specified for the relative

numbers of haplotypes in three groups.

Suppose that positive integers k and n are given, that ij is

an integer in [0, k] for each j from 1 to n, and thatPn
j¼1 ij ¼ k. Suppose also that for each j from 1 to n, a posi-

tive integer Aj is given and that aj is an integer in [0, Aj]. We

aim to find a¼ (a1, a2, ., an) such that
Pn

j¼1 aj is as large as

possible and such that a1:a2:.:an ¼ i1:i2:.:in.

Without loss of generality, suppose that i1 R i2 R . R

in. Because a1:a2:.:an¼ i1:i2:.:in, a1ij/i1 must be an integer

for each j. Because

a1ij
i1
¼

a1ij=gcd
�
i1,ij
�

i1=gcd
�
i1,ij
� ,

in which gcd represents the greatest common divisor, for

each j, a1 must be a multiple of i1/ gcd(i1, ij), given that

ij/ gcd(i1, ij) and i1/ gcd(i1, ij) are relatively prime. It follows

that a1 is a multiple of lcm(i1/ gcd(i1, i2),.,i1/ gcd(i1, in)), in

which lcm represents the least common multiple. Consid-

ering that aj ¼ a1ij/i1 and aj % Aj for each j, a1 % min (A1,

A2i1/i2,.,Ani1/in). As a result, the solution for a1 in the

vector a that maximizes
Pn

j¼1 aj is

a1 ¼ lcm

 
i1

gcdði1,i2Þ
,.,

i1
gcdði1,inÞ

!

3
minðA1,A2i1=i2,.,Ani1=inÞ

lcmði1= gcdði1,i2Þ,.,i1= gcdði1,inÞÞ

� �
:

(1)
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The other components of a are obtained with the use of

aj ¼ a1ij/i1.

In our analysis, k ¼ 7, n¼ 3, and (A1, A2, A3) ¼ (180, 120,

120). For each (i1, i2, i3) with i1 þ i2 þ i3 ¼ 7, we obtain

(a1, a2, a3) with the use of Equation 1. We chose k ¼ 7

because this is the smallest value that permits use of the

full HapMap. With k ¼ 7, use of the full HapMap corre-

sponds to the point (i1, i2, i3) ¼ (3, 2, 2).

Supplemental Data

Supplemental Data include three figures and three tables and can

be found with this article online at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

HapMap phase II data, http://ftp.hapmap.org/phasing/

2006-07_phaseII/phased/

MACH software, http://www.sph.umich.edu/csg/abecasis/mach/

Seattle SNPs Variation Discovery Resource, http://pga.gs.

washington.edu
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