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ABSTRACT

Coalescent histories are combinatorial structures that describe for a given gene tree and
species tree the possible lists of branches of the species tree on which the gene tree coales-
cences take place. Properties of the number of coalescent histories for gene trees and species
trees affect a variety of probabilistic calculations in mathematical phylogenetics. Exact and
asymptotic evaluations of the number of coalescent histories, however, are known only in a
limited number of cases. Here we introduce a particular family of species trees, the lodgepole
species trees (kn)n ‡ 0, in which tree kn has m52n11 taxa. We determine the number of
coalescent histories for the lodgepole species trees, in the case that the gene tree matches the
species tree, showing that this number grows with m!! in the number of taxa m. This
computation demonstrates the existence of tree families in which the growth in the number
of coalescent histories is faster than exponential. Further, it provides a substantial im-
provement on the lower bound for the ratio of the largest number of matching coalescent
histories to the smallest number of matching coalescent histories for trees with m taxa,
increasing a previous bound of (
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=32)[(5m212)=(4m26)]m
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m
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to [
ffiffiffiffiffiffiffiffiffiffiffi
m21
p

=(4
ffiffiffi
e
p

)]m. We
discuss the implications of our enumerative results for phylogenetic computations.
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1. INTRODUCTION

Advances in the mathematical investigation of gene genealogies and the increasing availability

of genetic data from diverse taxa have clarified that species trees, representing the branching histories of

populations of organisms, need not be reflected in gene trees that represent the histories of individual genomic

regions (Pamilo and Nei, 1988; Maddison, 1997; Nichols, 2001). New developments concerning the relationship

between gene trees and species trees have now led to new methods for species tree inference, new approaches to

inferences about evolutionary phenomena from gene tree discordance, and an improved understanding of the

branching descent process (Degnan and Rosenberg, 2009; Liu et al., 2009; Knowles and Kubatko, 2010).

Investigations of the evolution of genomic regions along the branches of species trees have also gen-

erated new combinatorial structures that can assist in studying gene trees and species trees (Maddison,

1997; Degnan and Salter, 2005; Than and Nakhleh, 2009; Wu, 2012). Among these structures are coa-

lescent histories, structures that for a given gene tree topology and species tree topology represent possible

pairings of coalescences in the gene tree with branches of the species tree on which the coalescences take

place (Degnan and Salter, 2005; Rosenberg, 2007).
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Coalescent histories are important in a number of types of studies of the relationship between gene trees

and species trees. They have appeared in empirical investigations of the gene tree topologies likely to be

produced along the branches of a given species tree (Rosenberg and Tao, 2008). They are a component of

mathematical proofs that concern properties of evolutionary models of gene trees conditional on species

trees (Allman et al., 2011; Than and Rosenberg, 2011). Coalescent histories also arise in studying state

spaces for models that consider transitions along the genome among the gene genealogies represented at

specific sites (Hobolth et al., 2007, 2011; Dutheil et al., 2009).

Many coalescent histories might be possible for a given gene tree and species tree, and the number of

possible coalescent histories is a key quantity in the study of gene trees and species trees. In particular,

because the probability of a gene tree topology conditional on a species tree can be written as a sum over

coalescent histories (Degnan and Salter, 2005), the time required for computing gene tree probabilities is

proportional to the number of coalescent histories compatible with a given gene tree and species tree. Thus,

to study computational aspects of the use of coalescent histories, it has been of interest to evaluate the

number of coalescent histories permissible for a given pair consisting of a gene tree and a species tree.

Degnan and Salter (2005), who initiated the study of coalescent histories, reported that if the labeled

gene tree topology and species tree topology have the same matching ‘‘caterpillar’’ shape with m taxa, then

the number of coalescent histories is the Catalan number,

cm - 1 =
1

m

2m - 2

m - 1

� �
: (1)

The Catalan sequence cm is asymptotic to 4m=(m3=2
ffiffiffi
p
p

). Rosenberg (2007) and Than et al. (2007) provided

recursive procedures that list all possible coalescent histories given a gene tree and species tree, and

Rosenberg (2007) offered simple recursive formulas for counting them. Rosenberg (2007, 2013) and

Rosenberg and Degnan (2010) then solved the recursion in a number of specific cases.

What is the asymptotic behavior of the number of coalescent histories as the number of taxa increases? In

Figure 1, we show values taken from Rosenberg (2007) for the number of coalescent histories for matching

gene trees, for all species trees with m £ 9 taxa. On a logarithmic scale, a linear model fits the values quite

well, suggesting that in general, the number of coalescent histories for matching gene trees and species trees

might grow exponentially in the number of taxa. Existing enumerations of coalescent histories in particular

cases, both for the caterpillar trees in Equation 1 and in related caterpillar-like families (Rosenberg, 2013),

FIG. 1. Natural logarithm of the number of coalescent histories for all matching gene trees and species trees with at

most nine taxa. The values plotted are taken from Tables 1–4 of Rosenberg (2007). Each dot corresponds to a tree of the

specified size. The line represents a linear regression y = a + bx, with a& - 2.91891 and b& 1.07865.
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support this prediction. We might therefore expect that for a generic family of species trees of increasing

size, the number of coalescent histories for the matching gene tree increases exponentially.

Here, we show that this prediction does not always hold. Indeed, we exhibit a family of species trees

(ln)n—that we term the lodgepole family—whose number of coalescent histories grows with the double

factorials, and thus increases at a rate that is faster than exponential in the number of taxa. We use the

lodgepole family to further understand the variability at a given m of the number of coalescent histories for

cases with matching gene trees and species trees. Rosenberg (2007) obtained a lower bound on the ratio of

the largest number of coalescent histories to the smallest number of coalescent histories at m taxa, showing

that this ratio was greater than a constant multiple of (
ffiffiffi
p
p

=32)[(5m - 12)=(4m - 6)]m
ffiffiffiffi
m
p

. Here we improve

substantially upon this lower bound, demonstrating that it exceeds the much larger [
ffiffiffiffiffiffiffiffiffiffiffi
m - 1
p

=(4
ffiffiffi
e
p

)]m.

2. PRELIMINARIES

2.1. Species trees and coalescent histories

A species tree is a binary rooted tree equipped with a labeling for the leaves. As in other studies of

coalescent histories, a single labeling can without loss of generality be taken as representative of an

unlabeled species tree topology. When the labeling is not needed, we abbreviate the arbitrarily labeled

species tree by its unlabeled shape and consider the labeled and unlabeled topologies interchangeably. We

consider matching gene trees and species trees with the same labeled topology t.

We term a coalescent history for the case when the gene tree and species tree have the same labeled

topology a matching coalescent history. Given a species tree t, a mapping h from the internal nodes of t to

the branches of t is a matching coalescent history of t when it satisfies both of the following two conditions:

(a) for all leaves x in t, if x descends from internal node k in t, then x descends from branch h(k) in t; (b) for

all internal nodes k1 and k2 in t, if k2 is a descendant of k1 in t, then branch h(k2) is descended from or

coincides with branch h(k1) in t. Figure 2A shows an example of a matching coalescent history. The

examples in Figure 2B and 2C are not matching coalescent histories; in Figure 2B, condition (a) is violated,

and in Figure 2C, condition (b) is violated.

2.2. The lodgepole family of species trees

We focus here on the number of matching coalescent histories (histories or coalescent histories for

short) for a particular family of species trees, (ln)n ‡ 0, that we call the lodgepole family. We define l0 as the

1-taxon tree. For n ‡ 0, we inductively define ln + 1 by appending ln and a tree with two leaves (a cherry) to

a common root (Fig. 3). Note that the tree ln has m = 2n + 1 rather than n taxa; we use n to denote the nth

tree ln of the lodgepole family and perform our enumerations according to this parameter, later returning to

m, the number of taxa. We view ln as unlabeled, or as having an arbitrary labeling.

The lodgepole family (ln)n ‡ 0 can be seen as a modification of the caterpillar family of species trees, in

which a family of trees is generated by sequentially appending the previous tree in the family and a single

taxon—instead of a cherry, as in the lodgepole family—to a common root.

2.3. Dyck paths

To enumerate histories for lodgepole species trees, we make use of results that involve certain lattice

paths, the Dyck paths (Stanley, 1999). A Dyck path of size n is a lattice path that starts from (0, 0) and ends

A B C

FIG. 2. Coalescent histories with matching gene trees and species trees. (A) A matching coalescent history. (B)

Condition (a) for matching coalescent histories is violated because leaf B descends from node k but not from branch

h(k). (C) Condition (b) for matching coalescent histories is violated, as node k2 descends from node k1, but the branch

h(k2) remains strictly above the branch h(k1).
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at (2n, 0) in the quarter plane, that has n unit steps up (each labeled U) and n unit steps down (labeled D),

and that never passes below the x-axis (Fig. 4A). It is useful to distinguish the indecomposable Dyck paths

from the decomposable ones. A Dyck path of size n is said to be indecomposable when it touches the x-axis

only at the extreme points (0, 0) and (2n, 0). A Dyck path is decomposable if it is not indecomposable. In

Figure 4B, the two Dyck paths at the top are indecomposable, and the remaining three are decomposable.

3. THE NUMBER OF MATCHING COALESCENT HISTORIES
FOR LODGEPOLE SPECIES TREES

3.1. Overview

We are now ready to compute the number hn of matching coalescent histories for the lodgepole tree ln.

We start in section 3.2 by obtaining a combinatorial formula that computes hn as a sum over a certain set of

vectors Vn. In section 3.3, we show that by a bijection of coalescent histories for ln with a certain set of

labeled Dyck paths Dn—a set that is, in turn, related to structures known as indecomposable histoires

d’Hermite—we can apply existing enumerative results to obtain a recursion for hn. Finally, in section 3.4,

we study the asymptotic behavior of hn.

3.2. A first combinatorial formula for hn

For n ‡ 1, we define a set Vn of integer vectors a = (a1‚ a2‚ . . . ‚ an) as

Vn = fa : a1 = 2 and 2paipai - 1 + 1 for 2pipng:

Setting, for instance, n = 3, we obtain V3 = {(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (2, 3, 4)}.

FIG. 3. The lodgepole family of species trees ln. Starting from the tree

with one taxon (l0), by adding n ‡ 0 cherries, we obtain the tree ln. The

term lodgepole is after the lodgepole pine tree, Pinus contorta, one of a

number of pine species in which needles extend from the main twig in

bundles of two.

A B

FIG. 4. Dyck paths: (A) The Dyck path of size 4 whose sequence of steps is UUDUDDUD. It contains four unit up-

steps U and four unit down-steps D that never pass strictly below the x-axis. (B) The five possible Dyck paths of size 3.

The two at the top are indecomposable because they touch the x-axis only at the endpoints (0, 0) and (6, 0).
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We have the following combinatorial formula to compute, for n ‡ 1, the number of matching coalescent

histories hn for the lodgepole species tree kn:

hn =
X
a2Vn

Yn

i = 1

ai: (2)

Equation 2 can be justified by formulating the procedure of Rosenberg (2007) for tabulating coalescent histories

specifically in the lodgepole case, observing that a history ofln can be constructed in two steps. In the treeln, it is

convenient to distinguish a main branch, that is, the one from which the n cherry nodes in ln descend (Fig. 5A).

The main branch ofln thus contains n internal nodes that we treat as ordered from the root (the first node) toward

the single leaf at the end of the branch. In step (a), we fix a history for the nodes of the main branch, ignoring the

attached cherries. In Figure 5A, a possible history for the main branch is represented by the solid arcs: each arc

maps a node of the main branch onto a permissible branch. In step (b), we choose a mapping for the cherry nodes

(dashed arcs in the figure). The choice for the mapping of the cherry nodes must be compatible with the mapping

in step (a) for the nodes of the main branch of ln. As required by the definition of coalescent histories in section

2.1, the image of a cherry node k cannot be placed on a branch above the one chosen in step (a) as the image of the

node of the main branch to which node k is appended.

The two-step procedure translates into Equation 2. In fact, each possible history of the main branch of ln

can be bijectively encoded by a vector of integers (a1‚ . . . ‚ an) 2 Vn by noting that the ith node of the main

branch is mapped exactly ai – 2 nodes above it, associating each node with its immediate ancestral branch

(Fig. 5A). Once the vector has been fixed, the cherry node appended to the ith node of the main branch can

be mapped in exactly ai compatible ways. Therefore, with the sum in Equation 2, we are considering all the

possible histories of the main branch—those constructed in step (a)—and for each of these histories, the

product counts the number of compatible mappings of the cherry nodes as considered in step (b).

By applying Equation 2, setting h0 = 1 for convenience, we computed the first terms of the sequence hn

(Table 1). The values for n = 1, 2, 3, 4 accord with the values computed in the enumerations of coalescent

histories reported for small trees in Tables 1 and 4 of Rosenberg (2007).

3.3. Correspondence with the histoires d’Hermite and a recursion for hn

We now show that a bijective correspondence exists between histories of the lodgepole family (ln)n ‡ 0

and certain labeled paths in the plane. Indeed, note that as in the example in Figure 5B, each vector a 2 Vn

A B C

FIG. 5. Combinatorial structures for computation of hn: coalescent histories, labeled Dyck paths, and histoires

d’Hermite. (A) Coalescent histories of l4. Arcs represent the mapping of the nodes of l4 to its branches. Each history of ln

can be constructed in two steps. First, a mapping of the nodes of the main branch to branches of the tree is fixed. Next, a

compatible mapping of the cherry nodes is constructed. For the nodes of the main branch, the mapping in the figure is

encoded by the vector a = (a1‚ a2‚ a3‚ a4) = (2‚ 3‚ 3‚ 2) 2 V4: for i = 1, 2, 3, 4, the ith node of the main branch is mapped onto

the branch ai – 2 nodes above it (solid arcs). Dashed arcs represent possible mappings of the cherry nodes that are

compatible with the mapping for the main branch determined by the vector �a. The ith cherry node can be mapped in exactly

ai compatible ways. (B) A labeled Dyck path of size 4, encoding the vector (a1‚ a2‚ a3‚ a4) = (2‚ 3‚ 3‚ 2) 2 V4 from (A). The

ordinate yi of the endpoint of the ith up-step Ui satisfies yi = ai – 1. By labeling each up-step Ui of the path with an integer

‘(Ui) 2 [1‚ yi + 1], we obtain a path in D4. The number of ways that the underlying Dyck path can be labeled is thus given by

the product
Qn = 4

i = 1 ai = 36. (C) The indecomposable histoire d’Hermite of size 5 associated with the Dyck path of size 4 in

(B). The histoire is obtained by adding an up-step labeled 1 at the beginning of the path in (B) and a down-step at the end and

keeping the labels of the remaining up-steps as in (B). In this way, the ith up-step Ui of the histoire in (C) has an integer label

‘�(Ui) 2 [1‚ yi], where, as in (B), yi is the ordinate of the endpoint of the ith up-step.
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bijectively encodes a Dyck path of size n ‡ 1. More precisely, starting from the vector a, a Dyck path with n

up-steps is uniquely determined by fixing for each i the ordinate yi of the endpoint of the ith up-step

according to

ai = yi + 1: (3)

For instance, in Figure 5B, we depict the Dyck path UUDUDDUD associated with the vector

a = (2‚ 3‚ 3‚ 2) 2 V4: in fact, as in Equation 3, we have y1 = 1 = a1 – 1, y2 = 2 = a2 – 1, y3 = 2 = a3 – 1, and

y4 = 1 = a4 – 1.

Defining Dn as the set of Dyck paths of size n that for each i have the ith up-step Ui labeled by an integer

‘(Ui) 2 [1‚ yi + 1]‚ (4)

we can also interpret Equation 2 as the formula that computes the cardinality jDnj, so that

hn = jDnj: (5)

Equation 5 holds for n ‡ 0 including the case n = 0, as we set h0 = 1, and by counting the empty path, D0 = 1.

In interpreting Equation 2 as an enumeration of labeled Dyck paths in Dn, the sum in Equation 2 traverses

all possible Dyck paths of size n as encoded by vectors in Vn. For each of these Dyck paths, the productQn
i = 1 ai computes the number of ways that the path can be labeled. By Equations 3 and 4, each label ‘(Ui)

has ai possible values.

This result, similar to a bijection with monotonic paths used by Degnan (2005) to count coalescent

histories in the caterpillar case, allows us to switch from counting the histories of ln to counting labeled

paths in Dn. The correspondence in Equation 5 can be used to obtain a recursion for hn. Starting with h0 = 1,

we have for n ‡ 1,

hn = (2n + 1)!! -
Xn - 1

k = 0

(2k + 1)!!hn - 1 - k: (6)

To prove Equation 6, we make use of the relationship between the labeled Dyck paths in Dn and the so-

called histoires d’Hermite of size n + 1 (histoires for short, Fig. 5C).

An histoire of size n ‡ 1 is a labeled Dyck path of size n, but with a labeling scheme ‘*(Ui) for its up-

steps that slightly differs from the scheme ‘(Ui) considered in Equation 4 for the paths of Dn. Indeed, in an

histoire, for each i, the ith up-step Ui carries an integer label

‘�(Ui) 2 [1‚ yi]‚ (7)

Table 1. The Number of Matching Coalescent Histories

Number of matching coalescent histories

Number of taxa

m (m = 2n + 1)

Predicted

by the linear

regression model

Exact value

of h(m–1)/2 for

the lodgepole tree

Upper bound for

h�m based on

‘‘bicaterpillars’’

Lower bound

for hþm based

on lodgepole trees

3 1 2 2 2

5 12 10 10 14

7 103 74 65 138

9 888 706 481 1,663

11 7,679 8,162 5,544 6,237

13 66,406 110,410 56,628 90,090

15 574,261 1,708,394 613,470 1,447,875

17 4,966,073 29,752,066 6,952,660 25,844,568

19 42,945,396 576,037,442 81,662,152 509,233,725

Given m, we exponentiate the value from the regression model in Figure 1 and round to the nearest integer. The exact h(m–1)/2 = hn is

computed from Equation 2 or 6. For m £ 9, the upper bound for h�m and the lower bound for hþm are computed exactly from Tables 1–4

of Rosenberg (2007). For m ‡ 11, the upper bound for h�m is computed as cn cn + 1, with cn as in Equation 1. Applying Proposition 1 and

noting that (n – 2) / n = (m – 5) / (m – 1), the lower bound for hþm is computed as m!!(m – 5) / (m – 1), rounding down where necessary.
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where yi is, as before, the ordinate of the endpoint of step Ui. Note that for histoires of size n, we have yi

possible values for each label ‘*(Ui), whereas for Dyck paths in Dn, we had yi + 1 possibilities for label ‘(Ui).

Denote by Hn the set of histoires of size n. Section 1.2 of Roblet and Viennot (1996) reported that for n ‡ 1,

jHnj = (2n - 1)!! = (2n - 1) · (2n - 3) · . . . 3 · 1: (8)

We say that an histoire of size n is indecomposable if its underlying Dyck path is indecomposable (Fig. 5C).

It can be observed that, denoting by H0n the set of indecomposable histoires of size n, we have for n ‡ 0

jDnj = jH0n + 1j: (9)

Indeed, as depicted in Figure 5B and C, each labeled Dyck path P˛Dn can be bijectively mapped onto a

labeled path P0 2 H0n + 1 that is obtained by adding an up-step U labeled with the integer 1 and a down-step

D respectively at the beginning and at the end of P and keeping unchanged the labels of the remaining up-

steps of P. In symbols, we have for n ‡ 0 the bijective correspondence

P 2 Dn5UPD = P0 2 H0n + 1: (10)

Note in fact that according to the labeling scheme ‘* for histoires (Eq. 7), in P0 only the label ‘*(U1) = 1 is

possible for the new first up-step U1. The up-step U1 has ordinate 1. Furthermore, for all i with 1 £ i £ n, the

ordinate y0i + 1 of the (i + 1)th up-step in P0 satisfies

y0i + 1 = yi + 1‚

where yi is the ordinate of the ith up-step in P. Therefore, keeping the labels of the up-steps of P unchanged,

the labeling scheme ‘* for the histoires is satisfied by P0, as can be seen by comparing Equations 4 and 7.

Finally, by construction, the path P0 touches the x-axis only in the extreme points and is by definition

indecomposable. By the bijection in Equation 10, we thus have Equation 9.

Combining Equations 5 and 9, we obtain for n ‡ 0

hn = jH0n + 1j: (11)

We denote by H00n the set of decomposable (not indecomposable) histoires of size n ‡ 1. An histoire in H00n + 1

can be decomposed uniquely as a concatenation of an indecomposable histoire in H0n + 1 - k for some k,

1 £ k £ n, and a second histoire that is either decomposable or indecomposable and hence lies in Hk (Fig. 6).

The endpoint of the indecomposable histoire in H0n + 1 - k provides the first return of the decomposable

histoire in H00n + 1 to the x-axis, after which the histoire in Hk might or might not touch the x-axis at a point in

its interior.

Applying the decomposition, we have for n ‡ 1

jH00n + 1j =
Xn

k = 1

jH0n + 1 - kj jHkj:

Because the number of histoires in Hn is known from Equation 8, and because each histoire is either

decomposable or indecomposable, we obtain a recursion for the number of indecomposable histoires of size

n + 1:

FIG. 6. A decomposition of a decomposable

histoire d’Hermite. Any decomposable histoire

in H00n + 1 for n ‡ 1 is uniquely obtained by con-

catenating an indecomposable histoire in

H0n + 1 - k with 1 £ n + 1 – k £ n (Fig. 5C) and an

histoire in Hk with 1 £ k £ n. The point at which

they touch corresponds to the first return to the

x-axis of the entire path. The shading indicates

that the indecomposable histoire on the left

begins with an up-step, ends with a down-step,

and does not reach the x-axis within the shaded

trapezoid.
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jH0n + 1j = jHn + 1j - jH00n + 1j

= (2n + 1)!! -
Xn

k = 1

jH0n + 1 - kj jHkj

= (2n + 1)!! -
Xn

k = 1

jH0n + 1 - kj (2k - 1)!!:

By Equation 11, we have demonstrated Equation 6.

The fact that hn can be computed as in Equation 6 shows that the matching coalescent histories of ln are

equinumerous with other combinatorial structures. In particular, in addition to being the number of coa-

lescent histories for lodgepole trees and the number of indecomposable histoires d’Hermite of size n + 1, hn

appears in enumerating topologically distinct Feynman diagrams of order n ( Jacobs, 1981; Battaglia and

George, 1988), as well as in counting for an alphabet of size n + 1 a class of ‘‘irreducible’’ words in which

each letter appears exactly twice, and in which the first appearances of the letters are in a canonical order

(Burns and Muche, 2011).

3.4. Asymptotic behavior of hn and its consequences

We now turn to using our recursion in Equation 6 to determine asymptotic properties of the number hn of

matching coalescent histories for lodgepole species trees. From Equation 6, it immediately follows for n ‡ 0

that

hnp(2n + 1)!!: (12)

Therefore, dividing both sides of Equation 6 by (2n + 1)!!, for n ‡ 1, we can write

1q
hn

(2n + 1)!!
= 1 -

Xn - 1

k = 0

(2k + 1)!!

(2n + 1)!!
hn - 1 - kq1 -

Xn - 1

k = 0

(2k + 1)!! [2(n - 1 - k) + 1]!!

(2n + 1)!!
: (13)

The final step in Equation 13 follows by replacing hn–1–k with the upper bound [2(n – 1 – k) + 1]!! from

inequality 12.

Using the fact that

(2n + 1)!! =
(2n + 1)!

2n n!
‚ (14)

the sum in Equation 13 can be simplified as

sn =
Xn - 1

k = 0

(2k + 1)!! [2(n - 1 - k) + 1]!!

(2n + 1)!!
=
Xn - 1

k = 0

n + 1
k + 1

� �
2n + 2
2k + 2

� � : (15)

For n = 1, we have s1 = 1
3
. In the Appendix, we show that for n ‡ 1, the sequence (sn)n ‡ 1 satisfies the

recursion

(2n + 3)sn + 1 = (n + 2)sn + 1: (16)

For n ‡ 1, the upper bound

snp
2

n
(17)

can be verified by induction. Because s1 = 1
3
, s2 = 2

5
, and s3 = 13

35
, inequality 17 holds for n = 1, 2, 3. By

Equation 16, the inductive hypothesis yields (2n + 3)sn + 1 £ 2(n + 2)/n + 1 = (3n + 4)/n, so that

sn + 1p
3n + 4

n(2n + 3)
p

2

n + 1
‚

where the latter inequality holds for n ‡ 3.
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Therefore, from inequalities 13 and 17, we have for n ‡ 1

1 -
2

n
p1 - snp

hn

(2n + 1)!!
p1‚

which finally gives the bounds

(2n + 1)!!
n - 2

n

� �
phnp(2n + 1)!!‚

and the asymptotic relationship hn*(2n + 1)!!. We summarize our results in a proposition.

Proposition 1 The number hn of matching coalescent histories for the lodgepole family (ln)n ‡ 0 is

hn = (2n + 1)!! -
Xn - 1

k = 0

(2k + 1)!! hn - 1 - k‚ (18)

where we set h0 = 1. The following bounds hold for n ‡ 1:

(2n + 1)!!
n - 2

n

� �
phnp(2n + 1)!!‚ (19)

and asymptotically, we have

hn*(2n + 1)!!*
ffiffiffi
2
p 2(n + 1)

e

� �n + 1

: (20)

The asymptotic approximation in eq. 20 follows from Stirling’s approximation n!*
ffiffiffiffiffiffiffiffi
2pn
p

(n=e)n and from an

equivalent form of Equation 14, (2n + 1)!! = (2n + 2)!/ [2n + 1(n + 1)!]. By Proposition 1, using an odd number

m = 2n + 1 describing the number of taxa in the lodgepole species tree ln, we have the following corollary.

Corollary 1 There exists a family of species trees whose number of matching coalescent histories

grows faster than exponentially in the number of taxa m. In particular, when m is odd, the number of

matching coalescent histories for the lodgepole species tree l(m–1)/ 2 with m ‡ 1 leaves is asymptotically

h(m - 1)=2*m!!*
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

m + 1

e

r !m + 1

: (21)

Rosenberg (2007) studied the variability across all species trees for a fixed number of taxa m of the

number of matching coalescent histories by examining a ratio

R(m) =
h +

m

h -
m

‚

where h +
m denotes the number of coalescent histories for the m-taxon species tree with the greatest number

of matching coalescent histories and h -
m denotes the corresponding value for the smallest number of

histories (h -
m ). In Theorem 3.18, Rosenberg (2007) reported a lower bound on R(m) for m ‡ 2:

R(m)q
ffiffiffi
p
p

32

� �
5m - 12

4m - 6

� �
m
ffiffiffiffi
m
p

: (22)

Our computations with lodgepole species trees substantially increase the lower bound for h +
m . By using

inequality 19, we can improve on the lower bound on R(m) for the case of m odd.

Corollary 2 Let R(m) = h +
m =h -

m denote the ratio of the numbers of matching coalescent histories for the

m-taxon species trees with the greatest and smallest numbers of coalescent histories. Then, for odd m ‡ 7,

R(m)q
ffiffiffiffiffiffiffiffiffiffiffi
m - 1
p

4
ffiffiffi
e
p

� �m

: (23)
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Proof. Because m is odd, we fix m = 2n + 1 and switch between indexing by m and by n. First, for h -
m ,

Rosenberg (2007) considered a ‘‘bicaterpillar’’ tree from whose root descended two caterpillar subtrees,

with Pm/2R = n and Qm/2S = n + 1 taxa. This tree has cncn + 1 histories (Rosenberg, 2007, Theorem 3.10),

where cn is the Catalan number as in Equation 1, so that h -
m pcncn + 1.

Now, for h +
m , we use the lodgepole species tree ln with m = 2n + 1 leaves to provide a lower bound on the

number of matching coalescent histories for the tree with the largest number of matching coalescent

histories, so that h +
m qhn. By inequality 19,

h +
m qhnq(2n + 1)!!

n - 2

n

� �
:

Therefore, with cn as in Equation 1,

R(m) =
h +

m

h -
m

q
(2n + 1)!!

cncn + 1

n - 2

n

� �
=

(2n + 1)(n - 2)(n + 1)(n + 2)

2nn

n!
2n + 2
n + 1

� � ‚

where we have again used Equation 14. Using the Stirling bound n!q
ffiffiffiffiffiffiffiffi
2pn
p

(n=e)n and noting that 2n
n

� �
p4n,

we have

R(m)q (2n + 1)(n - 2)(n + 1)(n + 2)

2nn

ffiffiffiffiffiffiffiffi
2pn
p

(n=e)n

4n + 1

=
(2n + 1)(n - 2)(n + 1)(n + 2)

ffiffiffiffiffiffiffiffi
2pn
p

4n

n

8e

	 
n

:

(24)

Substituting n = (m– 1) / 2 in inequality 24 to consider the number of taxa m = 2n + 1 yields

R(m)q
ffiffiffiffiffi
ep
p

m(m - 5)(m + 1)(m + 3)

4(m - 1)

ffiffiffiffiffiffiffiffiffiffiffi
m - 1
p

4
ffiffiffi
e
p

� �m

‚ (25)

which gives, if m ‡ 7, inequality 23 (and is in fact stronger than the simpler Equation 23). -

4. DISCUSSION

We have defined the lodgepole family of species trees (ln)n and studied the growth of the number hn of

matching coalescent histories for ln as a function of n, showing that asymptotically, hn*(2n + 1)!!. For m

odd, the number h(m–1) / 2 of matching coalescent histories for the lodgepole species tree with m taxa grows

with m!!. Previous enumerative results for other species tree families have found that the number of

coalescent histories increases only exponentially; we have demonstrated the existence of a family of

species trees for which the number of matching coalescent histories grows more quickly than exponentially

in the number of taxa (Corollary 1).

Our results for lodgepole species trees indicate that the exponential increase in the number of matching

coalescent histories observed in Figure 1 is misleading, at least in regard to the largest numbers of

matching coalescent histories at a fixed number of taxa. We can consider the linear regression model

obtained in Figure 1—representing exponential growth—alongside an upper bound for h -
m , the smallest

number of matching coalescent histories at m taxa, and our new lower bound for h +
m , the largest number of

matching coalescent histories at m taxa (Table 1). This comparison illustrates that whereas the linear model

is reasonable at the small values of m depicted in Figure 1, it becomes increasingly unreasonable in

predicting h +
m . Indeed, a consequence of the enumeration for lodgepole families is a substantially larger

lower bound for the variability of the number of matching coalescent histories for species trees of fixed size

(Corollary 2).

The lodgepole trees differ from the caterpillars in that pairs of leaves rather than single leaves are

descended from the internal nodes along the main branch. That the lodgepole species trees have such faster

growth in their number of matching coalescent histories compared to the caterpillar species trees indicates

that this apparently minor change in the branching structure of species trees leads to qualitatively different

results in the number of histories. By contrast, it has been found that certain other changes to the cater-

pillars, replacing a caterpillar subtree by a non-caterpillar subtree, change the asymptotic growth in the
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number of matching coalescent histories only by a change to the constant multiple of the Catalan numbers,

and do not change the overall growth rate (Rosenberg, 2007, 2013).

The results have the implication that although the numbers of coalescent histories for relatively small

species trees remain small enough for reasonable computation times involving enumerations of coalescent

histories, the most challenging cases can grow more rapidly in the number of taxa than has been suggested

in the cases that have been previously examined. It will be important to determine whether the challenging

lodgepole scenario arises in practical settings, as well as the possibility that even more challenging families

exist, for which the growth rate is even faster than in the lodgepole case.

The links in our analysis to Dyck paths and the histoires d’Hermite, and the appearance for the number of

matching coalescent histories of lodgepole species trees of a sequence arising in other counting problems,

identify known combinatorial structures to which coalescent histories can be related. These connections are

promising for additional future computations about coalescent histories.

5. APPENDIX

This appendix proves Equation 16 from Equation 15. We define for n ‡ 1 and 0 £ k £ n, F(k‚ n) =
n + 1
k + 1

� ��
2n + 2
2k + 2

� �
and R(k,n) = 2n – 2k + 1. We use F(k, n) and R(k, n) to apply the summation methods of

Petkovšek et al. (1996). It can be verified algebraically that

2(n + 2)F(k‚ n) - 2(2n + 3)F(k‚ n + 1) = F(k + 1‚ n)R(k + 1‚ n) - F(k‚ n)R(k‚ n): (26)

Indeed, the identity follows by dividing both sides of Equation 26 by the nonzero F(k, n) and applying the

ratios F(k, n + 1)/F(k, n) = (2n – 2k + 1)/(2n + 3) and F(k + 1, n)/F(k, n) = (2k + 3)/(2n–2k–1). Summing both

sides of Equation 26 for k from 0 to n–1, the right-hand side telescopes, giving a final contribution of

F(n, n) R(n, n) – F(0, n) R(0, n). Therefore, we obtain

2(n + 2)
Xn - 1

k = 0

F(k‚ n)

 !
- 2(2n + 3)

Xn

k = 0

F(k‚ n + 1)

 !
- F(n‚ n + 1)

" #
= F(n‚ n)R(n‚ n) - F(0‚ n)R(0‚ n):

Taking sn =
Pn - 1

k = 0 F(k‚ n) as in Equation 15 yields

2(n + 2)sn - 2(2n + 3) sn + 1 -
1

2n + 3

� �
= 0‚

from which Equation 16 immediately follows.
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