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a b s t r a c t

In the last few years, several statistically consistent consensus methods for species tree inference have
been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in
unstructured ancestral populations. One source of gene tree discordance that has only recently been
identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this
article, we describe a general model of ancestral population structure, and by relying on a single carefully
constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR,
R∗ Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus
are statistically inconsistent under the model. We find that among the consensus methods evaluated,
the only method that is statistically consistent in the presence of ancestral population structure is
GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods
in a model with ancestral population structure, showing that as the number of gene trees increases,
estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of
the level of population structure, whereas estimates based on the remaining methods only approach the
true species tree topology if the level of structure is low. However, through simulations using species
trees bothwith andwithout ancestral population structure,we show that GLASS/MaximumTree performs
unusually poorly on gene trees inferred from alignments with little information. This practical limitation
of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both
further testing of additional existing methods and development of novel methods under conditions that
incorporate ancestral population structure.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Recently, much attention has been given to the development
of methods that consistently infer the correct species tree from the
discordant gene trees produced under incomplete lineage sorting—
the failure of lineages from two different species to coalesce in
the population immediately ancestral to the divergence of the
two species (Degnan andRosenberg, 2009). Consensus approaches,
each of which takes a set of gene trees as input and returns a
species tree estimate according to a specific rule (Bryant, 2003),
have provided one important source of methods for species tree
inference in this context.
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A consensusmethodC is a statistically consistent estimator of a
species tree topologyunder somemodel if for each species treeσ ,C
applied to a set of gene trees randomly generated under themodel,
assuming that the species tree is σ , converges in probability to the
topology ofσ as the number of gene trees approaches∞. Statistical
consistency is a desirable property because it is reasonable to
expect that asmore data are gathered, evidence should accumulate
in support of the true value of the parameter being estimated.

Degnan and Rosenberg (2006) showed that when gene trees
are distributed according to the multispecies coalescent model for
the evolution of gene lineages conditional on a species tree, an
extreme case of incomplete lineage sorting can arise in which the
most likely gene tree topology does not match the species tree
topology. This inconsistency implies that species tree estimation
methods must use information other than the most frequently
occurring gene tree topology in order to accurately infer the

http://dx.doi.org/10.1016/j.tpb.2016.02.002
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2016.02.002&domain=pdf
mailto:mxd60@psu.edu
http://dx.doi.org/10.1016/j.tpb.2016.02.002


M. DeGiorgio, N.A. Rosenberg / Theoretical Population Biology 110 (2016) 12–24 13
Table 1
Notation.

Notation Definition

D (n − 1)-dimensional vector of the numbers of demes in the n − 1 ancestral populations
N (n − 1)-dimensional vector with vector-valued elements for the deme sizes in each of the n − 1 ancestral populations
M (n − 1)-dimensional vector with matrix-valued elements for the backward migration matrices in each of the n − 1 ancestral populations
9 Matrix that describes how demes connect across species boundaries
S(σ ,D,N,M, 9) Ancestral population structure model with parameters σ , D, N,M, and 9

P[E ; S] Probability of event E under model S(σ ,D,N,M, 9)

λA Subtree of species tree σ that contains species A and that descends from the divergence of species A and B
λB Subtree of species tree σ that contains species B and that descends from the divergence of species A and B
λC Subtree of species tree σ that contains species C and that descends from the divergence of species (AB) and C
ΓA , ΓB , ΓC Sets of taxa at the leaves of subtrees λA , λB , and λC , respectively
L Set of taxa
T |L Tree displayed by phylogenetic tree T restricted to the set of taxa L
top(T ) Topology of phylogenetic tree T
pS(X, Y) Probability that a lineage sampled from species X and a lineage sampled from species Y are in the same deme at the speciation time of X and Y

under model S(σ ,D,N,M, 9)

PS [T ] Probability of gene tree topology T under model S(σ ,D,N,M, 9)P[T ] Sample proportion of topology T in a set of gene trees
T ℓ
XY Random coalescence time at locus ℓ for a lineage sampled from species X and a lineage sampled from species Y

ES [T ℓ
XY ] Expected coalescence time under model S(σ ,D,N,M, 9) for a lineage sampled from species X and a lineage sampled from species Y at locus ℓ

TXY Mean coalescence time across all sampled gene trees between one lineage sampled from species X and one lineage sampled from species Y
Rℓ
XY Rank of the coalescent event at locus ℓ for a lineage sampled from species X and a lineage sampled from species Y

ES [Rℓ
XY] Expected rank under model S(σ ,D,N,M, 9) of the coalescent event for a lineage sampled from species X and a lineage sampled from species Y at

locus ℓ

RXY Mean rank of coalescent events across all sampled gene trees between one lineage sampled from species X and one lineage sampled from species Y
tmin
XY Minimum coalescence time across all sampled gene trees between one lineage sampled from species X and one lineage sampled from species Y
xl(top(σ ), T ) Number of extra lineages contributed by the topology of fixed species tree σ for a fixed gene tree topology T
xl(top(σ )) Number of extra lineages contributed by the topology of fixed species tree σ for a fixed set of gene trees
species tree topology. Indeed, many consensus methods relying
on other principles provide statistically consistent estimators of
the species tree topology under themultispecies coalescentmodel.
This collection of methods includes STEAC (Liu et al., 2009), STAR
(Liu et al., 2009), R∗ Consensus (Degnan et al., 2009), GLASS (Mossel
and Roch, 2010), and Maximum Tree (Liu et al., 2010), as well as
extensions of some of thesemethods that preserve the consistency
property (Helmkamp et al., 2012; Jewett and Rosenberg, 2012;
Allman et al., 2013).

In its simplest form, themultispecies coalescentmodel assumes
that each modern species and each ancestral species have a
constant population size, each pair of lineages within a given
ancestral species has an equal chance of coalescing, and each
species is an unstructured population. Because the multispecies
coalescent assumes that random mating occurs within species,
when ancestral species are structured, as has been argued for
various species (e.g., Garrigan et al., 2005; Thalmann et al.,
2007; White et al., 2009), it is unclear whether methods that
are consistent under the multispecies coalescent continue to be
consistent.

The difficulty of species tree estimation in the presence of
ancestral population structure lies in the way that population
structure alters the probability distribution of gene trees given a
species tree compared to the unstructured case. Using a three-
taxon example, Slatkin and Pollack (2008) showed that with
ancestral population structure, the probability distribution of gene
tree topologies can have a certain asymmetry, and the most likely
three-taxon gene tree topology need not match the species tree
topology. These consequences of the multispecies coalescent with
ancestral structure do not occur in the standard multispecies
coalescent.

Here, we describe an extension of the ancestral population
structure model considered by Slatkin and Pollack (2008). Using
our extended model, we evaluate the consistency of several
consensus methods, employing a single example scenario to show
that many methods are inconsistent. We show that each of the
inconsistent methods is in fact ‘‘misleading’’ in the sense that for a
certain fixed species tree σ and a particular set of parameters, the
probability that the consensus tree contains a clade not present on
σ approaches 1 as the number of loci approaches ∞. To evaluate
the speed at which methods converge to or diverge from the
correct bifurcating species tree topology, we perform simulations
of our model. As predicted by our theoretical results, the only
method that does not strongly support incorrect species tree
topologies is GLASS/Maximum Tree. However, in accord with past
simulations using model species trees (Liu et al., 2009; Leaché and
Rannala, 2011; Wu, 2012; DeGiorgio and Degnan, 2014), we show
that GLASS/Maximum Tree performs poorly when an absence
of substitutions causes little information to exist in sequence
alignments. We conclude with a discussion of the implications of
the results for understanding evolutionary relationships.

2. Model

We use the notation in Table 1. Suppose time is measured in
generations, and that generation time is constant throughout the
tree. Consider an ultrametric n-taxon bifurcating species tree σ
with n ≥ 3 taxa (i.e., each leaf has an identical sum of branch
lengths to the root). Then we can always find a set of species A,
B, and C on σ with relationship ((A:τ3, B:τ3):τ2 − τ3, C:τ2), where
τ2 > τ3 > 0.

Each internal branch along the species tree specifies an
ancestral population. An n-taxon species tree contains n − 1 such
populations, including the branch above the root. Label these
populations of σ by recursively visiting the root, then the left
subtree, and finally the right subtree (a pre-order traversal of
σ ). Each ancestral population is allowed to be structured; the
population structure model is identical across L independent loci,
so that each of L gene trees is a random variate conditional on the
same species tree.

In ancestral population i, letD(i) be the number of demes, letN(i)

be the vector of population sizes for the D(i) demes, and letM(i) be
the backwardmigrationmatrix between demes (Fig. 1). Denote the
ancestral population structure model by S = S(σ ,D,N,M, 9),
where D = [D(1),D(2), . . . ,D(n−1)

], N = [N(1),N(2), . . . ,N(n−1)
],

M = [M(1),M(2), . . . ,M(n−1)
], and 9 is an (n +

n−1
i=1 D(i)) ×
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Fig. 1. Model for the relationship among species A, B, and C in a fixed species tree
σ . Ancestral population A1 has D(1) demes and ancestral population A2 has D(2)

demes. Migration occurs between the D(1) demes in ancestral population A1 and
between theD(2) demes in ancestral populationA2 . At τ2 and τ3 , going back in time,
lineages merge into specific demes in ancestral populations A1 and A2 according
to entries of the matrix 9 (see Section 2).

(n +
n−1

i=1 D(i)) matrix that describes how demes connect across
species divergences. Each row (column) of 9 corresponds to a
distinct deme in an extant or ancestral population. The first n rows
(columns) correspond to the n extant populations, the next D(1)

rows (columns) to the D(1) demes in ancestral population 1, the
next D(2) rows (columns) to the D(2) demes in ancestral population
2, and so on, until the last D(n−1) rows (columns) correspond to the
D(n−1) demes in ancestral population n−1. Each extant population
contains only a single deme because it is unstructured. The entry
9jk provides the probability that a lineage merges into deme k
from deme j in the moment at which, going back in time, deme
j ends and deme k begins. If, going back in time, deme k does not
directly receive lineages from deme j at this transition point, then
9jk = 0. By construction, each row of 9 sums to 1. Therefore, 9
provides probability distributions on the locations in the ancestral
populations of σ into which lineages sampled from the taxa of σ

can merge.
For each ancestral population i, M(i)

xy is the per-generation
probability of backward migration to deme y(i) for a lineage in
deme x(i). Assume that in any ancestral population i, demes x(i)

and y(i) communicate; that is, the migration rate from deme x(i)

to deme y(i) is nonzero, or otherwise, for any pair of lineages there
exists an indirect migration path through other demes from deme
x(i) to deme y(i). This assumption encodes the idea of what we
mean by a structured population rather than a series of separate
populations; by ensuring that demes communicate in the ancestral
population above the root, it guarantees thatwith probability 1, the
coalescence process terminates. The relationship between species
A, B, and C within the n-taxon species tree σ , and the ancestral
population structure model, are illustrated in Fig. 1.

We are interested in the probabilities P[E ; S] of events E under
model S. Such probabilities are possible to compute by connecting
models of individual populations along branches of species tree σ

with rules given by model S about what happens to lineages at
species divergence times. Note that in our calculations, we sample
only one lineage from each extant population; it is then convenient
to assume that the extant populations are unstructured. With
one lineage sampled per population, coalescences take place only
in ancestral populations, and the demographic model in extant
populations does not affect patterns of coalescence.
3. Example scenario

We introduce a specific scenario and use it to prove that
in part of the parameter space of our model, Democratic Vote
(Degnan and Rosenberg, 2006, 2009; Rosenberg, 2013), STAR (Liu
et al., 2009), STEAC (Liu et al., 2009), R∗ Consensus (Bryant, 2003;
Degnan et al., 2009), Rooted Triple Consensus (Ewing et al., 2008),
Minimize Deep Coalescences (MDC; Maddison, 1997; Maddison
and Knowles, 2006; Than and Nakhleh, 2009; Nakhleh, 2013), and
Majority-Rule Consensus (Degnan et al., 2009) are misleading in
that the probability that a consensus tree contains a clade not on
the species tree approaches 1 as the number of loci goes to∞. Note
that we only explore a subset of the availablemethods for inferring
species trees from gene trees, and that the asymptotic properties
of other methods could be investigated using similar approaches.

Consider a sample ofn individuals, one fromeach specieswithin
an n-taxon species tree σ . Fig. 2(A) displays a set of three species
A, B, and C that have the topological relationship ((AB)C) within
σ . Certain internal branches are made long so that σ resembles a
three-taxon species tree, in the sense that coalescences of lineages
from the n − 3 taxa other than A, B, and C with lineages from A, B,
and C are likely to occur on these long internal branches (Fig. 2(B)).

Let λA be the subtree of σ that contains species A and that de-
scends from the divergence of species A and B, let λB be the subtree
of σ that contains species B and that descends from this same di-
vergence, and let λC be the subtree of σ that contains species C and
that descends from the divergence of species (AB) and C. Further,
let ΓA, ΓB, and ΓC denote the sets of taxa at the leaves of subtrees
λA,λB, andλC, respectively. By definition,ΓA∩ΓB = ∅,ΓA∩ΓC = ∅,
ΓB ∩ ΓC = ∅, and ΓA ∪ ΓB ∪ ΓC is the set of all taxa on species tree
σ . Given a set of taxa L, we denote by T |L the tree displayed by
tree T restricted toL.We denote the topology of tree T by top(T ).
To show that a consensus method is misleading, it suffices to find
a set of branch lengths on a fixed species tree σ such that as the
number of loci approaches ∞, the probability approaches 1 that
the inferred species tree contains a clade not on σ .

In our example scenario, we suppose that certain internal
branches are long enough that for a fixed subset of taxa L, where
L is either ΓA, ΓB, or ΓC, fixed species tree σ , and random gene
tree T , the probability P[top(T |L) = top(σ |L) ; S] that T and
σ have the same topology when restricted to the set of taxa L
can be made arbitrarily close to 1. Formally, for fixed arbitrarily
small δ > 0, we make certain internal branches long enough that
1 − δ < P[top(T |L) = top(σ |L) ; S] < 1. Therefore, because a
random gene tree can be made to display the subtrees λA, λB, and
λC with probability near 1, to prove that a consensus method is a
misleading estimator of top(σ ), it suffices to show that the species
tree estimate on the basis of the method is not ((λAλB)λC) in the
limit as the number of gene trees goes to ∞.

Two ancestral populations are of interest, A2, directly ancestral
to the divergence of species A and B at time τ3, and A1, directly
ancestral to the divergence of species (AB) and C at time τ2.
Ancestral populations A1 and A2 each contain D(1)

= D(2)
= D ≥

2 demes, each of sizeN diploid individuals, that exchangemigrants
according to migration matrices M(1) and M(2). Note that we use
D to indicate the number of demes in each ancestral population,
whereas D denotes the (n− 1)-dimensional vector, each of whose
elements gives the number of demes in the associated ancestral
population. For simplicity, both for i = 1 and i = 2, we assume a
symmetric islandmigrationmodel in whichM(i)

xy = m for each pair
of distinct demes x(i) and y(i) in ancestral population Ai (Wakeley,
2009). We also assume that all other ancestral populations in the
n-taxon tree σ have only one deme (i.e., they are unstructured).
At time τ2, for each x = 1, 2, . . . ,D, lineages from deme x(2) in
A2 enter deme x(1) in A1. At time τ3, lineages from the λA subtree
enter deme j(2) in A2 and lineages from λB enter deme k(2)

≠ j(2)
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Fig. 2. Example scenario used as a counterexample to prove that consensusmethods aremisleading. (A) Certain internal branches are made long so that the n-taxon species
tree σ resembles a three-taxon species tree. (B) Lineages from species A, B, and C are in red, and lineages from other taxa that have coalesced along the branches leading
to species A, B, and C are in blue. The lineage from species A merges into deme j(2) of ancestral population A2 , the lineage from species B merges into deme k(2)

≠ j(2) of
ancestral population A2 , and the lineage from species C merges into deme k(1) of ancestral population A1 . The migration rates out of demes are small, so that each of the
lineages from A, B, and C has a low probability of leaving the deme in which it started. As a consequence, the probability is high that the lineage from B coalesces with the
lineage from C before it coalesces with the lineage from A. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
in A2. At time τ2, lineages from λC enter deme k(1), the same deme
into which lineages from λB, which had entered k(2) in A2, enter
if they have not coalesced or migrated in A2. We summarize the
assumptions in this example scenario as follows.

1. Assumptions about species tree σ

(a) The species tree σ is fixed and has n ≥ 3 taxa.
(b) Certain internal branches on σ are sufficiently long that

for a random gene tree T , fixed set of taxa L, where L is
either ΓA, ΓB, or ΓC, and fixed small δ > 0, P[top(T |L) =

top(σ |L) ; S] > 1 − δ.
2. Assumptions about the structure of the populations (D, N, and

M)
(a) All populations have one deme except for ancestral

populations A1 and A2, each of which has a fixed equal
number of demes, D ≥ 2.

(b) Each deme has a fixed population size of N diploid
individuals.

(c) The population structure model is an island migration
model in which the per-generation backward migration
rate between each pair of distinct demes within ancestral
populationA1 andwithin ancestral populationA2 is a fixed
valuem.

3. Assumptions about the species transitions 9

(a) At time τ2, for each x = 1, 2, . . . ,D, lineages from deme x(2)

in A2 enter deme x(1) in A1.
(b) At time τ3, lineages from the λA subtree enter deme j(2) in

A2, and lineages from the λB subtree enter deme k(2)
≠ j(2)

in A2.
(c) At time τ2, lineages from the λC subtree enter deme k(1) in

A1.

In the example scenario of assumptions 1–3, for a specific set
of taxa A, B, and C with topological relationship ((AB)C) on σ , we
can fix τ2 − τ3, D, and m such that for arbitrarily small ε > 0, the
probability that a randomgene tree displays the topology ((AB)C) is
less than ε. For example, in Fig. 2(B), given fixed ε > 0, fixed τ2−τ3,
and fixed D, for sufficiently small m, with probability greater than
1 − ε, the lineage from A and the lineage from B do not migrate,
and the lineages from B and C coalesce before either coalesces
with the lineage from A. This high probability for coalescence of
lineages from B and C causes a large proportion of random gene
trees, greater than 1 − ε, to display the nonmatching topological
relationship ((BC)A).

Define an ‘‘event’’ as either a migration of a lineage from
one deme to another deme within an ancestral population or a
coalescence of two lineages. Let pS(X, Y) be the probability under
model S(σ ,D,N,M, 9) that a lineage sampled from species X
and a lineage sampled from species Y are in the same deme at
the speciation time of X and Y. Consider three sampled lineages,
one each from species A, B, and C. By construction of the example
scenario, pS(A, B) = 0 because lineages from A merge into deme
j(2) and lineages from B merge into deme k(2)

≠ j(2). Within time
interval [τ3, τ2), the time to amigration event in which the lineage
from deme j(2) exits the deme is exponentially distributed with
rate (D − 1)m per generation and the time to a migration event in
which the lineage fromdeme k(2) exits the deme is also exponential
with rate (D − 1)m. Therefore, the time to the first migration
event (either from deme j(2) or from deme k(2)) is exponentially
distributed with rate 2(D− 1)m per generation (Wakeley, 2009, p.
150, eq. 5.23). Hence, the probability of zero migration events over
[τ3, τ2) – neither for the lineage from A nor for the one from B – is

β1 = e−2(D−1)m(τ2−τ3).

TreatingD and τ2−τ3 as fixed finite positive values, for sufficiently
small migration rate m, β1 is arbitrarily close to 1. Note, however,
that for β1 to be close to 1, m need not be small—for example, if
m is instead a fixed finite positive value and τ2 − τ3 is sufficiently
small.

Many possible migration paths exist that can cause a lineage
sampled from species B to be located in deme k(1) of population
A1 (the same deme into which lineages from species C merge) at
time τ2. For instance, no migration events might occur or multiple
migration events might occur that eventually bring the lineage
sampled from species B back into deme k(1) at time τ2. Because
β1 is the probability of only one among many possible ways for
a lineage sampled from species B to be located in deme k(1) at time
τ2, it provides a lower bound for pS(B, C). It follows that β1 <
pS(B, C) < 1, and similarly, a bound can be placed on pS(A, C)
such that 0 < pS(A, C) < 1 − β1. Hence, pS(A, C) is arbitrarily
close to 0 and pS(B, C) is arbitrarily close to 1 for sufficiently small
m holding τ2 − τ3 fixed, or for sufficiently small τ2 − τ3 holdingm
fixed. Because the lineages from A and B are in different demes at
time τ3, pS(A, B) = 0.

Let PS[T ] denote the probability that a random gene tree has
topology T under model S(σ ,D,N,M, 9). If no migration event
occurs in the interval [τ3, τ2), then at time τ2, the lineage from
species A is in deme j(1) and the lineages from species B and C are
in deme k(1)

≠ j(1). Within the time interval [τ2, ∞), the time
to the first migration event that causes the lineage from deme
j(1) to migrate is exponentially distributed with rate (D − 1)m,
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the time to the first migration event that causes one of the two
lineages from deme k(1) to migrate is exponentially distributed
with rate 2(D − 1)m, and the time to the event in which the two
lineages from deme k(2) coalesce is exponentially distributed with
rate 1/(2N). Therefore, the time to the first event (migration or
coalescence) on the interval [τ2, ∞) is exponentially distributed
with rate (D−1)m+2(D−1)m+1/(2N) = 3(D−1)m+1/(2N)per
generation (Wakeley, 2009, p. 150, eq. 5.23). Hence, the probability
that the first event in the interval [τ2, ∞) is a coalescence between
the lineages fromspecies B andC is [1/(2N)]/[3(D−1)m+1/(2N)].
Treating the parameters D and N as fixed finite positive values,
the probability that the first event in the interval [τ2, ∞) is a
coalescence between the lineages fromspecies B andC is arbitrarily
close to 1 for sufficiently small m. Multiplying by the probability
β1 of observing zero migration events in the interval [τ3, τ2), we
obtain a lower bound on the probability, β2, that the first event in
the interval [τ3, ∞) is a coalescence event between the lineages
from species B and C

β2 =
1/(2N)

3(D − 1)m + 1/(2N)
β1 =

1
6(D − 1)Nm + 1

β1. (1)

For small enoughm, β2 is arbitrarily close to 1. Note, however, that
m need not be too small for a coalescence between lineages from
species B and C to be the most probable first event on the interval
[τ3, ∞). For example, if τ2−τ3 is small, thenβ1 is close to 1. Because
PS[((BC)A)] ≥ β2, for some constant 1/(c + 1) with c > 0, to get
PS[((BC)A)] > 1/(c + 1), assuming β1 is sufficiently close to 1, we
would only needm ≈ c/[6(D − 1)N].

Our example scenario (assumptions 1–3) together with param-
eter values chosen such that β2 is arbitrarily close to 1 provides a
case in which gene trees have a high probability of containing at
least one clade that is not present on species tree σ . A large class of
consensusmethods then infer species treeswith clades not present
on σ . This discordance between the inferred species tree topology
andσ occurswhenσ ,D,N,M, and9 satisfy assumptions 1–3,when
τ2 − τ3 and D are fixed, and whenm is sufficiently small.

4. Consistency and inconsistency of methods

In this section, under the multispecies coalescent model with
ancestral population structure, we investigate the statistical con-
sistency of consensus methods based on seven criteria for infer-
ring species tree topologies. The methods involve using a uniquely
favored topology (Democratic Vote), using average coalescence
times (STEAC), using average ranks of coalescences (STAR), using
uniquely favored rooted triples (R∗ Consensus and Rooted Triple
Consensus), minimizing the number of deep coalescences (MDC),
taking the majority rule (Majority-Rule Consensus), and using
minimum coalescence times (GLASS/Maximum Tree). We show,
through the use of a counterexample, that six of the seven meth-
ods are misleading. We also provide a proof that the seventh cri-
terion, based on minimum coalescence times, generates a method
that is statistically consistent under our ancestral structure model.
The proofs that Democratic Vote is misleading (Proposition 2) and
that GLASS/Maximum Tree is consistent (Proposition 11) appear
in the main text. The proofs that the other consensus methods are
misleading (Propositions 6–8) are similar and are provided in Ap-
pendix.

4.1. Uniquely favored topologies

An intuitive approach to inference of species tree topologies is
to use Democratic Vote consensus. Democratic Vote estimates a
species tree topologyusing themost frequently occurring gene tree
topology, or uniquely favored topology, in a sample of gene trees
(Degnan and Rosenberg, 2009). Discordant gene tree topologies
that are more probable than the matching topology have been
termed ‘‘anomalous gene trees’’ (AGTs), and the space of branch
lengths in which AGTs arise has been termed the ‘‘anomaly zone’’
(Degnan and Rosenberg, 2006; Rosenberg, 2013). Owing to AGTs,
and because of gene tree discordance more generally, it is difficult
for consensus methods to achieve statistical consistency (Degnan
et al., 2009). Under the multispecies coalescent model with no
ancestral population structure, the space in which Democratic
Vote is misleading corresponds exactly to the anomaly zone. A
consequence of this correspondence is that Democratic Vote is a
statistically consistent estimator of species tree topologies only
for three-taxon species trees and for four-taxon species trees with
symmetric topologies.

Slatkin and Pollack (2008) showed that for three-taxon species
trees, the most likely gene tree topology does not necessarily
match the species tree topology under a specific multispecies
coalescent model with ancestral population structure. This result
implies that in ancestral population structure models, Democratic
Vote can be misleading for three-taxon species tree topologies.
Our general ancestral structure model, S(σ ,D,N,M, 9), contains
the Slatkin and Pollack (2008) model as a special case. We
use the example scenario (assumptions 1–3 in Section 3) as a
counterexample to show that Democratic Vote is a misleading
estimator for the topology of fixed species tree σ with n ≥ 3 taxa
under model S(σ ,D,N,M, 9).

To provide intuition about why Democratic Vote is misleading,
assuming that the species tree has topology ((λAλB)λC), note that
under the example scenario, if we fix τ2 − τ3 and D and set the
migration rate m sufficiently small, then gene trees generated
under model S(σ ,D,N,M, 9) display a nonmatching topology
with probability arbitrarily close to 1. Because of this large
probability, the most frequently occurring gene tree topology—the
Democratic Vote topology—is likely to be ((λBλC)λA) instead of
((λAλB)λC). Thus, Democratic Vote is amisleading estimator for the
species tree topology under model S(σ ,D,N,M, 9).

Lemma 1. Consider a species tree σ with n ≥ 3 taxa under model
S(σ ,D,N,M, 9). Further, consider a random gene tree T . Under
assumptions 1–3 in Section 3, for fixed δ > 0,

P[top(T |ΓA) = top(σ |ΓA), top(T |ΓB) = top(σ |ΓB),

top(T |ΓC) = top(σ |ΓC) ; S] > 1 − δ.

Proof. Fix a constant δ > 0 and let δ′
= δ/3. Under assumption 1b

of the example scenario, given δ′ > 0, we can set certain internal
branches of σ long enough that for fixed set of taxa L, where L is
either ΓA, ΓB, or ΓC, P[top(T |L) = top(σ |L) ; S] > 1 − δ′. Using
Bonferroni’s Inequality (Casella and Berger, 2002, p. 11),

P[top(T |ΓA) = top(σ |ΓA), top(T |ΓB) = top(σ |ΓB),

top(T |ΓC) = top(σ |ΓC) ; S]

≥ P[top(T |ΓA) = top(σ |ΓA) ; S]

+ P[top(T |ΓB) = top(σ |ΓB) ; S]

+ P[top(T |ΓC) = top(σ |ΓC) ; S] − 2

> (1 − δ′) + (1 − δ′) + (1 − δ′) − 2

= 1 − 3δ′

= 1 − δ. �

Lemma 1 indicates that with a high probability 1 − δ, for some
arbitrarily small δ > 0, a random gene tree will have clades λA,
λB, and λC. Consequently, with probability at least 1 − δ, we will
observe gene tree topology ((λAλB)λC), ((λAλC)λB), or ((λBλC)λA).
The combined probability of all other topologies is below δ.

LetP[T ] denote the sample proportion of topology T in a set of
L gene trees.
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Proposition 2. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Further, consider a consensus method CL
that estimates top(σ ) from a set of L gene trees using the most
frequently occurring gene tree topology. Then CL is a misleading
estimator of top(σ ).

Proof. We use the example scenario (assumptions 1–3 in Sec-
tion 3) as a counterexample to show that CL is misleading. Note
that top(σ ) = ((λAλB)λC). For CL to not be misleading, we must
have thatCL

P
−→ top(σ ) as L → ∞. We will instead show that for

a different species tree topology T ⋆
= ((λBλC)λA), CL

P
−→ T ⋆

≠

top(σ ).
Let T be a random gene tree. Using Lemma 1, for fixed ε > 0,

set migration ratem small enough that

PS[T
⋆
] = PS[((λBλC)λA)]

> P[top(T |ΓA) = top(σ |ΓA), top(T |ΓB) = top(σ |ΓB),

top(T |ΓC) = top(σ |ΓC) ; S]β2

> (1 − δ)β2

> (1 − δ)(1 − ε).

The right-hand side of the last inequality can be made arbitrarily
close to 1 for sufficiently small δ and ε. Using the Weak Law of
Large Numbers,P[T ⋆

]
P

−→ PS[T
⋆
] as L → ∞. Because PS[T

⋆
] can

be made arbitrarily close to 1, T ⋆ is the uniquely favored topology
and P[CL = T ⋆

; S] → 1 as L → ∞. Therefore,CL
P

−→ T ⋆, andCL
is a misleading estimator of top(σ ). �

4.2. Average distances

Consider a sample of L independent loci. Let dXY be a random
variable representing a distance between species X and species Y.
We define the estimated mean value of the distance across all L
loci,

dXY =
1
L

L
ℓ=1

dℓ
XY (2)

wheredℓ
XY is the estimated distance between species X and Y at

locus ℓ. If ES[dℓ
XY] = ES[dXY], then by the Weak Law of Large

Numbers, the mean distancedXY will be a consistent estimator for
the expected distance ES[dXY] under model S = S(σ ,D,N,M, 9).
We show that in the presence of ancestral structure, methods that
employ these consistent mean distances across loci to construct a
distancematrix aremisleading estimators for the topology of fixed
species tree σ with n ≥ 3 taxa under model S.

To provide intuition about why such a method is misleading,
assuming the species tree has topology ((λAλB)λC), we can fix
τ2 − τ3 and D and set the migration rate m small enough that the
lineages from B and C likely coalesce more recently than either
coalesces with the lineage from A. A distance measure computed
as the mean across loci is likely, with a large number of loci, to
have the property that if a pair of lineages is expected to coalesce
more recently than another pair, then the pair that is expected
to coalesce more recently would have a smaller distance. If the
mean sample distances across loci are close enough to the expected
distances based on randomly sampled lineages at a random locus,
then clustering algorithms applied to the sample distance matrix
to reconstruct the species tree topology will construct an incorrect
species tree topology rather than the true topology.

Two popular consensus methods that use an average distance
across loci are STEAC and STAR (Liu et al., 2009). STEAC employs
mean pairwise coalescence times across loci and STAR utilizes
average pairwise ranks as distances. We introduce a proposition
that applies to both methods as well as others defined by mean
distances across loci. For all distance-based methods (including
STEAC and STAR), we rely on a result from Jewett and Rosenberg
(2012), quoted below as Lemma 4. We first need some definitions.

Definition 3 (Definition 6.3 of Jewett and Rosenberg, 2012). Let b(σ )
denote the length of the shortest branch in a binary species tree
σ . Let dσ be the true matrix of pairwise distances between taxa
in tree σ , and let d be an estimate of dσ . Consider a clustering
method C that takes a distance matrix as input and returns a tree
as output. Define the L∞-norm of matrix A, denoted by ∥A∥∞, as
the magnitude of the largest element in A. The L∞-radius ℓ∞ of C
is the supremumover all quantities δ such that, for all species trees
σ and all estimatesd, C is guaranteed to return the true topology
whenever ∥d − dσ ∥∞ < δb(σ ).

Lemma 4 (Proposition 6.4 of Jewett and Rosenberg, 2012). Consider
a species tree σ , and let C be a clustering method with nonzero
L∞-radius. Let d be an estimator of the pairwise distance between
two species that is consistent as L → ∞. Then the estimator σ
of the species tree σ produced by applying clustering method C to
the collection {dXY}X,Y∈σ of distance estimates obtained fromd is a
consistent estimator for the tree topology as L → ∞.

Proposition 5. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Consider a consensus method CL that esti-
mates top(σ ) by applying a clustering algorithm satisfying the prop-
erties of Lemma 4 to a matrix of statistically consistent pairwise
distances across all pairs of taxa, in which the distancedXY between
species X and Y is computed asmean distance across L loci as in Eq. (2).
ThenCL is a misleading estimator of top(σ ).

4.2.1. Average coalescence times
Consider a sample of L independent loci and let T ℓ

XY be a
random variable that denotes the coalescence time in the gene
tree of locus ℓ for a lineage sampled from species X and a lineage
sampled from species Y. Define the average random coalescence
time across L loci between one lineage sampled from species X
and one lineage sampled from species Y by TXY = (1/L)

L
ℓ=1 T

ℓ
XY.

Liu et al. (2009) developed the STEAC consensus method, which
utilizes the average coalescence times TXY, considering each pair
of distinct species X and Y, to infer a species tree. The average
time TXY provides a distance between species X and Y. STEAC
creates a distance matrix for all pairs of species and infers
a species tree using neighbor-joining. STEAC is a statistically
consistent estimator of a species tree topology when gene trees
are distributed according to the multispecies coalescent (Liu et al.,
2009). This consistency stems from the statistical consistency of
neighbor-joining (Atteson, 1999) and the observation that under
the multispecies coalescent model, for species X, Y, and Z, if the
divergence time of species X and Y, or d(X, Y), is smaller than
d(X, Z) and d(Y, Z), then the expected coalescence time is smaller
for lineages from X and Y than for lineages from X and Z and for
lineages from Y and Z. We show that in the presence of ancestral
population structure, STEAC is a misleading estimator for the
topology of fixed species tree σ with n ≥ 3 taxa under model
S(σ ,D,N,M, 9).

Note that although neighbor-joining is used to construct the
STEAC tree from divergence times between pairs of species, a
number of other clustering methods can be used to construct
species trees from these pairwise times. Lemma 4 states that a
species tree estimator that applies a clustering algorithm to the
matrix of pairwise divergence times is a statistically consistent
estimator of species tree topologies provided that the clustering
method has nonzero L∞-radius, and that the estimator used
for divergence times is also a statistically consistent estimator
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of divergence times. Both neighbor-joining and other common
algorithms such as single-linkage clustering, complete-linkage
clustering, and UPGMA satisfy Lemma 4 (Jewett and Rosenberg,
2012), and hence Proposition 5 can be applied.

Corollary 6. Consider a species tree σ with n ≥ 3 taxa under model
S(σ ,D,N,M, 9). Consider a consensus method CL that estimates
top(σ ) by applying neighbor-joining to a set of pairwise distances
across all pairs of taxa in which the distance between species X and
Y isdXY = 2TXY, twice the average coalescence time over a set of L
gene trees for species X and Y. Then CL is a misleading estimator of
top(σ ).

4.2.2. Average ranks of coalescences
Coalescence ranks describe the relative order of internal nodes

in a rooted tree topology. A ranking is a non-negative real number
assignment in which the root is given a positive real value a,
and internal nodes are assigned ranks using a function that
monotonically decreases with distance along each path from the
root to a leaf (Allman et al., 2013; Degnan, 2013). For example, for
the topology (((AB)C)D), we could assign a ranking in which the
root node has rank 4, the node connecting clade {AB} to C has rank
3, and the node connecting A and B has rank 2. For a symmetric
topology ((AB)(CD)), one possible ranking could assign the root
node rank 4, and the other two internal nodes rank 3.

In the original algorithm by Liu et al. (2009), the STAR method
assumes that the rank of the root node in an n-taxon tree is n.
Descending toward the leaves, each internal node is assigned the
rank of its immediate ancestor minus 1. Consider a sample of
L independent loci, and let Rℓ

XY denote the random coalescence
rank in the gene tree of locus ℓ for the node that connects
a lineage sampled from species X and a lineage sampled from
species Y. Denote the random average coalescence rank across
L loci between a lineage sampled from species X and a lineage
sampled from species Y by RXY = (1/L)

L
ℓ=1 R

ℓ
XY. STAR utilizes

the average ranks of coalescences RXY, for each distinct pair of
species X and Y, to infer a species tree. The average rank RXY
provides a distance between species X and Y. Analogously to the
procedure for STEAC, STAR creates a distance matrix for pairs of
species and infers a species tree using neighbor-joining. STAR is
a consistent estimator of a species tree topology when gene trees
are distributed according to the multispecies coalescent (Liu et al.,
2009). This consistency stems from the consistency of neighbor-
joining and the observation that under themultispecies coalescent,
for species X, Y, and Z, if the divergence time of species X and Y is
smaller than that for X and Z and for Y and Z, then the expected
rank in the gene tree is smaller for the coalescence of lineages
from X and Y than for X and Z and for Y and Z. The consistency
results still hold with arbitrary rankings in which a non-negative
real number is assigned to the root and internal nodes are assigned
ranks using a function thatmonotonically decreases as the number
of edges between the node and the root increases (Allman et al.,
2013; Degnan, 2013). We show that in the presence of ancestral
structure, STAR is a misleading estimator for the topology of fixed
species tree σ with n ≥ 3 taxa under model S(σ ,D,N,M, 9).

Corollary 7. Consider a species tree σ with n ≥ 3 taxa under model
S(σ ,D,N,M, 9). Consider a consensus method CL that estimates
top(σ ) by applying neighbor-joining to a set of pairwise distances
across all pairs of taxa in which the distance between species X and
Y isdXY = 2RXY, twice the average coalescence rank over a set of L
gene trees for species X and Y. Then CL is a misleading estimator of
top(σ ).
4.3. Majority-rule

One popular consensus method, Majority-Rule Consensus, con-
structs a species tree using only clades that appear at frequency
greater than some fixed α, α ∈ [0.5, 1) (Bryant, 2003). The
Majority-Rule Consensus tree is either resolved (bifurcating at all
nodes), partially unresolved (multifurcating at some nodes), or
fully unresolved (multifurcating at the root). For the case of α =

0.5, Majority-Rule Consensus has been shown to be a statistically
inconsistent, but not misleading, estimator of a species tree topol-
ogy under the multispecies coalescent (Degnan et al., 2009). We
provide a proposition (proven in Appendix) which states that in
the presence of ancestral population structure, Majority-Rule Con-
sensus is a misleading estimator for the topology of fixed species
tree σ with n ≥ 3 taxa under model S(σ ,D,N,M, 9).

Assuming the species tree has topology ((λAλB)λC), by fixing
τ2 − τ3 and D and setting the migration rate m small enough that
gene trees display topology ((λBλC)λA)with probability arbitrarily
close to 1, all clades on ((λBλC)λA) appear with frequency greater
than fixed α. All clades with frequency greater than α appear
on the Majority-Rule Consensus tree. Consequently, Majority-Rule
Consensus is misleading.

Proposition 8. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Further, consider a consensus method CL
that estimates top(σ ) from a set of L gene trees by only using clades
present with a frequency greater than fixed α, α ∈ [0.5, 1). ThenCL
is a misleading estimator of top(σ ).

4.4. Uniquely favored rooted triples

Define a uniquely favored rooted triple among a set of three
taxa X, Y, and Z as the rooted topological relationship among X,
Y, and Z with the largest frequency in a sample of rooted gene
trees. Because AGTs do not exist for three-taxon species trees
under the multispecies coalescent model, consensus methods R∗

Consensus (Bryant, 2003; Degnan et al., 2009) and Rooted Triple
Consensus (Ewing et al., 2008), which infer species trees based
on the topologies of uniquely favored rooted triples, have been
developed. R∗ Consensus constructs a species tree from uniquely
favored rooted triples through an exact algorithm. Following
Degnan et al. (2009), the set K is a clade in the R∗ Consensus
tree if for each distinct pair of taxa X′,X′′

∈ K and every
taxon Z ∉ K , ((X′X′′)Z) is a uniquely favored rooted triple. The
Rooted Triple Consensus tree is constructed by combining the

n
3


uniquely favored rooted triples using the tree puzzle heuristic
(Ewing et al., 2008). Degnan et al. (2009) proved that R∗ Consensus
is a statistically consistent estimator of a species tree topology
when gene trees are distributed according to the multispecies
coalescent model. We show that in the presence of ancestral
population structure, R∗ Consensus and Rooted Triple Consensus
are misleading estimators for the topology of fixed species tree σ
with n ≥ 3 taxa under model S(σ ,D,N,M, 9). This result follows
from the observation that Majority-Rule Consensus is misleading
(Proposition 8).

Corollary 9. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Define the rule R such that for species X,
Y, and Z, X and Y join more recently in the past than do species X
and Z and species Y and Z when P[((XY)Z)] > P[((XZ)Y)] andP[((XY)Z)] > P[((YZ)X)]. Consider a consensus method CL that
estimates top(σ ) from a set of L gene trees using uniquely favored
rooted triples according to rule R. ThenCL is a misleading estimator
of top(σ ).
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4.5. Minimizing deep coalescences

Another sensible approach to inferring species trees from gene
trees in the presence of incomplete lineage sorting is to minimize
the number of deep coalescences (Maddison, 1997). A coalescence
event for species X andY is called ‘‘deep’’ if the event does not occur
in the population directly ancestral to the divergence of species X
and Y in the species tree. The MDC criterion seeks to find a species
tree that minimizes the number of lineages that do not coalesce in
the first population in which they have the opportunity to find a
common ancestor. Than and Nakhleh (2009) presented an exact
method to infer a species tree from gene trees using the MDC
criterion. A subsequent study showed that when gene trees are
distributed according to the multispecies coalescent model, MDC
is a misleading estimator of a species tree topology for four-taxon
asymmetric species trees and for species trees with five or more
taxa (Than and Rosenberg, 2011). In Appendix, we prove that in
the presence of ancestral population structure,MDC is amisleading
estimator for the topology of fixed species tree σ with n ≥ 3 taxa
under model S(σ ,D,N,M, 9).

Assuming the species tree has topology ((λAλB)λC), fix τ2 − τ3
and D and set the migration rate m small enough that gene trees
display topology ((λBλC)λA) with probability arbitrarily close to 1.
The numbers of extra lineages needed to reconcile a gene tree with
topology ((λBλC)λA) and species trees with topologies ((λAλB)λC)
and ((λBλC)λA) are 1 and 0, respectively. Because the probability
of observing a gene tree with topology ((λBλC)λA) is high, the
species tree with topology ((λBλC)λA) minimizes the number of
deep coalescences (i.e., the number of extra lineages needed to
reconcile the set of gene tree topologies with the species tree
topology). Because ((λBλC)λA) does not match the species tree
topology, MDC is misleading.

Proposition 10. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Further, consider a consensus method CL
that estimates top(σ ) from a set of L gene trees by minimizing the
number of deep coalescences. Then CL is a misleading estimator of
top(σ ).

4.6. Minimum coalescence times

Consider a sample of L independent loci. Define the minimum
coalescence time across L loci between one lineage sampled from
species X and one lineage sampled from species Y by tmin

XY =

minℓ=1,...,L T ℓ
XY. The final method we examine is one that uses

tmin
XY , considering each distinct pair of species X and Y, to infer
a species tree; GLASS (Mossel and Roch, 2010) and Maximum
Tree (Liu et al., 2010) are two names for the same method that
constructs species trees using these values. Theminimum time tmin

XY
provides a distance between species X and Y. GLASS/Maximum
Tree creates a distance matrix for all pairs of species and infers a
species tree using single-linkage clustering. GLASS/Maximum Tree
is a statistically consistent estimator of a species tree topology
when gene trees are distributed according to the multispecies
coalescent (Liu et al., 2010; Mossel and Roch, 2010). In this section,
we show that in the presence of ancestral population structure
according to ourmodel S(σ ,D,N,M, 9), GLASS/Maximum Tree is
a statistically consistent estimator for the topology of fixed species
tree σ with n ≥ 3 taxa.

To provide intuition about why GLASS/Maximum Tree is
consistent, note that by assumption, in model S(σ ,D,N,M, 9),
demes within an ancestral population communicate through a
path of nonzero migration. Because of this communication, as
the number of gene trees grows large, for some gene tree a pair
of lineages sampled from distinct species likely coalesces in the
population directly ancestral to the divergence of those species.
Because GLASS/Maximum Tree uses minimum coalescence times
to estimate a species tree topology, as the number of gene trees
grows large, the single-linkage clustering algorithm applied to
these minimum coalescence times yields a tree topology that
matches top(σ ). Therefore, GLASS/Maximum Tree is a statistically
consistent estimator for the species tree topology under model
S(σ ,D,N,M, 9).

Proposition 11. Consider a species tree σ with n ≥ 3 taxa under
model S(σ ,D,N,M, 9). Further, consider a consensus method CL
that estimates top(σ ) from a set of L gene trees using single-linkage
clustering applied to the set of minimum coalescence times tmin

XY for
each distinct pair of species X and Y. ThenCL is a statistically consistent
estimator of top(σ ).

Proof. This proof is similar to that of Mossel and Roch (2010)
for GLASS (see also Jewett and Rosenberg, 2012). Consider L
independent loci. For CL to be consistent, we must have thatCL

P
−→ top(σ ) as L → ∞. We will show that as the number of loci

becomes large, each pair of distinct taxawill, with high probability,
have a coalescence event in the population directly ancestral to
their split. Further, we will ensure that each of these coalescence
events occurs arbitrarily close to the true species split, thereby
making each entry in the distance matrix of minimum coalescence
times arbitrarily close to the corresponding entry in the distance
matrix of divergence times for the true species tree.

Fix arbitrarily small ε > 0, fix the species tree σ , and fix
the ancestral population structure model S(σ ,D,N,M, 9). Define
fk, k = 1, 2, . . . , n − 1, as the probability under model
S(σ ,D,N,M, 9) that (going back in time) no coalescence occurs
between any pair of lineages within ε generations of entering
ancestral population Ak. Then over the set of L gene trees, the
probability that no coalescence occurs between any pair of lineages
within ε generations of entering Ak is (fk)L. It follows that over the
set of L gene trees, the probability that at least one coalescence
occurs between each pair of lineages within ε generations of
entering Ak is 1 − (fk)L. Therefore, over the set of L gene trees
and the set of ancestral populations, the probability that at least
one coalescence occurs between each pair of lineages within ε
generations of entering each of the n − 1 ancestral populations is

fmin =

n−1
k=1

[1 − (fk)L].

Because the demes in S(σ ,D,N,M, 9) communicate, we have
0 < fk < 1 for k = 1, 2, . . . , n − 1. It follows that fmin → 1
as L → ∞. Consequently, as L → ∞, for each pair of lineages
sampled from a pair of species, the minimum coalescence time for
those lineages lies within ε generations of the divergence of the
two species. Hence, a clustering method satisfying the properties
in Lemma4 that is applied to the set ofminimumcoalescence times
across loci will return the correct tree topology with probability 1
as L → ∞. Single-linkage clustering is such a clustering method
(Jewett and Rosenberg, 2012) and hence, applying it to the set of
tmin
XY values for all distinct pairs of species X and Y yields top(σ ),

and P[CL = top(σ ) ; S] → 1 as L → ∞. Therefore,CL
P

−→ top(σ ),
andCL is a statistically consistent estimator of top(σ ). �

Note that although a method that estimates species tree
topologies using minimum coalescence times is statistically
consistent, many independent loci might be required for the
estimated distancematrix to give rise to an estimate that produces
the true species tree. Our proof requires that for each species
pair, for at least one locus, a migration must occur immediately
ancestral to the species divergence. We can determine the number
of loci required for such a migration to be probable.
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Fig. 3. Simulated probabilities of inferred species trees for the three-taxonmodel species tree ((AB)C) with ancestral population structure. (A) Species tree with an ancestral
population structuremodel. Time ismeasured in coalescent units t/(2Ne), where t is time in generations andNe is a reference diploid effective population size. The population
structure model is an island migration model with D = 10 demes in each ancestral population. The scaled migration rate between deme x and deme y ≠ x is M = 4Nem,
which corresponds to M/4 individuals per generation in each direction. Species A merges into deme 1 and species B and C each merge into deme 10. (B) Simulation results
for scaled migration rates M = 10.0, M = 1.0, and M = 0.1. Each tree topology is represented by a distinct color, and each consensus method is represented by a distinct
symbol. For each consensus method, the tree topology traced is the topology for that method that has the highest frequency at 2000 gene trees. The frequency of a topology
is calculated as the fraction among 1000 replicate simulations for which that topology was inferred. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
From the example scenario, we know that for a single locus, the
probability that nomigration occurs within time interval [τ3, τ2) is
β1 = e−2(D−1)m(τ2−τ3). For a sample of L loci, the probability that no
migration occurswithin the interval for any of the loci is then (β1)

L.
Thus, the probability that amigration occurswithin the interval for
at least one of the loci is 1 − (β1)

L.
To determine the minimum number of loci required for

attaining probability at least p that a migration within the interval
occurs for at least one sampled locus, we set 1 − (β1)

L
≥ p and

solve for L. Taking the logarithm of both sides and solving for the
minimum number of loci L⋆

= minL∈Z+{1 − (β1)
L
≥ p} yields

L⋆
=


log(1 − p)
log(β1)


=


−

log(1 − p)
2(D − 1)m(τ2 − τ3)


.

Note that if p is set to a large value or if m or τ2 − τ3 is small, then
L⋆ can be quite large.

5. Simulations

5.1. Comparison of methods on true gene trees

5.1.1. Simulation procedure
To examine the robustness of the eight consensus methods—

Democratic Vote, STEAC, STAR, R∗ Consensus, Rooted Triple Con-
sensus, MDC, Majority-Rule Consensus (with α = 0.5), and
GLASS/MaximumTree—to ancestral population structure, we eval-
uated their performance using simulations. These simulations en-
abled us to investigate performance on a finite number of loci,
rather than in the limiting case. We used the three-taxon species
tree σ = ((A:1.0, B:1.0):0.1, C:1.1) illustrated in Fig. 3(A). Each of
the ancestral populations follows an island migration model with
D = 10 demes and a scaled unidirectional migration rate between
demes M = 4Nem, where Ne is a reference effective number of
diploid individuals in a population. Note that because both time
andmigration rate are scaled by the same effective population size
Ne, the specific value of Ne does not matter. Because we are assum-
ing an island migration model, within each ancestral population,
for all i, j ∈ {1, 2, . . . , 10}with i ≠ j, themigration rate fromdeme
i to deme j isM . Time is measured in coalescent units t/(2Ne), with
t measured in generations. Going back in time, the lineage from
species A merges into deme 1 in ancestral population A2, the lin-
eage from species B merges into deme 10 of ancestral population
A2, and the lineage from species C merges into deme 10 of ances-
tral population A1. At time τ2, for each x = 1, 2, . . . , 10, lineages
in deme x(2) of A2 merge into deme x(1) of A1. This model is pre-
cisely the model used for the example scenario in Section 3 with
the number of demes set to 10.

Given the species tree model, we used the coalescent simulator
ms (Hudson, 2002) to generate gene trees for L = 100, 200,
. . . , 2000 independent loci, with each set of L gene trees generated
independently of every other set of gene trees. For each consensus
method, the L gene treeswere then used as input, and a species tree
estimate was obtained as output. Each of the consensus methods
was applied to the same set of L gene trees. For each L, we repeated
this process for 1000 independent replicate simulations of L loci.

5.1.2. Results
Simulation results appear in Fig. 3(B). For scaled migration

rate M = 10.0, the tree topology with greatest support for
each consensus method except for Majority-Rule Consensus is
((AB)C), which matches the species tree. Majority-Rule Consensus
instead provides greatest support for the star phylogeny (ABC),
reaching frequency 1.0 by 200 gene trees. This result for
Majority-Rule applied to three-taxon gene trees is not surprising
because Majority-Rule Consensus returns an unresolved three-
taxon topology when no input gene tree topology has frequency
greater than 0.5. Because the internal branch length is small (0.1
coalescent units) and because the migration rate between demes
is large (M = 10.0), it is unlikely that any three-taxon gene tree
will have frequency greater than 0.5 as the number of input gene
trees gets large. Themethod that performsbest is GLASS/Maximum
Tree, reaching probability 1 for species tree topology ((AB)C) by
800 gene trees. Although the other six consensus methods provide
the strongest support to ((AB)C) at 2000 gene trees, they have low
support for ((AB)C), with frequencies of ∼0.55 for STAR, ∼0.54 for
Democratic Vote, Rooted Triple Consensus, and MDC, ∼0.53 for R∗

Consensus, and ∼0.49 for STEAC.
Decreasing the migration rate to M = 1.0, we find, as with

M = 10.0, that GLASS/Maximum Tree has highest support for
topology ((AB)C). GLASS/Maximum Tree takes longer than with
M = 10.0 to converge to the correct topology, reaching frequency
1.0 for ((AB)C) with 1900 instead of 800 genes. As with the M =

10.0 case, Majority-Rule Consensus provides greatest support for
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Fig. 4. Inference of species trees using GLASS/Maximum Tree under a Jukes–Cantor substitution model when gene trees are generated under the three-taxon species tree
σ = ((A:1.0, B:1.0):0.1, C:1.1). The per-site mutation rate θ is 0.01 and time is measured in coalescent units t/(2Ne), where t is time in generations and Ne is a reference
diploid effective population size. (A) Simulated probabilities of inferred species trees with no ancestral population structure. (B, C, D) Simulated probabilities of inferred
species trees with ancestral population structure. The population structure model is an island migration model with D = 10 demes in each ancestral population (as in
Fig. 3(A)). The scaled migration rate between deme x and deme y ≠ x is M = 4Nem = 10.0 (B), M = 1.0 (C), and M = 0.1 (D). Species A merges into deme 1 and species B
and C each merge into deme 10. Each tree topology is represented by a symbol. The frequency of a topology is calculated as the fraction among 1000 replicate simulations
for which that topology was inferred.
(ABC), reaching frequency 1.0 by 200 genes. In contrast to the
M = 10.0 results, the other six consensus methods no longer
have their highest support for the correct topology. Instead, the
most favored topology is ((BC)A), reaching frequency ∼0.99 at
2000 gene trees for Democratic Vote, STAR, R∗ Consensus, Rooted
Triple Consensus, and MDC and frequency ∼0.96 for STEAC. By
construction of the simulation, with little enough migration, we
expect that each method (except GLASS/Maximum Tree) would
infer topology ((BC)A) with highest frequency.

Reducing the migration rate to M = 0.1, we find that
GLASS/Maximum Tree continues to support the correct species
tree topology ((AB)C). Unlike for the two higher migration rates, it
does not infer the correct topologywith frequency1.0 by2000gene
trees, instead obtaining ((AB)C) with frequency ∼0.64. However,
the frequency of ((AB)C) when inferred by GLASS/Maximum Tree
increases as a function of the number of gene trees. Consequently,
we expect it would approach 1.0 with enough gene trees, as
Proposition 11 predicts. As expected, the other seven consensus
methods provide highest support to the topology ((BC)A) with
frequency 1.0 for all values of L tested. Majority-Rule gives greatest
support for the ((BC)A) topology instead of (ABC) as in the cases
for M = 1.0 and M = 10.0 because when the migration rate is
sufficiently small (M = 0.1), the probability is far greater than 0.5
that a gene tree displays topology ((BC)A).

5.2. GLASS/Maximum Tree on inferred gene trees with mutation

5.2.1. Simulation procedure
Thus far, our results for GLASS/Maximum Tree have only

incorporated genealogical discordance owing to the stochasticity
of the coalescent process. However, an additional form of
stochasticity that can cause genealogical discordance is mutation.
To examine the behavior of GLASS/Maximum Tree when gene
trees are estimated instead of known with certainty, we applied
GLASS/Maximum Tree to gene trees that were inferred from
sequence alignments. We examined the influence of mutation on
GLASS/Maximum Tree under two scenarios: with and without
ancestral population structure. The species tree in this analysis is
identical to that in Section 5.1 and Fig. 3. The only exception is
that for the unstructured ancestral population analysis, we let the
number of demes in each ancestral population equal 1. To create
structured ancestral populations, we use scaled migration rates of
M = 0.1, 1.0, and 10.0 for the ancestral structure model.

Using ms (Hudson, 2002), we generated gene trees for L = 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700,
800, 900, and 1000 independent loci (with each set of L gene trees
generated independently of every other set). To convert branch
lengths from coalescent units to mutation units (average number
of mutations along the branch), we multiplied each length by θ/2,
where θ = 4Neµ = 0.01 and µ is the mutation rate per site per
generation. Each gene tree was input into Seq-Gen (Rambaut and
Grassly, 1997), which generated sequence alignments of length
500 nucleotides under a Jukes–Cantor substitutionmodel. For each
alignment, we used PHYLIP (Felsenstein, 1989) to infer rooted gene
trees with maximum likelihood assuming the Jukes–Cantor model
and a molecular clock. GLASS/Maximum Tree was then applied
to the L inferred gene trees. We repeated this process for 1000
independent replicate simulations of L loci.

5.2.2. Results
With no ancestral population structure, as the number of loci

increases, GLASS/Maximum Tree is increasingly likely to infer
the unresolved phylogeny (ABC) with zero internal branch length
(Fig. 4(A)). This increase for (ABC) is caused bymaximum likelihood
estimating gene trees with branches of length zero due to not
having any mutations. Once a single input gene tree has branches
of length zero between a pair of species, the GLASS/Maximum
Tree estimate must also have branches of length zero between
the species pair. As the number of loci increases, the probability
increases that the inferred GLASS/Maximum Tree will contain
branches of length zero. This increased probability is reflected
in the fact that as the number of loci increases, (ABC) increases
in frequency and the frequencies of ((AB)C), ((AC)B), and ((BC)A)
decrease.

As in the unstructured case, when ancestral populations are
structured, the inferred frequency of (ABC) increases with the
number of loci (Fig. 4(B, C, D)). However, ancestral structure will
generally increase the total branch length of gene trees, decreasing
the probability of observing no mutations. This phenomenon
decreases the rate at which the frequency of (ABC) increases. As
the level of ancestral structure increases (i.e., as migration rate
M decreases), the frequency of the ((BC)A) topology becomes
higher than that of ((AB)C), for a fixed number of gene trees.
This result is likely due to ((AB)C) topologies being converted to
(ABC) topologies, because the ((AB)C) topology is expected to have
shorter total tree length (and hence fewer mutations) than the
((AC)B) and ((BC)A) topologies.

Finally, because the ancestral structure model in Fig. 4(D) is the
same as in Fig. 3 withM = 0.1, the probability is small that a gene
tree will display topology ((AB)C). This low probability for ((AB)C)
is reflected in the small fraction of species trees that have topology
((AB)C) in Fig. 4(D). By incorporating the mutation process in
addition to the genealogical process,we find that GLASS/Maximum
Tree is increasingly likely to infer an unresolved tree as the number
of loci increases.
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Table 2
Summary of the behavior of consensus methods.

Criterion Asymptotic
behavior (no
structure)

Asymptotic
behavior
(structure)

Results Method Reference

Uniquely favored topologies Misleading Misleading Proposition 2 Democratic vote Degnan and Rosenberg (2006)
Average coalescence times Consistent Misleading Corollary 6 STEAC Liu et al. (2009)
Average ranks of coalescences Consistent Misleading Corollary 7 STAR Liu et al. (2009)
Majority-rule Inconsistent Misleading Proposition 8 Majority-Rule Consensus Degnan et al. (2009)
Uniquely favored triples Consistent Misleading Corollary 9 R∗ Consensus Degnan et al. (2009)

Rooted Triple Consensus Ewing et al. (2008)
Minimizing deep coalescences Misleading Misleading Proposition 10 MDC Than and Nakhleh (2009)

Than and Rosenberg (2011)
Minimum coalescence times Consistent Consistent Proposition 11 GLASS Mossel and Roch (2010)

Maximum Tree Liu et al. (2010)

An ‘‘inconsistent’’ method does not converge in probability to the correct bifurcating species tree as the number of sampled loci increases; a ‘‘misleading’’ method is not only
inconsistent, it converges in probability to an incorrect bifurcating species tree.
6. Discussion

We have described a general ancestral population structure
model that extends the basic multispecies coalescent. Using the
model, we have proven thatmany consensusmethods for inferring
species trees from gene trees that are statistically consistent when
ancestral populations are unstructured are no longer consistent
when ancestral population structure is introduced (Table 2). The
only method that we found to be consistent is GLASS/Maximum
Tree, which relies on minimum coalescence times across gene
trees between pairs of species. The result, however, does not
give a complete perspective on GLASS/Maximum Tree because
this method and its extension iGLASS (Jewett and Rosenberg,
2012) have the limitation that if little information exists even in
only a single locus in a sample collection of loci, it is possible
to obtain an estimated divergence time of 0 between species
(Figure 4 and DeGiorgio and Degnan, 2014). Although using
the minimum coalescence times between pairs of species is
statistically consistent when gene trees are known exactly, the
utility of GLASS/Maximum Tree in practice is uncertain.

We note that although our model is more general than the
multispecies coalescent, it still provides a simplification of true
ancestral population structure. For example, we assume that the
migration matrix, the number of demes, and the sizes of the
demes are constant along an internal branch of the species tree,
and do not account for changes in population size, numbers of
demes, and migration rates between demes over time. Even so,
this simplifiedmodel encodes a counterexample to consistency for
many consensus methods.

In addition to methods that are consistent under the standard
multispecies coalescent, we considered two methods, Democratic
Vote and MDC, that are inconsistent in this basic setting (Degnan
and Rosenberg, 2006; Than and Rosenberg, 2011; Rosenberg,
2013). Adding ancestral population structure does not eliminate
the inconsistency, and both methods are misleading in the
model with ancestral structure. This same reappearance of an
inconsistency also applies for Greedy Consensus (Bryant, 2003;
Degnan et al., 2009), which refines the tree produced by Majority-
Rule Consensus, and which we did not consider in detail. Greedy
Consensus is misleading in the standard multispecies coalescent,
though Majority-Rule Consensus is only inconsistent and not
misleading (Degnan et al., 2009); because we have shown that
Majority-Rule Consensus is misleading under ancestral population
structure, as a refinement of the Majority-Rule Consensus tree,
Greedy Consensus contains all the clades of the Majority-Rule
Consensus tree, and therefore continues to be misleading. The
relative ease of proving inconsistency in the ancestral structure
model for methods found to be inconsistent without ancestral
structure illustrates the phenomenon that inconsistency becomes
more apparent as new complexities are added to the evolutionary
model under investigation.

A number of studies have suggested signatures of ancestral
structure in the genomes of a variety of species. For example,White
et al. (2009) found significant asymmetry in the distribution of
gene trees in a set of three species of mouse, compatible with the
type of gene tree incongruence expected fromancestral population
structure (Slatkin and Pollack, 2008). Human evolutionary studies
have investigated hypotheses regarding ancestral population
structure and its effect on gene trees (Innan and Watanabe,
2006; Patterson et al., 2006; Durand et al., 2011; Yamamichi
et al., 2012). Yu et al. (2012) examined signatures of ancestral
hybridization in yeast by explicitly accounting for discordance
that could have arisen from this form of ancestral structure.
Continued modeling of the way in which ancestral structure
influences the distribution of gene trees will be a useful approach
for understanding evolutionary relationships in a variety of taxa.

The observation that many consensus methods are misleading
in the presence of ancestral population structure suggests a
number of directions for further analysis. First, it will be
informative to investigate the effect of ancestral structure on other
species tree inference methods that do not follow our modeling
framework. Examples of suchmethods include BEST (Liu and Pearl,
2007; Liu, 2008) and *BEAST (Heled and Drummond, 2010), which
perform inference of gene trees and species trees simultaneously
rather than applying a consensus algorithm to gene trees; both
have been incorporated by Leaché et al. (2014) into species tree
inference simulations that involve ancestral structure. It will also
be useful to perform additional studies to empirically characterize
the properties of ancestral population structure, by taking into
account that certain types of discordance, such as asymmetries in
the frequencies of gene trees, are signatures of ancestral population
subdivision (Slatkin and Pollack, 2008). Results from such studies
may be useful in developing consensus methods that are robust to
gene tree discordance caused by subdivided ancestral populations.
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Appendix

In this Appendix, we provide the proofs of results that STEAC,
STAR, R∗ Consensus, Rooted Triple Consensus, Minimize Deep Co-
alescences, and Majority-Rule Consensus are misleading estima-
tors of a species tree topology under model S(σ ,D,N,M, 9). In
each case, we use the example scenario described by assumptions
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1–3 in Section 3 as a counterexample. For consensus methodCL to
not be misleading, we must have that CL

P
−→ top(σ ) as L → ∞,

where top(σ ) = ((λAλB)λC). For all of the methods, the proofs
are obtained by considering an alternative species tree topology
T ⋆

= ((λBλC)λA). We first provide proofs that consensus meth-
ods based on mean distances across loci (Proposition 5), such as
STEAC (Corollary 6) and STAR (Corollary 7), are misleading. Proofs
for Majority-Rule (Proposition 8), R∗ and Rooted Triple Consensus
(Corollary 9), and Minimize Deep Coalescences (Proposition 10)
then follow.

Average distances

Under model S(σ ,D,N,M, 9), define the expected distance at
a random locus for two random lineages, one from species X and
the other from species Y, by ES[dXY]. Let ES[d] be the expected
distance matrix under model S, with entries ES[dXY]. Let dXY be a
random variable representing the distance between taxa X and Y,
and letd be the estimated mean distance matrix from a sample of
L loci, with entriesdXY, as in Eq. (2). Recall thatdℓ

XY is the estimated
distance between species X and Y at locus ℓ. Define dT as the true
distance matrix for topology T , with entry dXY(T ) as the distance
between species X and Y for topology T .

Proof of Proposition 5. ForCL to not bemisleading, wemust have
thatCL

P
−→ top(σ ) as L → ∞. Let T ⋆

= ((λBλC )λA) be a specific
tree topology that differs from the species tree topology top(σ ).
We will instead show thatCL

P
−→ T ⋆

≠ top(σ ) as L → ∞.
For fixed arbitrarily small ε > 0, we must show that ∥d −

dT ⋆∥∞ < ε as L → ∞, where ∥ · ∥∞ is the L∞-norm.
This requirement ensures that a clustering method satisfying the
properties in Lemma4,will, when applied tod, return the incorrect
tree topology T ⋆

= ((λBλC )λA) with probability 1 as L → ∞.
By the Weak Law of Large Numbers, we have that ∥d −

dT ⋆∥∞

P
−→ ∥ES[d] − dT ⋆∥∞ as L → ∞, where ES[d] is the

expected distance matrix under model S. Define G to be the set
of rooted bifurcating tree topologies on n taxa. It follows that

∥ES[d] − dT ⋆∥∞

= max
X,Y

|ES[dXY] − dXY(T ⋆)|

= max
X,Y


T ∈G

dXY(T )PS[T ]


− dXY(T ⋆)


= max

X,Y

 
T ∈G

T ≠T ⋆

dXY(T )PS[T ]


+ dXY(T ⋆)PS[T

⋆
] − dXY(T ⋆)


= max

X,Y

 
T ∈G

T ≠T ⋆

dXY(T )PS[T ]


− dXY(T ⋆)(1 − PS[T

⋆
])

.
Define K = maxT {maxX,Y dXY(T )}. It follows that dXY(T ) ≤ K for
any pair of species X and Y, and for any species tree topology T . Fix
δ > 0. Then dXY(T ) < K + δ. It follows that

∥ES[d] − dT ⋆∥∞

< max
X,Y

 
T ∈G

T ≠T ⋆

(K + δ)PS[T ]


− dXY(T ⋆)(1 − PS[T

⋆
])


= max

X,Y
|(K + δ)(1 − PS[T

⋆
]) − dXY(T ⋆)(1 − PS[T

⋆
])|

= max
X,Y

|(K + δ − dXY(T ⋆))(1 − PS[T
⋆
])|.
By the proof of Proposition 2, we make PS[T
⋆
] arbitrarily close to

1, so that PS[T
⋆
] > 1 − ε/(K + δ). Then

∥ES[d] − dT ⋆∥∞ < max
X,Y

(K + δ − dXY(T ⋆))
ϵ

K + δ


≤ max

X,Y
|ϵ|

= ϵ.

Hence, ∥d − dT ⋆∥∞ < ε as L → ∞. By Lemma 4, P[CL =

T ⋆
; S] → 1 as L → ∞, and P[CL = top(σ ) ; S] → 0. Therefore,CL ̸
P

−→ top(σ ), andCL is a misleading estimator of top(σ ). �

Average coalescence times

Under model S(σ ,D,N,M, 9), define the expected time to
coalescence at a random locus for a random lineage sampled from
species X and a random lineage sampled from species Y byES[TXY].
Proof of Corollary 6. For CL to not be misleading, we must have
thatCL

P
−→ top(σ ) as L → ∞. We will instead show thatCL

P
−→

T ⋆
≠ top(σ ) as L → ∞.
By theWeak Lawof LargeNumbers, TXY

P
−→ ES[TXY], and hence

the distancedXY = 2TXY can be employed by Proposition 5. Thus,
by Proposition 5,CL is a misleading estimator of top(σ ). �

Average ranks of coalescences

Let ES[Rℓ
XY] denote the expected rank of a coalescent event for a

random lineage from species X and a random lineage from species
Y in a gene tree from locus ℓ under S(σ ,D,N,M, 9).
Proof of Corollary 7. For CL to not be misleading, we must have
that CL

P
−→ top(σ ) as L → ∞. We will instead show thatCL

P
−→ T ⋆

≠ top(σ ) as L → ∞.
By theWeak Lawof LargeNumbers, RXY

P
−→ ES[RXY], and hence

the distancedXY = 2RXY can be employed by Proposition 5. Thus,
by Proposition 5,CL is a misleading estimator of top(σ ). �

Majority-rule

Proof of Proposition 8. For CL to not be misleading, we must
have that CL

P
−→ top(σ ) as L → ∞. We will instead show thatCL

P
−→ T ⋆

≠ top(σ ).
Fix α ∈ [0.5, 1). Set δ > 0 arbitrarily small and recall from the

example scenario that PS[T
⋆
] = PS[((λBλC)λA)] > (1 − δ)β2, and

that when holding τ2−τ3 andD constant and setting themigration
rate m sufficiently small, β2 is arbitrarily close to 1. For CL to be
misleading, all clades displayed by T ⋆ must have frequency greater
than α. By the Weak Law of Large Numbers,P[T ⋆

]
P

−→ PS[T
⋆
] as

L → ∞. Because PS[T
⋆
] has probability arbitrarily close to 1, all

clades displayed by top(T ⋆) have a frequency greater than α, and
P[CL = T ⋆

; S] → 1 as L → ∞. Therefore,CL
P

−→ T ⋆, andCL is a
misleading estimator of top(σ ). �

Uniquely favored rooted triples

Proof of Corollary 9. For CL to not be misleading, we must have
thatCL

P
−→ top(σ ) as L → ∞. We will instead show thatCL

P
−→

T ⋆
≠ top(σ ). From the proof of Proposition 8, all rooted

triples displayed by T ⋆
= ((λBλC)λA) are uniquely favored.

Further, because these uniquely favored triples are derived from a
single topology, they are compatible. Because a rooted bifurcating
tree topology is defined by its set of rooted triples (Steel,
1992, Proposition 4), P[CL = T ⋆

; S] → 1 as L → ∞. Therefore,CL
P

−→ T ⋆, andCL is a misleading estimator of top(σ ). �
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Minimizing deep coalescences

Consider fixed species tree σ and fixed gene tree topology
T and let xl(top(σ ), T ) denote the number of extra lineages
contributed by the topology ofσ for gene tree topologyT . Consider
the set of all possible n-taxon rooted bifurcating tree topologies G.
The number of extra lineages contributed by the topology of σ is

xl(top(σ )) =


T ∈G

xl(top(σ ), T )P[T ]. (3)

Proof of Proposition 10. For CL to not be misleading, we must
have that CL

P
−→ top(σ ) as L → ∞. We will instead show thatCL

P
−→ T ⋆

≠ top(σ ). From the example scenario of Section 3,
we know that certain branch lengths of the species tree are long
enough that for fixed set X ∈ {ΓA, ΓB, ΓC} and fixed arbitrarily
small δ > 0, P[top(T |L) = top(σ |L) ; S] > 1 − δ. Using
Eq. (3), the difference in the numbers of extra lineages contributed
by the topologies of σ and T ⋆ is

∆xl(top(σ ), T ⋆) = xl(top(σ )) − xl(T ⋆)

=


T ∈G

[xl(top(σ ), T ) − xl(T ⋆, T )]P[T ].

Note that xl(top(σ ), T ⋆) = 1 and xl(T ⋆, T ⋆) = 0. Set the
migration rate m small enough that PS[T

⋆
] = PS[((λBλC)λA)] >

(1 − δ)β2, which is arbitrarily close to 1. It follows that, for each
T ∈ G\{T ⋆

}, PS[T ] is arbitrarily close to 0. ForCL to bemisleading,
we need ∆xl(top(σ ), T ⋆) > 0 as L → ∞. For fixed arbitrarily
small ε near 0, and by the Weak Law of Large Numbers, Slutsky’s
Theorem (Serfling, 1980, Theorem1.5.4), and Corollary B of Serfling
(1980), as L → ∞,

∆xl(top(σ ), T ⋆)
P

−→


T ∈G

[xl(top(σ ), T ) − xl(T ⋆, T )]PS[T ]

= [xl(top(σ ), T ⋆) − xl(T ⋆, T ⋆)]PS[T ] + ε

= PS[T ] + ε

> 0.

Because ∆xl(top(σ ), T ⋆) > 0 as L → ∞, P[CL = top(σ ) ; S] → 0
as L → ∞. Therefore, CL ̸

P
−→ top(σ ), and CL is a misleading

estimator of top(σ ). �
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