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An Unbiased Estimator of Gene Diversity in Samples Containing Related
Individuals
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Gene diversity is sometimes estimated from samples that contain inbred or related individuals. If inbred or related individuals
are included in a sample, then the standard estimator for gene diversity produces a downward bias caused by an inflation of the
variance of estimated allele frequencies.We develop an unbiased estimator for gene diversity that relies on kinship coefficients
for pairs of individuals with known relationship and that reduces to the standard estimator when all individuals are noninbred
and unrelated. Applying our estimator to data simulated based on allele frequencies observed for microsatellite loci in human
populations, we find that the new estimator performs favorably compared with the standard estimator in terms of bias and
similarly in terms ofmean squared error. For human population-genetic data, we find that a close linear relationship previously
seen between gene diversity and distance from East Africa is preserved when adjusting for the inclusion of close relatives.

Introduction

Gene diversity, or expected heterozygosity, is a fre-
quently used measure of genetic variation applied in diverse
areas of population genetics. Together with its counterpart,
gene identity or expected homozygosity, it has been used
to quantify genetic variation in populations (Driscoll et al.
2002; Hoelzel et al. 2002), evaluate genetic divergence
and population relationships (Nei 1973; Ramachandran
et al. 2005), detect inbreeding (Li andHorvitz1953),measure
linkage disequilibrium (Ohta 1980; Sabatti and Risch 2002),
and test for the influence of natural selection (Watterson
1978; Depaulis and Veuille 1998; Sabeti et al. 2002).

Consider a polymorphic locus with I distinct alleles
and a population with parametric allele frequencies p1,
p2, . . . ,pI, where pi2 [0, 1] and

PI
i51 pi51. The term ‘‘gene

diversity,’’ which is defined as

H5 1 �
XI
i5 1

p2i ; ð1Þ

was proposed by Nei (1973), though the use of equation (1)
as a measure of diversity dates to considerably earlier (Gini
1912; Simpson 1949; Gibbs and Martin 1962).

Now consider a sample of n observations of alleles, in
which the number of observations of allelic type i is ni. The
count estimate of pi is p̂i5ni=n. If no inbred or related in-
dividuals are included in the sample, then an unbiased es-
timator of gene diversity is (Nei and Roychoudhury 1974)

Ĥ5
n

n � 1

 
1 �

XI
i5 1

p̂2i

!
: ð2Þ

If relatives or inbred individuals are included in the
sample, then Ĥ is no longer an unbiased estimator of H.
To understand why this statement is true, suppose that
a sample contains a pair of close relatives. Because these
individuals are related, they may share one or two alleles
identically by descent (IBD) at a locus (compared with zero

alleles shared IBD in unrelated individuals). As a result, es-
timation of pi is based on fewer independent observations
than for a sample not containing any relatives. Although
E½p̂i�5pi when relatives are included, Var½p̂i� is greater than
it would be had no relatives been included. Observe that the

computation of E½Ĥ� involves a negative coefficient for

E
�
p̂2i
�
. Because E

�
p̂2i
�
5Var

�
p̂i
�
þ E½p̂i�

2
, E½Ĥ� decreases

as Var½p̂i� increases. Thus, the inclusion of relatives results
in a downward bias, so that E½Ĥ�,H. For the case in which
inbred unrelated individuals with known inbreeding coeffi-
cients are included in a sample, Weir (1989, 1996) provided

the expectation of 1�
PI

i51 p̂
2
i , producing an unbiased

estimator of gene diversity

ĤWeir 5
n
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where �f is the average inbreeding coefficient across individ-
uals (see also Shete 2003). When inbred individuals are in-
cluded, �f 6¼ 0, and it follows that E½Ĥ�,E½ĤWeir�5H:

In this article, we conduct a detailed investigation of the
case in which a sample includes related individuals. We de-
rive an unbiased estimator ofH for samples containing related
individuals with known levels of relationship. Our derivation
makes use of a formula of Bourgain et al. (2003) andMcPeek
et al. (2004) for the variance of count estimates of allele fre-
quencies in samples containing inbred and related individu-
als. The resulting estimator incorporates kinship coefficients,
the same quantitative descriptors of pairwise relationships
that have been used in diverse problems involving rela-
tives—such as evaluation of phenotypic covariances in fam-
ilies (Lange 2002), estimation of relatedness parameters
(Weir et al. 2006), and quantitative-trait linkage analysis (Al-
masy and Blangero 1998). When a sample consists only of
unrelated noninbred individuals, our new estimator H̃ reduces
to the standard estimator Ĥ, and it reduces to ĤWeir if inbred
but not related individuals are included. Using data simulated
based on allele frequencies from human populations, we find
that the new estimator H̃ corrects for bias generated by inclu-
sion of related individuals and that it attains a mean squared
error (MSE) comparable with that of Ĥ. We apply this new
estimator to microsatellite data from human population sam-
ples containing relatives and show that, compared with the
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standard estimator, it produces estimates closer to those ob-

tained when excluding relatives from the analysis.

Theory

We assume that gene diversity is estimated from n/2
diploid individuals.Ouraimis toobtain abias-correction fac-
tor that can be incorporated into a new estimator of gene di-
versity, H̃:We begin by computing Var½p̂i� in a sample that
may include relatives or inbred individuals. Var½p̂i� was re-
portedbyBourgainet al. (2003) andMcPeeket al. (2004);we
provide an alternative derivation that uses a generalization of
the simpler method of Broman (2001). This approach was
originally applied in a setting that did not consider inbreed-
ing, and we generalize the computation to include inbreed-
ing. Note that the variances of other estimators of allele
frequencies have previously been derived in fairly general
settings (McPeek et al. 2004) and that the estimator p̂i is
not a maximum likelihood estimator when related individu-
als are included in a sample (Boehnke 1991). However, our
interest here is specifically on the count-based estimator of
allele frequencies, as it is this estimator that is used in the
standard estimator of gene diversity in equation (2).

Define Xk to be the number of alleles of type i that are
carried by individual k at a particular locus. Xk can equal 0,
1, or 2, and E[Xk] 5 2pi. Regardless of the relationships
among individuals 1, 2, . . ., n/2, an unbiased estimator
for pi, the frequency of allele i, is

p̂i 5
1

n

Xn=2
k5 1

Xk: ð4Þ

The variance of p̂i is given by

Var½p̂i�5
1

n2

Xn=2
j5 1

Xn=2
k5 1

Cov
�
Xj;Xk

�
: ð5Þ

Suppose that individuals j and k are related. The co-
efficient of kinship between individuals j and k, Uj,k, is
the probability that two alleles chosen at the locus—one
from individual j and the other from individual k—are iden-
tical by descent. In the special case of j 5 k, the kinship
coefficient is Uk,k5 (1/2)(1þ fk), where fk is the inbreeding
coefficient for individual k (Lange 2002, p. 81).

Conditional on the nature of the relationship between
individuals j and k and on their inbreeding coefficients, the
four alleles in the two individuals can take on one of nine
condensed identity states (Jacquard 1974, p. 107). Let Ds5
Pr[S5 s], where the condensed identity state S ranges from
1 to 9 and the probability is conditional on the type of the
relationship. Using table 1 and the fact that the kinship co-
efficient for the pair of individuals equals D1 þ (1/2)(D3 þ
D5 þ D7) þ (1/4)D8 (Jacquard, 1974, p. 108), we obtain

E½XjXk�5
X2
a5 0

X2
b5 0

X9
s5 1

abDsPr½Xj 5 a;Xk 5 bjS5 s�

5 4Uj;kpið1 � piÞ þ 4p2i :

Because E[Xj] 5 E[Xk] 5 2pi, it follows that

Cov
�
Xj;Xk

�
5E

�
XjXk

�
� E

�
Xj

�
E
�
Xk

�
5 4Uj;kpi

�
1 � pi

�
:

ð6Þ

Inserting the covariance into equation (5) yields

Var½p̂i�5
4pið1 � piÞ

n2

Xn=2
j5 1

Xn=2
k5 1

Uj;k 5 �Upið1 � piÞ;
ð7Þ

Table 1
Joint Distribution of the Numbers of i Alleles Carried by
Individuals j and k Given Their Descent Configuration S,
Assuming Allele i Has Frequency p

S
Condensed

Identity Statea Xj, Xk Pr [Xj, XkjS]
1 0, 0 1 � p

2, 2 p

2 0, 0 (1 � p)2

0, 2 p(1 � p)
2, 0 p(1 � p)
2, 2 p2

3 0, 0 (1 � p)2

0, 1 p(1 � p)
2, 1 p(1 � p)
2, 2 p2

4 0, 0 (1 � p)3

0, 1 2p(1 � p)2

0, 2 p2(1 � p)
2, 0 p(1 � p)2

2, 1 2p2(1 � p)
2, 2 p3

5 0, 0 (1 � p)2

1, 0 p(1 � p)
1, 2 p(1 � p)
2, 2 p2

6 0, 0 (1 � p)3

0, 2 p(1 � p)2

1, 0 2p(1 � p)2

1, 2 2p2(1 � p)
2, 0 p2(1 � p)
2, 2 p3

7 0, 0 (1 � p)2

1, 1 2p(1 � p)
2, 2 p2

8 0, 0 (1 � p)3

0, 1 p(1 � p)2

1, 0 p(1 � p)2

1, 1 p(1 � p)
1, 2 p2(1 � p)
2, 1 p2(1 � p)
2, 2 p3

9 0, 0 (1 � p)4

0, 1 2p(1 � p)3

0, 2 p2(1 � p)2

1, 0 2p(1 � p)3

1, 1 4p2(1 � p)2

1, 2 2p3(1 � p)
2, 0 p2(1 � p)2

2, 1 2p3(1 � p)
2, 2 p4

a The first row of dots represents the two alleles for individual j, and the second

row represents the two alleles for individual k. Two alleles are identical by descent if

there is a line connecting them.
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where �U5 1

ðn=2Þ2
Pn=2

j51

Pn=2
k51 Uj;k is the average kinship co-

efficient across pairs of individuals (including comparisons
of individuals with themselves). This result can be seen to
be equivalent to the variance reported by McPeek et al.
(2004, p. 361).

Proposition 1
Consider a locus with I distinct alleles, allele frequen-

cies pi 2 [0, 1] and
PI

i51 pi51. Suppose a sample from
a population has n/2 possibly related and inbred individu-
als. Then an unbiased estimator for gene diversity is

H̃5
1

1 � �U

 
1 �

XI
i5 1

p̂2i

!
; ð8Þ

where Uj,k is the kinship coefficient of individuals j and k

and �U5 1

ðn=2Þ2
Pn=2

j51

Pn=2
k51 Uj;k is the average kinship coef-

ficient across pairs of individuals.

Proof
We need to show that E½H̃�5H. Observing that

E½p̂2i �5Var½p̂i� þ E½p̂i�2 and E½p̂i�5pi, we apply equation
(4) and then the variance of p̂i in equation (7) to get

E½H̃�5 1

1 � �U

�
1 �

XI
i5 1

�
Var½p̂i� þ p2i

��

5
1

1 � �U

�
1 �

XI
i5 1

�
�Upið1 � piÞ þ p2i

��
5H: h

Corollary 2

Consider a locus with I distinct alleles, allele frequen-
cies pi 2 [0, 1] and

PI
i51 pi51. Suppose a sample from

a population has n/2 possibly related and inbred individu-
als. LetR be the set of distinct types of relative pairs in the
sample. Further, let nR be the number of pairs of individuals
with relationship type R 2 R and let UR be the kinship co-
efficient for each of these pairs. Then an unbiased estimator
for gene diversity is

H̃5
nðn � 1Þ

n
�
n � 1 � �f

�
� 8

P
R2R nRUR

Ĥ; ð9Þ

where �f5 1
n=2

Pn=2
k51 fk is the average inbreeding coefficient

across individuals and fk is the inbreeding coefficient for
individual k.

Proof
Applying the definitions of �U andUk,k and the fact that

Uj,k 5 0 for a pair of ‘‘unrelated’’ individuals,

�U5
1

ðn=2Þ2
Xn=2
j5 1

Xn=2
k5 1

Uj;k5
4

n2

 Xn=2
k5 1

Uk;kþ2
Xn=2
j5 1

Xn=2
k5 jþ 1

Uj;k

!

5
1

n2

 
n þ n�f þ 8

X
R2R

nRUR

!
:

Inserting this value for �U into equation (8), we obtain the
desired result. h

Table 2
The 26 Populations Containing Relatives in the H1048 Data Set (Modified fromRosenberg 2006, Supplementary tables 16 and 19)

Population
Geographic
Region

Number of Sampled
Individuals

Number of Parent–
Offspring Pairs

Number of
Full-Sib Pairs

Number of Second-
Degree Pairs

Bantu (Kenya) Africa 12 0 1 0
Biaka Pygmy Africa 32 4 2 7
Mandenka Africa 24 0 0 2
Mbuti Pygmy Africa 15 2 0 1
San Africa 7 1 0 0
Yoruba Africa 25 2 2 0
French Europe 29 0 1 0
Orcadian Europe 16 1 0 0
Bedouin Middle East 48 1 0 1
Druze Middle East 47 1 2 2
Mozabite Middle East 30 0 1 0
Palestinian Middle East 51 0 1 5
Balochi Central/South Asia 25 0 1 0
Hazara Central/South Asia 24 0 1 1
Kalash Central/South Asia 25 1 0 1
Sindhi Central/South Asia 25 1 0 0
Cambodian East Asia 11 1 0 0
Lahu East Asia 10 1 1 0
Naxi East Asia 10 0 1 0
Oroqen East Asia 10 0 1 0
Melanesian Oceania 19 9 3 2
Colombian America 13 6 1 0
Karitiana America 24 6 6 0
Maya America 25 2 1 2
Pima America 25 15 6 10
Surui America 21 15 14 0
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Note that if no related individuals are included in the
sample, thenR is the empty set, thus reducing H̃ to ĤWeir; if
additionally no inbred individuals are included, then �f50
and H̃ reduces to Ĥ.

Corollary 3

Consider a locus with I distinct alleles, allele frequen-
cies pi 2 [0, 1] and

PI
i51 pi51. Suppose a sample from

a population has n/2 noninbred individuals, among which
q parent–offspring pairs, r full-sib pairs, and s second-
degree (avuncular, grandparent–grandchild, and half-sib)
relative pairs are included. Assuming the sample has no other
relative pairs, an unbiased estimator for gene diversity is

H̃5
nðn � 1Þ

nðn � 1Þ � 2q � 2r � s
Ĥ: ð10Þ

Proof
The kinship coefficients are UP 5 1/4 for parent–off-

spring pairs, UF 5 1/4 for full-sib pairs, and US 5 1/8 for
second-degree pairs. If an individual k is not inbred, then
fk 5 0. For a sample without inbred individuals, �f50. In-
serting the quantity and kinship coefficient for each of the
three types of relative pairs into equation (9), we obtain
equation (10). h

Corollary 4
Consider a locus with I distinct alleles, allele frequen-

cies pi 2 [0, 1] and
PI

i51 pi51. Suppose a sample from

a population has n/2 possibly related and inbred individu-
als. LetR be the set of distinct types of relative pairs in the
sample. Further, let nR be the number of pairs of individuals
with relationship type R 2 R and let UR be the kinship co-
efficient for each of these pairs. Then the bias of Ĥ is always
negative, increases in magnitude as H increases, and is
given by

biasðĤÞ5 � n�f þ 8
P

R2R nRUR

nðn � 1Þ H; ð11Þ

where �f5 1
n=2

Pn=2
k51 fk is the average inbreeding coefficient

across individuals and fk is the inbreeding coefficient for
individual k.

Proof
As shown in Corollary 2, H̃5cĤ, where

c5nðn� 1Þ=½nðn� 1� �f Þ � 8
P

R2R nRUR�. Rearranging
and taking the expected value gives E½Ĥ�5E½H̃�=c5H=c.
The desired result follows from simplifying the expression
for biasðĤÞ, or (1� c)H/c. h

Data from Human Populations

To examine the behavior of H̃ in a realistic setting, we
performed simulations and data analysis using microsatel-
lite loci from the H1048 and H952 subsets (Rosenberg
2006) of the Human Genome Diversity Project–Centre
d’Etude du Polymorphisme Humain (HGDP–CEPH) Cell

Table 3
MSE,Variance, andBiasSquaredofEstimates forDataSimulatedBasedonAlleleFrequencies atTwoLoci (AAT263PandACT3F12)

m (q, r, s) Estimator

AAT263P (H 5 0.6778) ACT3F12 (H 5 0.8263)

MSE Variance Bias2 MSE Variance Bias2

10 (2, 0, 0) Ĥfull 9.196 � 1023 9.141 � 1023 5.454 � 10�5 3.774 � 10�3 3.694 � 1023 7.923 � 10�5

H̃full 9.337 � 10�3 9.337 � 10�3 6.387 � 1028 3.773 � 1023 3.773 � 10�3 4.249 � 1028

Ĥreduced 9.911 � 10�3 9.911 � 10�3 9.160 � 10�8 4.034 � 10�3 4.034 � 10�3 1.110 � 10�7

(2, 2, 0) Ĥfull 1.084 � 1022 1.064 � 1022 2.047 � 10�4 4.692 � 10�3 4.390 � 1023 3.020 � 10�4

H̃full 1.110 � 10�2 1.110 � 10�2 1.542 � 1029 4.581 � 1023 4.581 � 10�3 2.562 � 10�10

Ĥreduced 1.385 � 10�2 1.385 � 10�2 6.957 � 10�9 5.899 � 10�3 5.899 � 10�3 1.595 � 10210

(2, 0, 2) Ĥfull 9.885 � 1023 9.777 � 1023 1.078 � 10�4 4.236 � 10�3 4.066 � 1023 1.706 � 10�4

H̃full 1.009 � 10�2 1.009 � 10�2 1.048 � 10�7 4.197 � 1023 4.197 � 10�3 1.855 � 10210

Ĥreduced 1.363 � 10�2 1.363 � 10�2 5.363 � 1028 5.839 � 10�3 5.839 � 10�3 3.014 � 10�9

20 (5, 2, 2) Ĥfull 5.107 � 1023 5.054 � 1023 5.273 � 10�5 2.030 � 10�3 1.959 � 1023 7.060 � 10�5

H̃full 5.160 � 10�3 5.160 � 10�3 9.794 � 1028 2.000 � 1023 2.000 � 10�3 5.322 � 1029

Ĥreduced 6.929 � 10�3 6.929 � 10�3 6.236 � 10�7 2.736 � 10�3 2.736 � 10�3 6.622 � 10�9

(5, 0, 0) Ĥfull 4.553 � 1023 4.535 � 1023 1.788 � 10�5 1.768 � 10�3 1.739 � 1023 2.916 � 10�5

H̃full 4.593 � 10�3 4.593 � 10�3 1.365 � 1028 1.762 � 1023 1.762 � 10�3 1.086 � 10�8

Ĥreduced 4.941 � 10�3 4.941 � 10�3 4.670 � 10�8 1.913 � 10�3 1.913 � 10�3 3.941 � 1029

(2, 5, 2) Ĥfull 5.092 � 1023 5.043 � 1023 4.935 � 10�5 2.048 � 10�3 1.975 � 1023 7.219 � 10�5

H̃full 5.148 � 10�3 5.148 � 10�3 5.843 � 1029 2.016 � 1023 2.016 � 10�3 5.047 � 10�10

Ĥreduced 6.948 � 10�3 6.948 � 10�3 5.923 � 10�9 2.755 � 10�3 2.755 � 10�3 1.884 � 10211

30 (15, 0, 0) Ĥfull 3.580 � 1023 3.548 � 1023 3.233 � 10�5 1.396 � 10�3 1.346 � 1023 4.973 � 10�5

H̃full 3.609 � 10�3 3.609 � 10�3 3.411 � 10�9 1.370 � 1023 1.370 � 10�3 2.490 � 10�9

Ĥreduced 4.924 � 10�3 4.924 � 10�3 2.990 � 10210 1.903 � 10�3 1.903 � 10�3 2.346 � 1029

(5, 5, 5) Ĥfull 3.370 � 1023 3.345 � 1023 2.464 � 10�5 1.294 � 10�3 1.260 � 1023 3.525 � 10�5

H̃full 3.393 � 10�3 3.393 � 10�3 3.169 � 10�8 1.278 � 1023 1.278 � 10�3 2.062 � 1029

Ĥreduced 4.930 � 10�3 4.930 � 10�3 1.154 � 1028 1.890 � 10�3 1.890 � 10�3 2.397 � 10�8

(0, 5, 5) Ĥfull 2.970 � 1023 2.962 � 1023 7.105 � 10�6 1.122 � 10�3 1.110 � 1023 1.181 � 10�5

H̃full 2.988 � 10�3 2.988 � 10�3 4.302 � 1028 1.119 � 1023 1.119 � 10�3 4.230 � 10�9

Ĥreduced 3.623 � 10�3 3.623 � 10�3 4.632 � 10�8 1.369 � 10�3 1.369 � 10�3 2.294 � 1029

Sample size is indicated by m, and q, r, and s represent the numbers of parent–offspring, full-sib, and second-degree pairs, respectively. Each value is based on 100,000

simulated data sets, and the same simulated data sets were used for all estimators and for all three quantities (MSE, variance, bias squared). We use Ĥfull and H̃full to denote Ĥ

and H̃ applied to a sample of m individuals. For Ĥ applied to a sample of m individuals in which q þ r þ s related individuals are removed to create a sample of m � q� r � s

individuals, we use the notation Ĥreduced. Boldface type indicates the estimator with the smallest MSE, variance, or bias squared.
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Line Panel (Cann et al. 2002; Cavalli-Sforza 2005). The
H1048 subset consists of 1,048 individuals in 53 popula-
tions. Among the 53 populations, the samples from 26
of them contain at least one pair of closely related individ-
uals with either a first-degree (parent–offspring, full-sib) or
second-degree (avuncular, grandparent–grandchild, and
half-sib) relationship (table 2). The H952 subset is a collec-
tion of 952 individuals included in the larger H1048 subset.
No two of the 952 individuals are believed to have a first- or
second-degree relationship. Levels of relationship in
H1048, as estimated previously from microsatellite geno-
types (Rosenberg 2006), were treated here as known with
certainty. Because no cycles were observed in pedigrees
from the HGDP–CEPH panel (Rosenberg 2006), we as-
sumed that none of the panel members were inbred. Gen-
otypes at 783 autosomal microsatellite loci (Ramachandran
et al. 2005; Rosenberg et al. 2005) were investigated in the
H1048 and H952 data sets.

Simulations
Simulation Procedure

Simulations based on the microsatellite loci were used
to examine the properties of H̃ and Ĥ. For each of the 783
loci, we treated allele frequencies estimated from the H952
subset of individuals as true allele frequencies. The para-
metric gene diversity H was obtained for a locus as one mi-
nus the sum of the squares of these allele frequencies. All of
our simulations assumed no inbreeding.

For a given locus, individual genotypes were simu-
lated by sampling two alleles independently from the allele
frequency distribution. To simulate a related individual
with a given level of relationship to another individual,
the number of alleles shared IBDwith its relative was drawn

under the appropriate probability distribution for the spec-
ified type of relative pair (parent–offspring, full-sib, or sec-
ond-degree). This number of shared alleles (0, 1, or 2) was
copied from a random individual that had already been gen-
erated and that had not yet been paired with a relative; if the
number of alleles copied was 1, then an allele was chosen at
random from the previously generated individual. The rest
of the alleles, if any, were sampled independently from the
allele frequency distribution. Gene diversity was estimated
using H̃ and Ĥ for samples with and without related indi-
viduals. We applied Ĥ both to entire samples as well to sam-
ples in which the ‘‘second’’ member of each relative pair
was discarded. For each locus, simulated sets of individuals
were obtained 100,000 times, and Ĥ, H̃, Ĥ

2
, and H̃

2
were

averaged across all replicates. The true value for gene di-
versity,H, was then subtracted from the mean of Ĥ and H̃ to
calculate bias for each estimator (and the result was squared
to give bias squared). Variance of Ĥ was calculated by sub-
tracting the square of the mean of Ĥ from the mean of Ĥ

2

(variance of H̃ was calculated analogously). MSE was then
calculated by adding variance and bias squared. Note that in
our simulations, relative pairs were all disjoint, so that no
individual was contained in multiple relative pairs; how-
ever, in our derivations, it is not required for relative pairs
to be disjoint for H̃ to be unbiased.

Simulation Results

To illustrate the performance of the estimators across
the span of gene diversities present in the human microsa-
tellite data set, loci were placed in increasing order by as-
sumed parametric gene diversity, and six equally spaced
loci—with the 112th, 224th, 336th, 448th, 560th, and
672nd highest values of gene diversity—were chosen for

FIG. 1.—MSE as a function of sample size m for three different estimators. Each plot in a given row represents samples with a different type of
relative pair. The numbers of parent–offspring, full-sib, and second-degree pairs are denoted by q, r, and s, respectively. The full and reduced samples
contain m and m/2 individuals, respectively. The H̃full curve is almost directly on top of the Ĥfull curve. (A) Allele frequencies simulated based on
observed frequencies at locus AAT263P (H 5 0.6778). (B) Allele frequencies simulated based on observed frequencies at locus ACT3F12 (H 5
0.8263). The range of the plots is truncated at 0.02, so that the MSE for small sample sizes is not shown. Each point in the graphs is based on 100,000
simulated data sets, and the same simulated data were used for all three estimators.
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analysis. Similar results were obtained with all six loci (data
not shown), and therefore, among the six loci only the locus
with the lowest gene diversity (AAT263P,H5 0.6778) and
the locus with the highest gene diversity (ACT3F12, H 5
0.8263) were chosen for display. For both loci, table 3
shows the simulated MSE, variance, and bias squared for
the different estimators, considering three different sample
sizes and three combinations of the number of related in-
dividuals for each sample size. Because the simulation re-
sults are based on 100,000 replicate data sets, each of the
quantities presented is small. However, it is possible to ob-
serve differences in the properties of the three estimators.
Among the three estimators, Ĥ applied to full samples gives
the lowest variance, H̃ produces slightly higher variance,
and Ĥ applied to samples with related individuals removed
produces the highest variance. Bias squared is very close to
zero for Ĥ applied to samples with related individuals re-
moved, as well as for H̃, but it is noticeably higher for Ĥ
applied to full samples containing relatives. For the locus

with the lower value of H (0.6778), Ĥ applied to full sam-
ples has the smallest MSE in all cases tested, although H̃ has
MSE very close to that of Ĥ. However, for the locus with
the higher value of H (0.8263), MSE is always smallest for
H̃. Therefore, H̃ is not only unbiased, but it also has MSE
comparable with—and sometimes smaller than—that of Ĥ.

It is instructive to investigate the influence of specific
variables on the MSE, variance, and bias squared of H̃ and
Ĥ, by varying the simulation parameters over the space of
gene diversities, sample sizes, and possible sets of relative
pairs, and calculating MSE, variance, and bias squared for
each scenario. We use Ĥfull and H̃full to denote Ĥ and H̃
applied to a sample of individuals. For Ĥ applied to a sample
in which related individuals are removed, we use the
notation Ĥreduced.

Figure 1 displays the effect of sample size on MSE
for each of the estimators, for scenarios in which all sim-
ulated individuals belong to relative pairs of a particular
type. Here, the full and reduced samples consist of m

FIG. 2.—Heat maps of simulated MSE, variance, and bias squared for each estimator applied to a full sample of 40 and a reduced sample of 20
individuals, as functions of the mixture of types of relative pairs included in the sample. The simulation was based on allele frequencies at the AAT263P
locus (H 5 0.6778). The sample of 40 individuals includes q parent–offspring, r full-sib, and s second-degree pairs. The three vertices correspond to
samples that contain either all parent–offspring, all full-sib, or all second-degree pairs. Moving horizontally along the triangle changes the numbers of
parent–offspring and full-sib pairs in the sample and moving vertically changes the number of second-degree pairs. The numbers indicated on the scale
are the cutoff values for each color. Each row of triangles represents a different estimator, and each column represents a different statistic. Blue and
black dots represent the points at which the smallest and largest values occur in each triangle, respectively. Each point in the graphs is based on 100,000
simulated data sets, and the same simulations were used for all three estimators.
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and m/2 individuals, respectively. When q5 m/2, r5 m/2,
or s 5 m/2, MSE is consistently lower for Ĥfull and
H̃full (which have virtually identical MSE and therefore
have overlapping lines in the graph) than for Ĥreduced. As
the sample size increases, the MSEs of all estimators
approach zero.

We next examined how the three estimators performed
in simulated samples containing the same sample size and
total number of relative pairs but with different combina-
tions involving different numbers of parent–offspring,
full-sib, and second-degree pairs. The same two loci that
were analyzed in table 3 and figure 1 were investigated
to show the effect of the combination of relative pairs at
differing degrees of gene diversity. Figures 2 and 3 illus-
trate MSE, variance, and bias squared for each estimator
as functions of the combination of types of relative pairs
in a full sample of size 40 and a reduced sample of size
20 individuals. Each point in a triangle represents the num-
ber of parent–offspring, full-sib, and second-degree relative
pairs in a sample; the sum of these quantities is equal to half
the sample size. MSE and variance are always lower for
Ĥfull and H̃full than for Ĥreduced, which relies on a smaller
sample size, and Ĥfull and H̃full show similar trends. Bias
squared for the unbiased H̃full is similar to that for
Ĥreduced, which eliminates relatives from the sample,
whereas it is much larger for Ĥfull. As the number of

first-degree pairs is increased (decreasing the number of
second-degree pairs), both variance and MSE increase.
For Ĥfull, as can be predicted from equation (11), bias
squared also increases with an increase in the number of
first-degree pairs. Because they are both unbiased estima-

tors, H̃full and Ĥreduced display no particular pattern for bias

squared.
Finally, we studied the trends in MSE, variance, and

bias squared for the estimators over the space of gene

diversities, holding the full sample size fixed at 30 individ-

uals and the reduced sample size fixed at 15. Unlike the

analyses in table 3 and figures 1–3, which show results

based on two representative loci, this analysis used simu-

lations based on all 783 microsatellites. We considered

a scenario in which the sample of 30 individuals consisted

of 15 parent–offspring pairs. Figure 4 illustrates that for all

three estimators, MSE and variance tend to decrease as

gene diversity increases. Because H̃full and Ĥreduced are both

unbiased, bias squared shows no trend for these estimators.

However, because bias for Ĥfull is linear with respect

to gene diversity (eq. 11), bias squared is quadratic.

On the basis of equation (11), we predict�
bias

�
Ĥfull

��2
5
�
� 8�15�ð1=4Þ

60�59
H
�2
�
�
7:182� 10�5

�
H2,

and a close match to this prediction was observed. The

FIG. 3.—Heat maps of simulated MSE, variance, and bias squared for each estimator applied to a full sample of 40 and a reduced sample of 20
individuals, as functions of the mixture of types of relative pairs included in the sample. The simulation was based on allele frequencies at the ACT3F12
locus (H 5 0.8263). See figure 2 caption for additional details.
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regression displayed in figure 4 has regression model�
bias

�
Ĥfull

��2
5
�
7:187� 10�5

�
H2.

Three main results can be observed in our simulations.
First, H̃ is unbiased and has comparable bias in samples

containing relatives to that obtained by applying Ĥ to sam-
ples with relatives removed. Using H̃, or excluding relatives
and using Ĥ, reduces the bias compared with using Ĥ with-
out excluding relatives. Second, H̃ has comparable (but
consistently slightly higher) variance to the values obtained
with Ĥ in samples containing relatives. Both H̃ and Ĥ have
lower variance in full samples of individuals than that of Ĥ
in reduced samples that exclude relatives. Third, because H̃
has less bias than Ĥ in samples containing relatives, H̃ has
comparable, and sometimes smaller, MSE to Ĥ (although
its variance is larger). Both estimators have lowerMSE than
Ĥ applied to subsets that exclude relatives.

The properties of the estimators depend on a number
of parameters. All estimators have lower MSE as sample
size increases. In addition, the MSEs of Ĥ and H̃ are smaller

when second-degree relative pairs are investigated, in com-
parison to scenarios that include an equivalent number of
first-degree pairs. Furthermore, the MSEs of Ĥ and H̃
are generally smaller for loci with larger gene diversities,
with the magnitude of the bias of Ĥ increasing linearly with
increasing gene diversity.

We can conclude that for samples containing relatives,
H̃ has comparable variance to Ĥ, with a considerable reduc-
tion of bias. H̃ has comparable bias in a full sample to that of
Ĥ applied to a reduced sample excluding relatives, with
a considerable reduction of variance. Thus, H̃ combines in-
to a single estimator the desirable properties possessed by Ĥ
applied to samples with relatives and by Ĥ applied to sam-
ples without relatives.

Application to Data
Notation

For convenience, we use the following notation: Ĥ952

and Ĥ1048 for application of Ĥ to the samples of 952 and

FIG. 4.—MSE, variance, and bias squared for each estimator applied to a full sample of 30 and a reduced sample of 15 individuals, as functions of
parametric gene diversity, considering simulated values based on each of the 783 loci. The simulations incorporated 30 individuals in 15 parent–
offspring pairs. (A) Ĥfull. A quadratic regression of bias squared on H (with the constant and linear terms forced to be 0) is given by (7.187 � 10�5)H2,
with R2 5 0.959. The Spearman correlation coefficient is �0.8364 for H and MSE and �0.8394 for H and variance. (B) H̃full. The Spearman correlation
coefficient is �0.8394 for H and MSE and �0.8394 for H and variance. (C) Ĥreduced. The Spearman correlation coefficient is �0.8447 for H and MSE
and �0.8447 for H and variance. Each point in the graphs is based on 100,000 simulated data sets, and the same simulations were used for all three
estimators.
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1,048 individuals, respectively, and H̃952 and H̃1048 for ap-
plication of H̃ to these samples. Note that because the H952
data set contains no relative pairs, H̃9525Ĥ952, and there is
no need to consider H̃952 separately. We also use the nota-
tion Ĥ507, Ĥ603, and H̃603 when restricting our analysis to
the 26 populations containing at least one relative pair; for
each of the 27 remaining populations, the estimators Ĥ and
H̃ produce identical values.

Mean of the Estimator

For investigating the properties of Ĥ and H̃ applied to
the H1048 data set, because the true value of H is unknown
for the actual data, we treated the value of Ĥ952 for each
locus as a substitute ‘‘true’’ value. Because Ĥ is unbiased
when applied to data not containing relatives, Ĥ952 provides
a sensible proxy for the unknown true gene diversity. This
approach enabled us to consider how estimates of H from
data including relatives might differ from estimates based
on the same data excluding all relatives. For each of the 53
populations, we computed the means of Ĥ952, Ĥ1048, and
H̃1048 across the 783 microsatellite loci. Because the true
H is unknown and bias cannot be calculated, we instead
examine the mean of Ĥ1048 across loci minus the mean
of Ĥ952 across loci and the mean of H̃1048 across loci minus
the mean of Ĥ952 across loci.

Figure 5 shows comparisons of the mean of
Ĥ1048 � Ĥ952 across loci and the mean of H̃1048 � Ĥ952

across loci. In general, the three estimators produce similar
estimates in a given population. However, notice that in fig-
ure 5A, Ĥ1048 is reduced compared with Ĥ952, a likely con-
sequence of the bias of Ĥ when applied to samples
containing relatives. When H̃1048 is used in place of
Ĥ1048, because H̃1048 corrects for the inclusion of known
related individuals, there is a considerable reduction in
the magnitude of the difference between the mean of the
estimator (Ĥ1048 or H̃1048) across loci and the mean of
Ĥ952 across loci (fig. 5B). These observations are reflected
in Wilcoxon signed rank tests that compare paired lists of
mean heterozygosities across loci for the 53 populations
(table 4). The P value for a comparison of Ĥ1048 with
Ĥ952 was 8.804 � 10�6, suggesting that inclusion of rela-
tives in a sample has a statistically significant impact on Ĥ.
In contrast, H̃1048 and Ĥ952 showed no significant differ-
ence, with a P value of 0.703 for the Wilcoxon signed rank
test. Similar results were obtained for other comparisons of
the three estimators. The mean across populations
of Ĥ952 � H̃1048

�
3:262� 10�4

�
was smaller than for

Ĥ952 � Ĥ1048

�
2:387� 10�3

�
; the same was true for the

mean of
		Ĥ952 � H̃1048

		�6:660� 10�4
�

compared with
the mean of

		Ĥ952 � Ĥ1048

		�2:387� 10�3
�
.

Comparable results were obtained when using only
the 26 populations that contained relative pairs. The
Wilcoxon signed rank test produced a statistically sig-
nificant P value of 2.980 � 10�8 for Ĥ603 compared
with Ĥ507 and a nonsignificant P value of 0.708 when
comparing H̃603 with Ĥ507. The mean across populations
of Ĥ507 � H̃603

�
6:649� 10�4

�
was smaller than for

Ĥ507 � Ĥ603

�
4:866� 10�3

�
, as was the mean of		Ĥ507 � H̃603

		�1:358� 10�3
�

relative to that of

		Ĥ507 � Ĥ603

		�4:866� 10�3
�
. In addition, similar numbers

of populations had H̃603.Ĥ507 ð12Þ and H̃603,Ĥ507 ð14Þ;
by contrast, there were no populations with Ĥ603.Ĥ507.

Because estimators often have a trade-off between bias
and variance, we investigated the relationship between the
mean values across loci of Ĥ603 � Ĥ507 and H̃603 � Ĥ507

and the standard deviations of Ĥ603 and H̃603 across loci.
We observed that compared with Ĥ603, H̃603 produces a no-
ticeable decrease in the mean difference from Ĥ507 with on-
ly a slight increase in the standard deviation (fig. 6). This
result is somewhat analogous to the simulation-based result
that H̃ has less bias than Ĥ and comparable variance.

Gene Diversity versus Distance from Africa

Based on an observed decline of gene diversity
estimates with geographic distance from East Africa,
Ramachandran et al. (2005) argued that the geographic ex-
pansion of modern humans can be described by a series of
founder events originating in Africa. This analysis utilized

FIG. 5.—Comparison of the mean of Ĥ1048 � Ĥ952 and the mean of
H̃1048 � Ĥ952. Each population is represented by a point colored based on
the geographic location of the population, and the dotted line represents
zero difference between the full-data estimator and Ĥ952. Because 27 of
the 53 populations do not contain related individuals, the gene diversities
given by Ĥ1048 and H̃1048 are the same for these populations. (A) The
mean of Ĥ1048 � Ĥ952, displaying a reduction of Ĥ when applied to
samples containing related individuals. (B) The mean of H̃1048 � Ĥ952,
displaying a decrease in the magnitude of the difference between the
full-data estimator and Ĥ952.
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the Ĥ estimator applied to the 783 microsatellites typed in
the H1048 subset of individuals, excluding the Surui
population. To evaluate how the results of Ramachandran
et al. (2005) were affected by the bias of Ĥ in samples
with close relatives, we analyzed the relationships of the
three estimators of gene diversity—Ĥ952, Ĥ1048, and
H̃1048—with geographic distance from East Africa (fig.
7). Distance from Addis Ababa was measured in kilometers
via waypoint routes and was based on the values from
Rosenberg et al. (2005).

The three estimators produced relatively similar re-
gressions (fig. 7), demonstrating that the close linear rela-
tionship of gene diversity and distance from Africa is not
greatly affected by inclusion of relatives in the analysis. We
observed very similar values for the coefficients of deter-
mination (R2) of linear regressions when using Ĥ952,
Ĥ1048, and H̃1048 (note that all three R2 values are higher
than that reported by Ramachandran et al. (2005), whose
lower value resulted from an error in the calculation of their
fig. 4A). The Surui population, which has the smallest gene
diversity and is the farthest population from Addis Ababa,
deviates considerably from the regression line when using
Ĥ1048 to measure gene diversity (fig. 7B). When excluding
the large number of relatives present in the Surui sample
(Ĥ952) or correcting for their inclusion (H̃1048), the Surui
population is not as extreme an outlier (fig. 7A and C).

Discussion

In this article, we have developed an unbiased estima-
tor H̃ for gene diversity in samples containing related and
inbred individuals. The bias-correction factor in this estima-
tor, which we derived from the variance of allele frequency
estimates, depends only on the average kinship coefficient
between pairs of sampled individuals. Using data simulated
based on allele frequency distributions from human popu-
lations, we found that H̃ performs well with regard to both
bias and MSE. The bias generated by H̃ applied to data in-
cluding relatives is approximately the same as the bias gen-
erated by the standard estimator Ĥ applied to data
containing only unrelated individuals. The MSE for H̃ is
comparable to—and often smaller than—the MSE of Ĥ
when related individuals are included. Calculation of H̃ re-
lies only on sample allele frequencies and on the average
kinship coefficient and is therefore easy to perform when
relationships among individuals are known. Thus, the
new estimator H̃ offers a combination of unbiasedness,
low MSE, and ease of computation, providing an improved
approach to the estimation of gene diversity in samples
containing relatives.

Using data from human populations, we found that H̃
largely corrected a reduction in the standard estimator Ĥ,
producing estimates that were not significantly different
from those obtained if we instead removed relatives from
the data set and applied Ĥ. This shift toward the values ob-
tained in data without relatives occurred together with only
a slight increase in standard deviation across loci relative to
Ĥ. However, by treating dependent observations as inde-
pendent, Ĥ perhaps produces a smaller variance than is ap-
propriate in samples with relatives. Thus, we conclude that
as an alternative to removing relatives from samples con-
taining relative pairs, H̃ can be applied to obtain suitable
gene diversity estimates.

When we applied H̃ to the human data, a few pop-
ulations still produced a ‘‘bias,’’ in that H̃1048 remained
considerably lower than Ĥ952. The most noticeable of
these populations are the Surui, Karitiana, and Pima pop-
ulations from the Americas (fig. 5B); the ‘‘bias’’ was
larger for these low-diversity populations, whereas theory
predicts less bias when diversity is lower (eq. 11). It
should first be noted that unlike for the other populations,
inferences about second-degree relationships obtained by
Rosenberg (2006) were somewhat uncertain for the Surui
and Karitiana populations. Thus, table 2 and our analysis
did not include inferred second-degree relationships in
those populations, when in fact many are likely to be

FIG. 6.—Comparison of the mean difference of an estimator (Ĥ603 or
H̃603) from Ĥ507 with the standard deviation of the estimator. Each
population is represented by a point colored based on the geographic
location of the population. Open and filled circles represent the estimates
for Ĥ603 and H̃603, respectively.

Table 4
Statistical Tests Applied to the Mean Gene Diversity across Loci

P value for Wilcoxon
Signed Rank Test

Mean of Hreduced � Hfull

across Populations
Mean of jHreduced � Hfullj

across Populations
Fraction of Populations
with Hfull . Hreduced

Ĥ952 versus Ĥ1048 8.804 � 10�6 2.387 � 10�3 2.387 � 10�3 0
Ĥ952 versus H̃1048 0.703 3.262 � 10�4 6.660 � 10�4 0.226
Ĥ507 versus Ĥ603 2.980 � 10�8 4.866 � 10�3 4.866 � 10�3 0
Ĥ507 versus H̃603 0.708 6.649 � 10�4 1.358 � 10�3 0.462

In the header line, Hreduced refers to H952 or H507 depending on which estimator is being considered; similarly, Hfull refers to Ĥ1048, H̃1048, Ĥ603, or H̃603.
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present. This is a likely reason why the ‘‘bias’’ in the Sur-
ui and Karitiana populations was only partially elimi-
nated. For the Pima population, a likely explanation is
that the sample contains many related individuals in ex-
tended families (Rosenberg, 2006), and our computation
only adjusted for first- and second-degree relative pairs. If
these higher order relationships had been fully known,
however, it would have been possible to use our estimator
to adjust for them.

Our estimator adjusts for inbreeding by averaging over
inbreeding coefficients for sampled individuals. It is impor-
tant to note that the inbreeding coefficients that we have
included are exact values obtained from pedigrees. If an es-
timated inbreeding coefficient was used in place of the exact
value, then H̃ would not necessarily produce unbiased es-
timates in samples containing inbred individuals. H̃ would
also lead to a bias if relationships were misspecified. In our
data example, relationships were assumed to be known, and
for a data set of the size used for inferring the relationships
(Rosenberg 2006) this assumption is generally sensible.
However, for small data sets in which relationship inferen-
ces are uncertain, caution must be used when interpreting
the bias of H̃ applied to the same data from which relation-
ships are estimated.

The estimators we have considered relate to within-
population gene diversity. What if we consider the gene di-
versity between populations? Suppose we have samples
from two populations, A and B, each containing related in-
bred individuals. The between-population analog of gene
diversity is ĤA;B51�

PI
i51 p̂iq̂i, where p̂i and q̂i are esti-

mates of the frequency of allele i at a given locus in pop-
ulations A and B, respectively (Nei 1987). Because the bias
in within-population gene diversity estimates only arises
from the quadratic p̂2i term in equation (1),
E
�PI

i51 p̂iq̂i
�
5
PI

i51 piqi (Nei 1987, p. 222), and ĤA;B

continues to be an unbiased estimator for between-popula-
tion gene diversity in samples containing relatives.
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