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ABSTRACT

Gene diversity, a commonly used measure of genetic variation, evaluates the proportion of heterozy-
gous individuals expected at a locus in a population, under the assumption of Hardy–Weinberg
equilibrium. When using the standard estimator of gene diversity, the inclusion of related or inbred
individuals in a sample produces a downward bias. Here, we extend a recently developed estimator shown
to be unbiased in a diploid autosomal sample that includes known related or inbred individuals to the
general case of arbitrary ploidy. We derive an exact formula for the variance of the new estimator, H̃, and
present an approximation to facilitate evaluation of the variance when each individual is related to at most
one other individual in a sample. When examining samples from the human X chromosome, which
represent a mixture of haploid and diploid individuals, we find that H̃ performs favorably compared to
the standard estimator, both in theoretical computations of mean squared error and in data analysis.
We thus propose that H̃ is a useful tool in characterizing gene diversity in samples of arbitrary ploidy
that contain related or inbred individuals.

FOR a given locus, gene diversity, also known as
expected heterozygosity, characterizes the propor-

tion of heterozygous genotypes expected in a population
under Hardy–Weinberg equilibrium (Nei 1973). Nei

and Roychoudhury (1974) devised an estimator of
gene diversity that is unbiased for random samples of
unrelated, noninbred individuals. When inbred individ-
uals or close relatives are included in a sample, how-
ever, this estimator has a downward bias (Weir 1989;
DeGiorgio and Rosenberg 2009). To account for the
effects of inbreeding in a sample of diploid individuals,
Weir (1989, 1996) derived the expected value of gene
diversity, producing an unbiased estimator of gene
diversity that makes use of the mean inbreeding coeffi-
cient across sampled individuals, where the inbreeding
coefficient of an individual is defined as the probability
for a randomly chosen locus that the two alleles of the
individual are inherited identically by descent from a
common ancestor. Using the mean kinship coefficient
across pairs of sampled individuals, DeGiorgio and
Rosenberg (2009) extended this estimator to account
for the bias produced in samples containing close
relatives, where the kinship coefficient between two

individuals, j and k, is defined as the probability that
an allele randomly selected from individual j at a ran-
dom locus and an allele randomly selected from indi-
vidual k at the same locus are identical by descent (IBD).

The DeGiorgio and Rosenberg (2009) estimator is
useful for autosomal markers in samples from diploid
organisms that contain related or inbred individuals.
However, in studying gene diversity among related
individuals in nondiploid cases (e.g., Buteler et al.
1999) or in cases of mixed ploidy, such as in the analysis
of sex chromosomes (e.g., Reiland et al. 2002), unbi-
asedness for this estimator has not been demonstrated.
Here, we extend the DeGiorgio and Rosenberg (2009)
estimator of gene diversity to account for situations in
which known related and inbred individuals are in-
cluded in a sample and in which the sample contains
an arbitrary mixture of individuals of different ploidy. We
use a more general method to obtain the estimator than
the method used for diploids by DeGiorgio and
Rosenberg (2009), and we show that the general esti-
mator reduces to the DeGiorgio and Rosenberg

(2009) estimator in the diploid case. We also derive a
formula for the variance of our estimator, H̃, to facilitate
evaluation of the statistical properties of the estimator.
This variance formula, which is a function of identity
states among individuals, includes terms that involve
identity-by-descent among two, three, and four individ-
uals and among pairs of pairs of individuals. Our variance
function is convenient because extensive work on
IBD probabilities among individuals (e.g., Cotterman
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1940; Harris 1964; Gillois 1965; Cockerham 1971;
Jacquard 1974; Thompson 1974; Lange 2002) has pro-
vided a framework for calculating the quantities incorpo-
rated in the formula.

Using the variance formula, we examine the perfor-
mance of our estimator in scenarios involving the human
X chromosome, for which males and females, who might
both be included in a typical sample, differ in ploidy. In
our evaluations, we first show that the exact theoretical
values of the variance, which are obtained from a quite
complex formula, are closely matched by simulations.
We also validate that when each sampled individual is
related to at most one other individual in the sample,
the exact theoretical variance can be approximated well
by a simpler formula. Using the variance approximation
and simulations, we compare the behavior of our esti-
mator to that of the Nei and Roychoudhury (1974)
estimator, which does not account for relatives. We then
analyze human SNPs from the X chromosome and find
that H̃ also performs well in practice.

THEORY

Consider a sample of g groups, each with different
ploidy (e.g., haploid males and diploid females on the
human X chromosome). Suppose that the sample from
group b contains nb mb-ploid individuals, b ¼ 1, 2, . . . , g.
Further, let (b, k), k ¼ 1, 2, . . . , nb, denote individual k
from group b. The number of copies of allelic type i in
individual k from group b is

X
ðiÞ
ðb;kÞ ¼

Xmb

‘¼1

A
ðiÞ
ðb;kÞ;‘; ð1Þ

where A ið Þ
b;kð Þ;‘ is an indicator random variable that takes

on the value 1 if the ‘th allele in individual (b, k) has
type i and that equals 0 otherwise.

Note that E½A ið Þ
b;kð Þ;‘� ¼ pi , where pi is the frequency

of allelic type i in the population. We can then define
an unbiased estimator for the frequency of allele i as

p̂i ¼
1Pg

b¼1nbmb

Xg

b¼1

Xnb

k¼1

X
ðiÞ
ðb;kÞ: ð2Þ

Rewriting the estimator of Nei and Roychoudhury

(1974) for the mixed-ploidy case, if no inbred or related
individuals are included in the sample, then an un-
biased estimator of gene diversity is

Ĥ ¼
Pg

b¼1nbmb

ð
Pg

b¼1nbmbÞ � 1
1�

XI

i¼1

p̂ 2
i

 !
: ð3Þ

If inbred or related individuals are included in the sam-
ple, then Ĥ is a biased estimator of H ¼ 1�

P
I
i¼1 p2

i .
We follow the approach of DeGiorgio and Rosenberg

(2009), correcting for this bias by first obtaining the
variance of sample allele frequencies. However, we use

a different method here for obtaining the variance of
sample allele frequencies, determining the bias correc-
tion for diploids as a special case of a more general
computation.

An unbiased estimator: Suppose we have four possi-
bly, but not necessarily, distinct individuals (a, j), (b, k),
(a9, j9), and (b9, k9). Define F(a,j )(b,k) as the probabil-
ity that two alleles randomly chosen, one from individ-
ual (a, j) and the other from individual (b, k), are
IBD. Similarly, define F(a,j )(b,k)(a9,j9) as the probability
that three alleles randomly chosen, one from (a, j),
one from (b, k), and one from (a9, j9), are IBD. Define
F(a,j )(b,k)(a9,j9)(b9,k9) as the probability that four alleles
randomly chosen, one from (a, j), one from (b, k), one
from (a9, j9), and one from (b9, k9), are IBD. Finally,
define F(a,j )(b,k),(a9,j9)(b9,k9) as the joint probability that
two alleles randomly chosen, one from (a, j) and the
other from (b, k), are IBD and two alleles randomly
chosen, one from (a9, j9) and the other from (b9, k9), are
IBD. These four types of probability of identity-by-
descent are identical to the u, g, d, and D coefficients
of Cockerham (1971), respectively. We can then define

F2 ¼
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

wawbFða;jÞðb;kÞ ð4Þ

F3 ¼
Xg

a¼1

Xg

b¼1

Xg

a9¼1

Xna

j¼1

Xnb

k¼1

Xna9

j9¼1

wawbwa9Fða;jÞðb;kÞða9;j9Þ ð5Þ

F4 ¼
Xg

a¼1

Xg

b¼1

Xg

a9¼1

Xg

b9¼1

Xna

j¼1

Xnb

k¼1

Xna9

j9¼1

Xnb9

k0¼1

wawbwa9wb9Fða;jÞðb;kÞða9;j9Þðb9;k9Þ

ð6Þ

F2;2 ¼
Xg

a¼1

Xg

b¼1

Xg

a9¼1

Xg

b9¼1

Xna

j¼1

Xnb

k¼1

Xna9

j9¼1

Xnb9

k9¼1

wawbwa9wb9Fða;jÞðb;kÞ;ða9;j9Þðb9;k9Þ

ð7Þ
as weighted mean kinship coefficients across all sets of
pairs, triplets, quartets, and pairs of pairs of individuals.
The weight associated with an individual in group x,
wx ¼ mx=

Pg
b¼1nbmb , is proportional to the ploidy asso-

ciated with the group. Define the inbreeding coefficient
for individual (b, k), denoted by f(b,k), as the probability
that two alleles randomly chosen without replacement
from individual (b, k) are IBD and let f b ¼
1=nbð Þ

Pnb

k¼1 f b;kð Þ be the mean inbreeding coefficient
across individuals in group b. This definition reduces to
the standard definition for the diploid case.

In this section we first present two equations (Equa-
tions 8 and 9) that aid in the development of a gen-
eralized estimator of gene diversity (Theorem 1). This
general estimator, the main result of the section, cor-
rects the bias created by the inclusion of related and
inbred individuals in a sample consisting of individuals
with any mixture of ploidy. Using this estimator, we pro-
vide generalizations of results presented by DeGiorgio
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and Rosenberg (2009) for diploids to the case of ar-
bitrary ploidy (Equations 13 and 14) and we show how
these generalizations can be reduced to the diploid case.

Consider a locus with I distinct alleles, allele frequen-
cies pi2 [0, 1], and

P
I
i¼1pi ¼ 1. Suppose a sample from a

population has g groups, each with different ploidy, and
nb mb-ploid individuals in group b, b¼ 1, 2, . . . , g, each of
whom is possibly inbred and related to other individuals
in the sample. Consider the ‘th allele of individual (a, j)
and the tth allele of individual (b, k). By definition of
expected value, we have

E A
ðiÞ
ða;jÞ;‘A

ðiÞ
ðb;kÞ;t

h i
¼ P A

ðiÞ
ða;jÞ;‘ ¼ 1;AðiÞðb;kÞ;t ¼ 1

h i
¼ Fða;jÞðb;kÞpi 1 ð1�Fða;jÞðb;kÞÞp2

i

¼ Fða;jÞðb;kÞpið1� piÞ 1 p2
i : ð8Þ

In taking the expected value of our estimator of gene
diversity, we need to evaluate the quantity E p̂ 2

i

� �
. Using

Equation 8, we show in appendix a that

E p̂ 2
i

� �
¼ F2pið1� piÞ 1 p2

i : ð9Þ

Plugging Equations 8 and 9 into Var p̂i½ � ¼ E p̂2
i

� �
�

E p̂i½ �ð Þ2 yields Var p̂i½ � ¼ F2pi 1� pið Þ, which reduces to
the result presented for the diploid case in Equation 7 of
DeGiorgio and Rosenberg (2009), by reduction of the
definition of F2 for the diploid case. The following
theorem provides a generalized unbiased estimator of
gene diversity when a sample with any mixture of ploidy
contains related or inbred individuals.

Theorem 1. Consider a locus with I distinct alleles, allele
frequencies pi 2 [0, 1], and

P
I
i¼1pi ¼ 1. Suppose a sample

from a population has g groups, each with different ploidy, and
nb mb-ploid individuals in group b, b ¼ 1, 2, . . . , g, each of
whom is possibly inbred and related to other individuals in the
sample. Then

H̃ ¼ 1

1�F2
1�

XI

i¼1

p̂ 2
i

 !
ð10Þ

is an unbiased estimator for gene diversity.

The proof that H̃ is unbiased follows that of Propo-
sition 1 in DeGiorgio and Rosenberg (2009), substitut-
ing the more general F2 in place of the corresponding
mean kinship coefficient in the earlier proof.

When reducing the definition of F2 for the diploid
case studied by DeGiorgio and Rosenberg (2009),
the result in Theorem 1 is identical to the result pre-
sented for this case in Proposition 1 of DeGiorgio and
Rosenberg (2009). One interesting consequence of
Theorem 1 is that H̃ has a simple representation in
terms of the sample proportion of identity-by-state and
the probability of identity-by-descent computed on the

basis of assumed levels of inbreeding and relationship.
This representation is

H̃ ¼ 1� P̂ IBS½ �
1� P IBD½ � ; ð11Þ

where P̂ IBS½ � is the probability that two alleles in the
sample, chosen uniformly at random with replacement,
are identical by state, and P[IBD] is the probability that
two alleles in the sample, chosen uniformly at random
with replacement, are identical by descent. A proof that
Equation 11 is a consequence of Equation 10 is provided
in appendix a. Note that Equations 10 and 11 have a
connection to estimators of relatedness in a context in
which relatedness is unknown. Such estimators essen-
tially invert equations similar to Equation 11 to get
estimators of F2 (Ritland 1996; Rousset 2002).

We next seek to transform the estimator in Equation
10 into one that is more convenient for data analysis. Let
Ga,b, a, b ¼ 1, 2, . . . , g, be the set of distinct types of
relative pairs for pairs of distinct individuals in a sample,
one from group a and one from group b. Let hR be the
number of pairs of individuals with relationship type R
in Ga,b, and let FR be the kinship coefficient for each of
these pairs. Then, as shown in appendix a, we can write
F2 as

F2 ¼
1

ð
Pg

b¼1 nbmbÞ2

3
Xg

b¼1

nbmb 1
Xg

b¼1

nbmbðmb � 1Þf b 1 2
Xg

b¼1

X
R2Gb;b

m2
b hR FR

2
4

1 2
Xg�1

a¼1

Xg

b¼a 1 1

X
R2Ga;b

mambhR FR

3
5:

ð12Þ
This version of F2 is convenient for computation. To
obtain a formula for H̃ that is convenient for computa-
tion and that is a generalized version of an analo-
gous quantity for the diploid case in Equation 9 of
DeGiorgio and Rosenberg (2009), we can substitute
Equations 3 and 12 into Equation 10 to get

H̃ ¼ ð
Pg

b¼1nbmbÞð
Pg

b¼1nbmb � 1Þ
D

Ĥ; ð13Þ

where

D ¼
Xg

b¼1

nbmb

 ! Xg

b¼1

nbmb � 1

 !
�
Xg

b¼1

nbmbðmb � 1Þf b

� 2
Xg

b¼1

X
R2Gb;b

m2
b hR FR � 2

Xg�1

a¼1

Xg

b¼a 1 1

X
R2Ga;b

mambhR FR :

A proof of Equation 13 is provided in appendix a. We
note that by using g¼ 1, n1¼ n, and m1¼ 2 in Equation 13,
we obtain Equation 9 of DeGiorgio and Rosenberg

(2009).
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Note that H̃ ¼ cĤ, where

c ¼ ð
Pg

b¼1nbmbÞð
Pg

b¼1nbmb � 1Þ
D

:

By rearranging and taking the expected value, we get
E Ĥ
� �
¼ E H̃½ �=c ¼ H=c. Therefore,

biasðĤÞ ¼ 1� c

c
H

¼ � 1

ð
Pg

b¼1nbmbÞð
Pg

b¼1nbmb � 1Þ

3
Xg

b¼1

nbmbðmb � 1Þf b 1 2
Xg

b¼1

X
R2Gb;b

m2
b hR FR

2
4

1 2
Xg�1

a¼1

Xg

b¼a 1 1

X
R2Ga;b

mambhR FR

3
5H :

ð14Þ

Equation 14 is a generalized version of the bias formula
in the diploid case, in Equation 11 of DeGiorgio and
Rosenberg (2009). The bias is always negative and it
has a magnitude that increases linearly with respect to
H. Using g ¼ 1, n1 ¼ n, and m1 ¼ 2 in Equation 14, we
obtain Equation 11 of DeGiorgio and Rosenberg

(2009).
Variance of the estimator: In the previous section,

we derived an unbiased estimator H̃ of gene diversity
in a sample of arbitrary ploidy. It is useful to determine
the variance of the estimator, a quantity that in the
diploid case DeGiorgio and Rosenberg (2009) ob-
tained only by simulation. The following theorem
provides a formula for the variance of the generalized
estimator of gene diversity in samples with any mixture
of ploidy.

Theorem 2. Consider a locus with I distinct alleles, allele
frequencies pi 2 [0, 1], and

P
I
i¼1pi ¼ 1. Suppose a sample

from a population has g groups, each with different ploidy, and
nb mb-ploid individuals in group b, b ¼ 1, 2, . . . , g, each of
whom is possibly inbred and related to other individuals in the
sample. Then the variances of the H̃ and Ĥ estimators of gene
diversity are

Var H̃½ � ¼ 1

ð1�F2Þ2
Var 1�

XI

i¼1

p̂ 2
i

" #
ð15Þ

and

Var Ĥ
� �
¼

Pg
b¼1nbmb

ð
Pg

b¼1nbmbÞ � 1

" #2

Var 1�
XI

i¼1

p̂ 2
i

" #
; ð16Þ

where

Var 1�
XI

i¼1

p̂ 2
i

" #

¼ F2;2 �F2
2 1 2 F2

2 �F4

� �XI

i¼1

p2
i

1 4 2F4 1 F2 � 2F3 �F2;2

� �XI

i¼1

p3
i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� � XI

i¼1

p2
i

 !2

:

ð17Þ
The proof of Theorem 2 is long and is provided in
appendix b.

We next derive an approximate formula that in our
calculations below we use in place of Equation 17 inside
of Equations 15 and 16. The approximation is based only
on pairwise kinship coefficients and is useful in cases in
which the number of relatives in a sample is small enough
that no individual is related to more than one other
sampled individual. In such cases, the only nonzero terms
included in F3, F4, and F2;2 all involve sampling the same
individual or pairs of individuals more than once. Thus,
the F3, F4, and F2;2 terms, along with F2

2, are ignored, as
they are likely to be much smaller than F2 in cases in
which the number of relationships in the sample is small.

In addition to the assumptions listed in Theorem 2,
suppose that each individual in the sample is related to no
more than one other individual in the sample. If we ignore
terms involving

Pg
b¼1mbnbð Þ�k , k. 1, then terms involving

F2
2, F3, F4, and F2;2 in Equation 17 can be ignored. The

only terms in Equation 17 that we retain are those of orderPg
b¼1mbnbð Þ0 and

Pg
b¼1mbnbð Þ�1. F2 is of orderPg

b¼1mbnbð Þ�1. Therefore, reducing Equation 17 leads to

Var 1�
XI

i¼1

p̂ 2
i

" #
� 4F2

XI

i¼1

p3
i �

XI

i¼1

p2
i

 !2" #
: ð18Þ

This formula is an approximation to Equation 17 when
the number of relatives in a sample is small enough that
no individual is related to more than one other sampled
individual.

We now show that when no related individuals are
included in a sample of diploids, the variance in Equation
18 is exactly the formula given by Weir (1989). Suppose a
sample from a diploid population consists of n unrelated,
but possibly inbred, individuals. Further suppose that we
ignore terms involving n�k, k . 1. Then Fkk¼ (1/2)(1 1

fk), where fk is the inbreeding coefficient for individual k.
We can write the mean pairwise kinship coefficient as

F2 ¼
1

n2

Xn

k¼1

Fkk ¼
1

n2

Xn

k¼1

1

2
ð1 1 fkÞ ¼

1

2n
ð1 1 f Þ;

where f ¼ 1=nð Þ
P

n
k¼1 fk is the mean inbreeding co-

efficient across individuals. Plugging F2 ¼ 1 1 f
� �

= 2nð Þ
into Equation 18, we get
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Var 1�
XI

i¼1

p̂ 2
i

" #
� 2

n
ð1 1 f Þ

XI

i¼1

p3
i �

XI

i¼1

p2
i

 !2" #
:

ð19Þ

The X chromosome case: A common situation in
which data of mixed ploidy arise is on sex chromo-
somes, for which members of one sex have two copies
of a specific sex chromosome and members of the
other sex have one copy. Later, we examine data on the
human X chromosome, for which females have two
copies and males have one. Thus, we now utilize
Equation 13 to derive an unbiased estimator of gene
diversity in samples from the X chromosome.

Consider an X-linked locus with I distinct alleles,
allele frequencies pi 2 [0, 1], and

P
I
i¼1 pi ¼ 1. Suppose

a sample from a population has nF females and nM

males, each of whom is possibly inbred and related
to other sampled individuals. LetM, F, and U be the

sets of distinct types of male–male, female–female, and
male–female relative pairs in the sample, respectively.
Further, let hR be the number of pairs of individuals
with relationship type R and let FR be the kinship
coefficient for each of these pairs. Let males be group
1 and let females be group 2. Plugging g ¼ 2, n1 ¼ nM,
n2¼ nF, m1¼ 1, and m2¼ 2 into Equation 13, we obtain
an unbiased estimator for gene diversity at an X-linked
locus as

H̃ ¼ ðnM 1 2nFÞðnM 1 2nF � 1Þ
ðnM 1 2nFÞðnM 1 2nF � 1Þ � 2nF f F � 2

P
R2MhR FR � 8

P
R2FhR FR � 4

P
R2UhR FR

Ĥ;

ð20Þ

where f F ¼ 1=nFð Þ
PnF

k¼1 f k is the mean inbreeding co-
efficient across female individuals and fk is the inbreed-
ing coefficient for female k.

The following special case of Equation 20 is useful for
the examples we consider in subsequent sections. It

TABLE 1

Relationship types with corresponding X-linked kinship coefficients

Relationship
no. (k) Relationship type

Symbol for
relationship class Sexes of the pair F

1 Full-sibs t1 Male–male 1
2

2 Half-sibs (female parent) t1 Male–male 1
2

3 Uncle–nephew (female parent) t2 Male–male 1
4

4 Grandfather–grandson (female parent) t1 Male–male 1
2

5 Parent–offspring v1 Female–female 1
4

6 Full-sibs v2 Female–female 3
8

7 Half-sibs (male parent) v1 Female–female 1
4

8 Half-sibs (female parent) v3 Female–female 1
8

9 Aunt–niece (male parent) v3 Female–female 1
8

10 Aunt–niece (female parent) v4 Female–female 3
16

11 Grandmother–granddaughter (male parent) v1 Female–female 1
4

12 Grandmother–granddaughter (female parent) v3 Female–female 1
8

13 Parent–offspring u1 Male–female 1
2

14 Full-sibs u2 Male–female 1
4

15 Half-sibs (female parent) u2 Male–female 1
4

16 Uncle–niece (male parent) u2 Male–female 1
4

17 Uncle–niece (female parent) u3 Male–female 1
8

18 Aunt–nephew (female parent) u4 Male–female 3
8

19 Grandfather–granddaughter (female parent) u2 Male–female 1
4

20 Grandmother–grandson (female parent) u2 Male–female 1
4

Relationship types with X-linked kinship coefficient of zero are not shown. These include the male–male re-
lationships of parent–offspring, half-sibs (through male), uncle–nephew (through male), and grandfather–
grandson (though male) as well as the male–female relationships of half-sibs (through male), aunt–nephew
(through male), grandfather–granddaughter (through male), and grandmother–grandson (through male).

Estimator of Gene Diversity With Relatives 1371



makes use of Table 1, which shows the various types of
relationships possible for the X chromosome in pairs of
individuals. Suppose a noninbred sample from a pop-
ulation has nF females and nM males, among which hk

pairs of relationship type k are included. Let Fk be the
kinship coefficient for each of these pairs. Because the
sample is not inbred, the mean inbreeding coefficient
across female individuals is f F ¼ 0. Plugging f F as
well as hk and Fk for each relationship type k (Table 1)
into Equation 20, we obtain

H̃ ¼ ðnM 1 2nFÞðnM 1 2nF � 1Þ
ðnM 1 2nFÞðnM 1 2nF � 1Þ � 2

P4
k¼1 hk Fk � 8

P12
k¼5 hk Fk � 4

P20
k¼13 hk Fk

Ĥ:

ð21Þ

DATA ANALYSIS

Data: We investigated the properties of H̃ on mixed-
ploidy data using analytical computations of bias,

variance, and mean squared error; simulations; and
analysis of data from human populations. Our choices
for simulation parameters were designed on the basis of
values in the data. In our analytical computations and
simulations, we based our assumed true allele frequen-
cies on sample allele frequencies at 36 X-chromosomal
loci typed in 950 unrelated individuals, 624 males and
326 females, from the Human Genome Diversity Panel
(HGDP-CEPH) microsatellite data set of 1048 individ-
uals (Ramachandran et al. 2008). Individuals 127 and
139 from the Ramachandran et al. (2008) data set were
not included in our analyses. The 950 individuals were
assumed to have no first- or second-degree relation-
ships, on the basis of the Rosenberg (2006) analysis of
the full HGDP-CEPH panel.

Our data analysis was performed on a data set of
13,052 X-chromosomal single-nucleotide polymor-
phism (SNP) loci genotyped in 485 individuals from
29 populations in the HGDP-CEPH panel ( Jakobsson

TABLE 2

Symbols used for relative pair types

Relationship
class symbol Y0 Y1 Y2 F Sex Relative types

t1
1
2

1
2 0 1

2 Male–male Full-sib, half-sib (through female parent), grandfather–grandson
(through female)

t2
3
4

1
4 0 1

4 Male–male Uncle–nephew (through female)

v1 0 1 0 1
4 Female–female Parent–offspring, half-sib (through male parent),

grandmother–granddaughter (through male)
v2 0 1

2
1
2

3
8 Female–female Full-sib

v3
1
2

1
2 0 1

8 Female–female Half-sib (through female parent), aunt–niece (through male),
grandmother–granddaughter (through female)

v4
1
4

3
4 0 3

16 Female–female Aunt–niece (through female)

u1 0 1 0 1
2 Male–female Parent–offspring

u2
1
2

1
2 0 1

4 Male–female Full-sib, half-sib (through female parent), uncle–niece
(through male), grandfather–granddaughter (through female),
grandmother–grandson (through female)

u3
3
4

1
4 0 1

8 Male–female Uncle–niece (through female)

u4
1
4

3
4 0 3

8 Male–female Aunt–nephew (through female)

t3 — — — 5
24 Male–male Uncertain second-degree relative

v5 — — — 17
96 Female–female Uncertain second-degree relative

u5 — — — 3
20 Male–female Uncertain second-degree relative

Y0, Y1, and Y2 designate the probabilities that individuals share 0, 1, and 2 alleles IBD at an X-linked locus, respectively. All types
of relative pairs denoted by the same symbol have the same kinship coefficient, sexes, and probabilities of sharing 0, 1, and 2 alleles
IBD. F can be calculated from Y1 and Y2 using Fij ¼ Y1 if i and j are both male, Fij ¼ 1

4 Y11
1
2 Y2 if i and j are both female,

and Fij ¼ 1
2 Y1 1 Y2 if i is male and j is female. For each possible pair of sexes (male–male, female–female, and male–female),

the kinship coefficient for second-degree relatives of an uncertain type was found by averaging the kinship coefficients for all
second-degree relationships in Table 1 with that pair of sexes, assuming that all were equally likely. Second-degree relationships
include half-sib, grandparent–grandchild, and avuncular pairs. For male–male pairs, t3 ¼ 2 3 1

2 1 1 3 1
4 1 3 3 0

� �
=6 ¼ 5

24 . For
female–female pairs, v5 ¼ 2 3 1

4 1 3 3 1
8 1 1 3 3

16

� �
=6 ¼ 17

96 . For male–female pairs, u5 ¼ 4 3 1
4 1 1 3 1

8 1 1 3 3
8 1 4 3 0

� �
=

10 ¼ 3
20 . The divisor in each of the previous equations describes the total number of possible second-degree relatives for that

sex pair (e.g., grandmother–grandson, aunt–nephew, etc., for the male–female case). This number includes second-degree
relatives that are not related on the X chromosome, because the assignment of relationships in the data set was based on auto-
somal data. The kinship coefficients for t3, v5, and u5 were used only for analysis of population data, and they were not used in our
investigations of the effects on the estimators of varying the parameters.
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et al. 2008). We also removed individuals related
through the X chromosome, yielding a data set of 446
unrelated individuals. Unlike the Jakobsson et al.
(2008) data set of 443 unrelated individuals, our set of
446 individuals did not retain individuals 866, 1046, or
1049, which are not in the H952 subset of the HGDP-
CEPH panel. However, individuals 292, 451, 477, 983,
988, and 1089 were included in the data set of non-
relatives because they were all involved exclusively
in male–male parent–offspring relationships and were
therefore unrelated through the X chromosome to
other sampled individuals.

Data analysis methods: We used simulations and
analytical calculations to evaluate the behavior of the
estimator H̃ for X-chromosomal loci under conditions
of varying heterozygosities, sample sizes, and relation-
ships of sampled individuals. We compared the relative
performance of H̃ and Ĥ by applying H̃ and Ĥ to
samples containing related individuals and Ĥ to sam-
ples in which relatives were removed so that no relative
pairs remained. True allele frequencies were based on
microsatellite sample allele frequencies (see Data). In
the simulations, individuals of a relative pair were
generated by randomly choosing the allele(s) of the
first individual on the basis of the empirical allele
frequency distribution from the data set. For a given
type of relative pair, we then simulated the allele(s) of
the second individual by copying alleles from the first
individual using the probabilities of sharing zero, one,

and two alleles IBD for that type of pair. Table 2 depicts
these probabilities, as well as the symbols used here to
denote the various classes of relative pairs. If only one
allele was shared, then it was copied in the second
individual from the first allele of the first (indepen-
dently generated) individual. In cases of male–female
relative pairs, the male was generated first and the
second allele of the female was always chosen indepen-
dently from the allele frequency distribution.

To create a reduced data set of unrelated individuals,
the second (possibly dependent) individual was not
included for same-sex pairs, whereas for male–female
pairs, the male relative was removed. Thus, because
each individual in our simulation was included in
exactly one relative pair, the number of individuals
used to calculate Ĥ for the unrelated sample was al-
ways half of that used for the other two estimators.
Removing the male in male–female pairs results in
the loss of one-third of the alleles, compared to a loss
of one-half of the alleles for removal of an individual
from a same-sex pair. Thus, compared to removing
females, removing males from male–female pairs gen-
erates a larger sample of alleles while still ensuring
that no individuals are related.

The value assumed for the true heterozygosity, H, of
a specific locus, was calculated from the assumed true
allele frequencies on the basis of genotypic data of the
950 unrelated individuals. In each simulated scenario,
for each of the three estimators, this true heterozygosity

TABLE 3

Comparison of exact, approximate, and simulation variances

Estimator Locus Relative pairs Exact variance
Approximate

variance
Simulation

variance
Relative difference

of approximation (%)

H̃ ATCT003 10t1, 10u2, 10v2 7.55 3 10�4 6.82 3 10�4 7.48 3 10�4 9.59
DXS1068 10t1, 10u2, 10v2 1.54 3 10�3 1.47 3 10�3 1.50 3 10�3 4.82
GATA48H04 10t1, 10u2, 10v2 1.50 3 10�3 1.48 3 10�3 1.54 3 10�3 1.52
DXS1068 20t1 3.62 3 10�3 3.31 3 10�3 3.49 3 10�3 8.55
DXS1068 80t1 8.08 3 10�4 7.82 3 10�4 7.93 3 10�4 3.16
DXS1068 20u2 1.97 3 10�3 1.90 3 10�3 1.97 3 10�3 3.29
DXS1068 80u2 4.68 3 10�4 4.60 3 10�4 4.61 3 10�4 1.71
DXS1068 20v2 1.99 3 10�3 1.87 3 10�3 1.95 3 10�3 5.87
DXS1068 80v2 4.64 3 10�4 4.53 3 10�4 4.56 3 10�4 2.37

Ĥ ATCT003 10t1, 10u2, 10v2 7.45 3 10�4 6.74 3 10�4 7.38 3 10�4 9.59
DXS1068 10t1, 10u2, 10v2 1.52 3 10�3 1.45 3 10�3 1.49 3 10�3 4.82
GATA48H04 10t1, 10u2, 10v2 1.49 3 10�3 1.46 3 10�3 1.53 3 10�3 1.52
DXS1068 20t1 3.53 3 10�3 3.23 3 10�3 3.40 3 10�3 8.55
DXS1068 80t1 8.03 3 10�4 7.77 3 10�4 7.88 3 10�4 3.16
DXS1068 20u2 1.95 3 10�3 1.88 3 10�3 1.94 3 10�3 3.29
DXS1068 80u2 4.67 3 10�4 4.59 3 10�4 4.60 3 10�4 1.71
DXS1068 20v2 1.95 3 10�3 1.84 3 10�3 1.91 3 10�3 5.87
DXS1068 80v2 4.61 3 10�4 4.51 3 10�4 4.54 3 10�4 2.37

The exact (Equations 15 and 16), approximate (Equation 18 inserted into Equations 15 and 16), and simulation variances were
calculated for the combination of 10 male–male (t1), 10 male–female (u2), and 10 female–female (v2) full-sib pairs at the
ATCT003 (H ¼ 0.7794), DXS1068 (H ¼ 0.7344), and GATA48H04 (H ¼ 0.6476) loci as well as for sets of 20 and 80 pairs of each
full-sib pair type at DXS1068. Simulation variances were calculated over 100,000 replicates. The relative difference of the approx-
imation was computed as 100 3 japproximate variance � exact variancej/(exact variance).
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was compared to the mean of the estimates produced by
the estimator in 100,000 replicate simulations. The
subscript full is used to denote cases in which an
estimator was applied to the entire sample, whereas
the subscript reduced indicates that relatives were re-
moved from the sample. For a given scenario, the bias of
each estimator was found by subtracting H from the
mean value of the estimates for that estimator. Variance
was calculated as the squared mean of the estimates
across simulations subtracted from the mean across
simulations of the squares of the estimates. Mean
squared error (MSE) was then calculated as the sum of
bias squared and variance.

Approximate variance: Because each of our analyses was
performed on samples that contained only pairs of
related individuals, the assumptions that underlie the
derivation of the approximate variance (Equation 18)
apply. We compared the exact, the approximate, and the
simulated variance for H̃ and Ĥ in a series of cases that
included only full-sib pairs. We chose nine representative
cases of the various parameters that can affect estimator
performance. Three of these cases considered an equal

mix of male–male, female–female, and male–female full-
sib pairs at the ATCT003 (H ¼ 0.7794), DXS1068 (H ¼
0.7344), and GATA48H04 (H ¼ 0.6476) loci, chosen to
represent high, intermediate, and low heterozygosity,
respectively. Additionally, we considered cases at the
intermediate-heterozygosity locus involving 20 male–
male, 80 male–male, 20 female–female, 80 female–
female, 20 male–female, and 80 male–female pairs, to
examine the effects of sample size and the sexes of the
individuals. In each of our evaluations, we calculated the
exact variances (Equations 15 and 16), approximate
variances (Equation 18 plugged into Equations 15 and
16), and simulation variances obtained from 100,000
replicate simulations.

As Table 3 shows, in all cases examined, the exact,
approximate, and simulated variances are similar, with
the approximate variance slightly underestimating the
exact variance. Because of the complexity of the formula
for the exact variance, the difference between the
approximate variance and the exact variance does not
have a simple dependence on heterozygosity or sample
size. However, it can be observed in Table 3 that for both

Figure 1.—Mean squared error, variance, and bias squared for each estimator, obtained analytically using the variance approx-
imation (Equation 18 inserted into Equations 15 and 16), as a function of heterozygosity for 36 loci. The scheme considered
included 60 individuals in 10 t1 pairs (F ¼ 1

2 ), 10 u2 pairs (F ¼ 1
4 ), and 10 y2 pairs (F ¼ 3

8 ). (A) Ĥfull. The curve through the
points in the third column is described by Equation 14. (B) H̃full. (C) Ĥreduced.
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H̃ and Ĥ, the relative difference between the approxi-
mate variance and exact variances is smallest at low
heterozygosity and large sample size, typically near
�2%. In cases of high heterozygosity and small sample
size, the relative difference remains at most �10%.
We note that the same approximation to the variance
of 1�

P
I
i¼1p̂ 2

i in Equation 18 is applied in obtaining
the approximate variances of both H̃ and Ĥ. Thus,
because the approximation is generally reasonably
accurate and because it treats H̃ and Ĥ in the same
way, our use of the approximation is sensible in our
subsequent comparisons of the mean squared errors
of H̃ and Ĥ.

Effect of parameters on the estimators: Several fac-
tors can potentially affect the performance of the
estimators. These factors include the true value of het-
erozygosity itself, the sample size, the type of relative

pair represented in the sample, and, if multiple types of
relative pairs are included, the combination of particu-
lar types of relative pairs. We now examine each of these
factors in sequence.

Varying heterozygosity: To investigate the influence of
varying heterozygosity on the estimator, we evaluated
the scenario of 60 related individuals in 10 t1 pairs, 10 u2

pairs, and 10 v2 pairs (see Table 2) for each of the 36
X-linked microsatellite loci. This scheme incorporates
30 full-sib pairs, considering equally many males and
females and utilizing three distinct kinship coefficients:
1
2 for male–male pairs (t1), 1

4 for male–female pairs (u2),
and 3

8 for female–female pairs (v2). The 36 loci rep-
resent a spread of assumed true heterozygosities rang-
ing from 0.4008 to 0.8599. For each locus, we calculated
H̃full (Equation 21), as well as Ĥfull and Ĥreduced (Nei and
Roychoudhury 1974).

Figure 2.—Mean squared error as a function of sample size (number of pairs ¼ number of individuals/2), calculated analyt-
ically using the variance approximation (Equation 18 inserted into Equations 15 and 16), on the basis of allele frequencies at the
DXS1068 locus (H ¼ 0.7344). Each plot considers different sample sizes for one type of relative pair (Table 2). The range of each
plot is truncated at 0.020 and the graph of H̃full covers that of Ĥfull. (A) Male–male relative pairs. (B) Male–female relative
pairs. (C) Female–female relative pairs. Note that the Ĥreduced line in the graph of mean squared error as a function of the number
of u4 pairs is behind the other two lines.
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Figure 1 displays the properties of the three estimators,
H̃full, Ĥfull, and Ĥreduced, based on application of analytical
computations of bias (Equation 14 for Ĥfull) and the
variance approximation (Equation 18 plugged into
Equations 15 and 16) to each of the 36 loci. H̃full and
Ĥreduced are unbiased estimators and therefore have zero
bias, whereas Ĥfull exhibits increasing bias squared as
heterozygosity increases. The bias squared for Ĥfull as a
function of heterozygosity is plotted using the theoretical
prediction based on Equation 14: bias Ĥ

� �� �2¼ ���2�
10 3 1

2

� �
1 8 10 3 3

8

� �
1 4 10 3 1

4

� ��
=
�

30 1 23 30ð Þ3
30 1 2 3 30 � 1ð Þ

��
H Þ2 ¼ 3:897 3 10�5ð ÞH 2. Gener-

ally, over the space of heterozygosities defined by the 36
microsatellite loci, the MSE and variance of all three
estimators decrease with increasing heterozygosity.

Varying sample size and type of relative pair: We next
applied the estimators to scenarios of varying sample
size. The ATCT003 (H ¼ 0.7794), DXS1068 (H ¼
0.7344), and GATA48H04 (H ¼ 0.6476) loci were
chosen from the data set to represent high, intermedi-
ate, and low heterozygosities, respectively. Only the data
for the intermediate heterozygosity locus DXS1068
are shown; the other two loci yield similar results. For
each locus and for each of the 10 types of relative pairs in
Table 2, we varied the sample size from 2 to 100 pairs. We
considered a sample size of at least 2 pairs, as no infor-
mation is available for the computation of Ĥreduced from
a single pair of male–male relatives. For all three loci,
analytical calculations were performed using the vari-
ance approximation (Equation 18 plugged into Equa-
tions 15 and 16).

Figure 2 shows that as sample size increases, MSE
decreases for all three estimators, and it is always
comparable for H̃full and Ĥfull (H̃full mostly overlaps
Ĥfull in Figure 2). Usually, we expect MSE in a reduced
sample to be highest due to greater variance. However,
although the results conformed to this prediction for
most types of relative pairs, for male–female relative
pairs for which there was probability $ 3

4 for sharing
exactly one allele IBD (types u1 and u4), the MSE of
Ĥreduced was actually lower than the MSE for H̃full and

Ĥfull. The same result was also detected in our simu-
lations (data not shown). Investigating further, we
found that in male–male and female–female pairs, cases
with high probabilities for sharing one or two alleles IBD
had MSEs for H̃full and Ĥfull that were closer to the
Ĥreduced MSE values, compared with the higher MSE for
Ĥreduced observed in other cases. The MSE of Ĥreduced is
smaller relative to that of the other estimators for u1 and
u4 male–female pairs because when only one-third of
the sample is removed in creating the unrelated set of
individuals (removal of males), the increase in variance
due to the relatively small decrease in sample size in
Ĥreduced is comparable to the increased variance caused
by the high IBD probabilities for u1 and u4 pairs in H̃full

and Ĥfull, unlike in other cases. When females, instead
of males, are removed from male–female pairs, de-
creasing the sample by two-thirds rather than one-third,
the estimators behave more intuitively (Figure 3), with
Ĥreduced yielding the highest MSE.

Varying combinations of relative pairs: Finally, we studied
the effect of relative pair combinations in a sample,
using allele frequencies at the ATCT003, DXS1068, and
GATA48H04 loci. Only the results for the highest
heterozygosity locus, ATCT003, are shown; as was true
in the previous section, each locus yielded similar
results. For each locus, we examined each of the 231
possible divisions of exactly 20 full-sib pairs into male–
male (t1), male–female (u2), and female–female (v2)
pairs. Figure 4 displays the MSE, variance, and bias
squared of the three estimators, calculated analytically
using the variance approximation (Equation 18), for var-
ious combinations of t1, u2, and v2 pairs for the ATCT003
locus. Variance was highest for Ĥreduced, because it had
the smallest sample of alleles. For all estimators, var-
iance was highest where the configuration of full-sibs
had mostly male–male pairs, again due to the smaller
sample of alleles. H̃full and Ĥreduced were unbiased across
the space of possible combinations. Ĥfull showed a trend
in bias squared in which configurations with a greater
proportion of males had higher bias squared, as is
predicted analytically from the smaller sample size

Figure 3.—Mean squared error as a function of sample size (number of pairs ¼ number of individuals/2), calculated analyt-
ically using the variance approximation (Equation 18 inserted into Equations 15 and 16), on the basis of allele frequencies at the
DXS1068 locus (H ¼ 0.7344) for male–female relative pairs in which the females were removed to evaluate Ĥreduced. The range of
each plot is truncated at 0.020. The graph of H̃full covers that of Ĥfull.
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(Equation 14). For all configurations, the bias squared
of Ĥfull was greater than that for the other estimators.
Among the three estimators, MSE was highest for
Ĥreduced. Similarly to the observation for variance, MSE
was greatest for configurations with a high proportion of
male–male pairs. Although H̃full performed slightly
worse in having a greater variance compared to Ĥfull, it
had a slightly lower MSE due to its lower bias. More
generally, although H̃full performed better in the setting
of Figure 4, the exact formula can be used to determine
which estimator has lowest MSE for a given scenario.

Application to data: We next investigated the behav-
ior of our estimator using X-chromosomal SNP data sets
of 485 individuals and 446 unrelated individuals (see
Data). Table 4 displays the relative pairs in the sample of
485 individuals. Because we analyzed the estimators
separately by population, the subscripts of 485 and 446

refer to whether or not relatives were included in a
calculation, not to the actual numbers of individuals in
that calculation. In the same manner as in DeGiorgio

and Rosenberg (2009), we took Ĥ446 for each popula-
tion to be a proxy for true heterozygosity, because this
quantity provided an unbiased estimate when no rela-
tives were included in the sample. Note that removed
individuals belonged only to pairs related through the X
chromosome; individuals related only autosomally
(such as male–male parent–offspring pairs) were in-
cluded in the reduced sample. In our analysis, we
compared the means of H̃485 and Ĥ485 across the
13,052 loci to the corresponding mean of Ĥ446.

Figure 5 compares the difference between the mean
of Ĥ485 across loci (Ĥ485) and the mean of Ĥ446 (Ĥ446)
with the difference between the mean of H̃485 (H̃485)
and the mean of Ĥ446 (Ĥ446). As Figure 5A shows, Ĥ485

Figure 4.—Mean squared error (MSE), variance, and bias squared of Ĥfull, H̃full, and Ĥreduced, calculated analytically using the
variance approximation (Equation 18 inserted into Equations 15 and 16), as functions of the configuration of t1 male–male
(F ¼ 1

2 ), u1 male–female (F ¼ 1
2 ), and y2 female–female (F ¼ 3

8 ) pairs in 20 total relative pairs, on the basis of allele frequencies
at the ATCT003 locus (H ¼ 0.7794). Each row displays a different estimator and each column displays a different statistic.
The three vertices of each triangle represent 20 male–male, 20 male–female, and 20 female–female full-sib pairs. The numbers
on the scale indicate the cutoff values for colors. Note that unlike for the other two estimators, the scale for bias squared of Ĥfull

includes nonzero values. The black dot on each graph (except the bias squared graphs for H̃full and Ĥreduced) represents the largest
value in that triangle, and the blue dot represents the smallest value.
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generally yields a lower heterozygosity estimate than
Ĥ446 due to the downward bias caused by related
individuals. Applying H̃485 reduces the magnitude of
the difference between the estimate of heterozygosity in
sets with and without relatives (Figure 5B), and H̃485

yields values that are not consistently lower than those of
Ĥ446. It is important to note that because 15 of 45 of the
relative pairs in the data have an uncertain second-
degree relationship (t3, u5, or v5), H̃485 might have
overcorrected bias in cases in which the individuals were
not related via the X chromosome and undercorrected
bias in cases in which the individuals actually were
related on the X chromosome.

A Wilcoxon signed-rank test was used to evaluate the
differences between Ĥ485 and Ĥ446 applied to the 13
populations that contained relatives (see Table 4). This test
yielded a P-value of 0.0024, indicating that the inclusion of
relatives had a significant impact on the estimation of
heterozygosity using Ĥ. In contrast, the Wilcoxon signed-
rank comparison of H̃485 and Ĥ446 yielded a P-value of
0.6355, indicating that the inclusion of relatives did not
significantly alter the estimation of heterozygosity when H̃
was used. The mean difference H̃485 � Ĥ446 (�8.0493 3

10�5) and the mean absolute difference jH̃485 � Ĥ446j
(6.3159 3 10�4) were smaller across the 13 populations
than the mean difference (�1.9393 3 10�3) and the mean
absolute difference (1.9849 3 10�3), Ĥ446 � Ĥ485 and
jĤ446 � Ĥ485j, respectively.

We also investigated the behavior of H̃ and Ĥ with
regard to variance for the 13 populations that contained
relatives. We compared Ĥ485 � Ĥ446 and H̃485 � Ĥ446,
which we used as proxies for bias, following the methods
of DeGiorgio and Rosenberg (2009), and the standard
deviations of the two estimators applied with relatives
included. From Figure 6, we observe that while there
was a sizeable difference in the bias proxy between Ĥ485

and H̃485, there was only a small difference in stan-
dard deviation. This result is compatible with the res-
ults from our analytical computations, which suggest
that H̃ corrects bias without substantially increasing
variance.

DISCUSSION

Our estimator, H̃, is an effective tool for assessing the
gene diversity of a sample of arbitrary ploidy containing
related or inbred individuals. It can be used to provide
unbiased estimates of expected heterozygosity when the
inbreeding and kinship coefficients of sampled individ-

Figure 5.—Comparison of the difference between the
mean of Ĥ485 across loci and the mean of Ĥ446 with the differ-
ence between the mean of H̃485 and the mean of Ĥ446. (A) The
difference between the mean of Ĥ485 and the mean of Ĥ446 for
each of the 13 populations containing relatives (Table 4). (B)
The difference between the mean of H̃485 and the mean of Ĥ446

for each of the 13 populations. The estimators were applied to
a data set of 13,052 SNP loci with 485 individuals belonging to
29 populations, and the results for the 13 populations with rel-
atives are shown. Included in the set of 485 individuals was a
subset of 446 individuals that contained no relatives. The sub-
scripts of 485 and 446 refer to whether or not relatives were in-
cluded, not to the actual number of individuals in the
calculation. Each data point represents one population, with
color indicating the geographic region of that population.
The dotted line indicates a difference of zero.

TABLE 4

Types of relative pairs in populations from the data set of 485
individuals reported by JAKOBSSON et al. (2008)

t1 t2 t3 u1 u2 u3 u4 u5 v1 v2 v3 v4 v5

Bantu (Kenya) 1
Bedouin 1 1
Biaka Pygmy 1 2 1 2
Druze 2 1 2
Kalash 1
Mandenka 1 1
Maya 1 1 2
Mbuti Pygmy 1 1
Melanesian 1 3 2 2 1
Mozabite 1
Palestinian 1 1
Pima 1 1 1 1 1 1
Yoruba 1 1 1 1
Total 4 1 5 7 6 1 0 3 5 5 0 1 7

Symbols for the types of relative pairs appear in Table 2.
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uals are known. We found that the unbiasedness of
the diploid estimator of DeGiorgio and Rosenberg

(2009) extends to a much more general set of scenarios,
provided that kinship coefficients are appropriately
weighted by ploidy in the computation.

Here, we evaluated the properties of H̃ in the spe-
cific case of the human X chromosome. Through our
analytical calculations, we have shown that, similarly to
the DeGiorgio and Rosenberg (2009) estimator in the
diploid case, the performance of H̃ is generally supe-
rior to that of Ĥ when the sample to which the esti-
mators are applied contains relatives. H̃ accounts for the
bias introduced by relatedness while simultaneously
maintaining comparable MSE and variance to Ĥ. Our
estimator also performs well compared to Ĥ when ap-
plied to data from human populations. While the true
heterozygosity of each population is not known, when
we compared H̃ and Ĥ to an approximation of true
heterozygosity, with Ĥ applied to the data set with no
related individuals, we found that the difference be-
tween the estimate when relatives were included and
when relatives were not included was significantly
smaller for H̃. Because the reduction in this proxy for
bias is accompanied by only a small increase in standard
deviation, we argue that H̃ should often be preferred
over Ĥ in the estimation of gene diversity in a sample
containing relatives.

In addition to developing the H̃ estimator for gene
diversity, we also determined the analytical variance of

our estimator, allowing us to theoretically evaluate the
properties of H̃. We also developed an approximation
for variance (Equation 18) that is simpler to compute
and that is applicable when each individual has at most
one relative in the sample. Knowledge of the theoretical
variance can further allow investigators to evaluate the
circumstances under which H̃ applied to a full sample,
including relatives, is superior to using Ĥ with a reduced
sample in which members of relative pairs have been
removed. For example, Figure 2 indicates that removing
relatives will provide a lower MSE of the heterozygosity
estimate in some cases. However, Figure 4 suggests that
H̃full yields a lower MSE than Ĥreduced except in the small
fraction of relative–pair combinations that contain large
numbers of u1 pairs. Thus, we propose that in most cases
the use of H̃ on a sample set that includes related
individuals affords a better estimate of gene diversity
than applying Ĥ on a sample that contains no relatives
and that investigators can use the theoretical variance of
H̃ to determine whether a given situation is likely to be
among the exceptions.
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APPENDIX A

In this section, we present proofs for Equations 9, 11, 12, and 13.

Proof of Equation 9. Applying the definition of p̂i and using Equation 8, we have

E p̂ 2
i

� �
¼ 1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

E X
ðiÞ
ða;jÞX

ðiÞ
ðb;kÞ

h i

¼ 1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

Xma

‘¼1

Xmb

t¼1

E A
ðiÞ
ða;jÞ;‘A

ðiÞ
ðb;kÞ;t

h i

¼ 1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

Xma

‘¼1

Xmb

t¼1

ðFða;jÞðb;kÞpið1� piÞ1 p2
i Þ

¼ 1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

mambðFða;jÞðb;kÞpið1� piÞ1 p2
i Þ

¼ ð
Pg

b¼1nbmbÞ2
ð
Pg

b¼1nbmbÞ2
F2pið1� piÞ1

ð
Pg

b¼1nbmbÞ2
ð
Pg

b¼1nbmbÞ2
p2

i

¼ �F2pið1� piÞ1 p2
i : n

Proof of Equation 11. P̂ IBS½ � ¼
P

I
i¼1 p̂ 2

i . We only need to show that P IBD½ � ¼F2. Note that while we write P̂ IBS½ � as an
estimate,P[IBD] depends only on quantities that are treated as known with certainty and we write it as a known quantity
itself. Consider two alleles from the sample (that are not necessarily distinct). Let C(a,j )(b,k) denote the event that the
first of the two alleles is from individual (a, j) and the second is from individual (b, k), where (a, j) and (b, k) are not
necessarily distinct. Supposing that the two alleles are drawn uniformly at random from the sample, with replacement,
let P

�
C(a,j )(b,k)

�
denote the probability of event C(a,j)(b,k). Let P

�
IBDjC(a,j)(b,k)

�
be the probability that two alleles are IBD

given that the first allele is chosen from individual (a, j) and the second is chosen from individual (b, k). Then

P IBD½ � ¼
Xg

b¼1

Xnb

k¼1

P IBD jC ðb;kÞðb;kÞ
� �

P C ðb;kÞðb;kÞ
� �

1
Xnb

j¼1

Xnb

k¼1
k 6¼j

P IBD jC ðb;jÞðb;kÞ
� �

P C ðb;jÞðb;kÞ
� �

8>><
>>:

9>>=
>>;

1
Xg

a¼1

Xg

b¼1
b 6¼a

Xna

j¼1

Xnb

k¼1

P IBD jC ða;jÞðb;kÞ
� �

P C ða;jÞðb;kÞ
� �

:

Note that, for individuals (a, j) and (b, k), which are not necessarily distinct,
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P C ða;jÞðb;kÞ
� �

¼ maPg
c¼1ncmc

� 	
mbPg

c¼1ncmc

� 	
¼ mamb

ð
Pg

c¼1ncmcÞ2

P IBD jC ða;jÞ ðb;kÞ
� �

¼ Fða;jÞ ðb;kÞ:

It follows that

P IBD½ � ¼
Xg

b¼1

Xnb

k¼1

Fðb;kÞðb;kÞ
m2

b

ð
Pg

c¼1ncmcÞ2
1
Xnb

j¼1

Xnb

k¼1
k 6¼j

Fðb;jÞðb;kÞ
m2

b

ð
Pg

c¼1ncmcÞ2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1
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a¼1

Xg

b¼1
b 6¼a

Xna

j¼1

Xnb

k¼1

Fða;jÞðb;kÞ
mamb

ð
Pg

c¼1 ncmcÞ2

¼ 1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

mambFða;jÞ ðb;kÞ

¼ F2: n

Proof of Equation 12. For an mb-ploid individual k, F(b,k)(b,k) ¼ 1/mb 1 (1 � 1/mb)f(b,k) ¼ (1/mb)[11(mb�1)f(b,k)]. Note
that F(a,j)(b,k) ¼ 0 if individuals (a, j) and (b, k) are unrelated. We can then break F2 into three components,
considering three different types of pairs of individuals: same group–same individual, same group–different
individual, and different group. Therefore

F2 ¼
1

ð
Pg

b¼1nbmbÞ2
Xg

a¼1

Xg

b¼1

Xna

j¼1

Xnb

k¼1

mambFða;jÞðb;kÞ

¼ 1

ð
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b¼1nbmbÞ2
Xg

b¼1

Xnb

k¼1

m2
b Fðb;kÞðb;kÞ1 2

Xg

b¼1

Xnb�1

j¼1

Xnb

k¼j11

m2
b Fðb;jÞðb;kÞ

"

1 2
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Xg
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j¼1

Xnb

k¼1

mambFða;jÞðb;kÞ

#

¼ 1

ð
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b¼1nbmbÞ2
Xg

b¼1

Xnb

k¼1

m2
b

1

mb
1 1 ðmb � 1Þf ðb;kÞ
� �

1 2
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X
R2Gb;b

m2
b hR FR

2
4

1 2
Xg�1

a¼1
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b¼a11
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R2Ga;b

mambhR FR

3
5

¼ 1

ð
Pg

b¼1nbmbÞ2
Xg
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nbmb 1
Xg

b¼1

nbmbðmb � 1Þf b 1 2
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3
5: n

Proof of Equation 13. First we note that

1�F2 ¼
D

ð
Pg

b¼1nbmbÞ2
:

Substituting 1�F2 into H̃ (Equation 10) gives
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H̃ ¼ ð
Pg

b¼1nbmbÞ2
D

1�
XI

i¼1

p̂2
i

 !
:

Rearranging Equation 3 we get

1�
XI

i¼1

p̂2
i ¼

Pg
b¼1nbmb � 1Pg

b¼1nbmb
Ĥ;

from which

H̃ ¼ ð
Pg

b¼1nbmbÞ2
D

Pg
b¼1nbmb � 1Pg

b¼1nbmb
Ĥ

� 	

¼ ð
Pg

b¼1nbmbÞð
Pg

b¼1nbmb � 1Þ
D

Ĥ: n

APPENDIX B

In this section, we present results that aid in the derivation of the variance of our gene diversity estimator. Lemma 3
derives certain expectations involving four alleles. These expectations are used to calculate the variance and
covariance of squared allele frequency estimates in Lemma 4. Lemma 4 is then used to prove the variance formula in
Theorem 2 when related and inbred individuals are included in a sample.

Lemma 3. Consider a locus with I distinct alleles, allele frequencies pi 2 [0, 1], and
P

I
i¼1 pi ¼ 1. Suppose a sample from

a population has g groups, each with different ploidy, and nb mb-ploid individuals in group b, b ¼ 1, 2, . . . , g, each of whom is
possibly inbred and related to other individuals in the sample. Consider the ‘th allele of individual (a, j), the tth allele of individual
(b, k), the ‘9th allele of individual (a9, j9), and the t9th allele of individual (b9, k9). For clarity, let w ¼ (a, j), x ¼ (b, k), y ¼
(a9, j9), and z ¼ (b9, k9). Then for allelic types i and i9 6¼ i,

E A
ðiÞ
w;‘A

ðiÞ
x;tA

ðiÞ
y;‘9A

ðiÞ
z;t9

h i
¼ Fwxyzpi

1 Fwxy 1 Fwxz 1 Fwyz 1 Fxyz 1 Fwx;yz 1 Fwy;xz 1 Fwz;xy � 7Fwxyz

� �
p2

i

1 ½12Fwxyz 1 ðFwx 1 Fwy 1 Fwz 1 Fxy 1 Fxz 1 FyzÞ
� 3ðFwxy 1 Fwxz 1 Fwyz 1 FxyzÞ
� 2ðFwx;yz 1 Fwy;xz 1 Fwz;xyÞ�p3

i

1 ½1 1 ðFwx;yz 1 Fwy;xz 1 Fwz;xyÞ1 2ðFwxy 1 Fwxz 1 Fwyz 1 FxyzÞ
� 6Fwxyz � ðFwx 1 Fwy 1 Fwz 1 Fxy 1 Fxz 1 FyzÞ�p4

i ðB1Þ

E A
ðiÞ
w;‘A

ðiÞ
x;tA

ði9Þ
y;‘9A

ði9Þ
z;t9

h i
¼ Fwx;yz �Fwxyz

� �
pipi9 1 2Fwxyz 1 Fwx � ðFwxy 1 FwxzÞ �Fwx;yz

� �
pip

2
i9

1 2Fwxyz 1 Fyz � ðFwyz 1 FxyzÞ �Fwx;yz

� �
p2

i pi9

1 ½1 1 Fwx;yz 1 Fwy;xz 1 Fwz;xy 1 2ðFwxy 1 Fwxz 1 Fwyz 1 FxyzÞ
� 6Fwxyz � ðFwx 1 Fwy 1 Fwz 1 Fxy 1 Fxz 1 FyzÞ�p2

i p2
i9: ðB2Þ

Proof. We need to evaluate

E A
ðiÞ
w;‘A

ðiÞ
x;tA

ði9Þ
y;‘9A

ði9Þ
z;t9

h i
¼
X15

s¼1

DsP A
ðiÞ
w;‘ ¼ 1;AðiÞx;t ¼ 1;Aði9Þy;‘9 ¼ 1;Aði9Þz;t9 ¼ 1 j S ¼ s

h i
;

where S represents one of the 15 identity states in Figure B1 for four alleles—one from w, one from x, one from y,
and one from z—and Ds is the identity coefficient, the probability of observing state S ¼ s for four alleles randomly
chosen, one from w, one from x, one from y, and one from z. We can rewrite the identity coefficients in terms of kinship
coefficients by using the following relationships:

1382 M. DeGiorgio, I. Jankovic and N. A. Rosenberg



X15

s¼1

Ds ¼ 1

Fwxyz ¼ D1

Fwxy ¼ D1 1 D2

Fwxz ¼ D1 1 D3

Fwyz ¼ D1 1 D4

Fxyz ¼ D1 1 D5

Fwx;yz ¼ D1 1 D6

Fwy;xz ¼ D1 1 D9

Fwz;xy ¼ D1 1 D12

Fwx ¼ D1 1 D2 1 D3 1 D6 1 D7

Fwy ¼ D1 1 D2 1 D4 1 D9 1 D10

Fwz ¼ D1 1 D3 1 D4 1 D12 1 D13

Fxy ¼ D1 1 D2 1 D5 1 D12 1 D14

Fxz ¼ D1 1 D3 1 D5 1 D9 1 D11

Fyz ¼ D1 1 D4 1 D5 1 D6 1 D8: ðB3Þ

Note that the D-coefficients above are identical to the d-coefficients in Cockerham (1971). Also, the F-coefficients
involving two individuals, three individuals, and pairs of pairs of individuals are identical to Cockerham’s u-, g-, and
D-coefficients, respectively (Cockerham 1971). If i9 ¼ i, we get

E A
ðiÞ
w;‘A

ðiÞ
x;tA

ðiÞ
y;‘9A

ðiÞ
z;t9

h i
¼ D1pi 1 ðD2 1 D3 1 D4 1 D5 1 D6 1 D9 1 D12Þp2

i : ðB4Þ

If i 6¼ i9, we get

E A
ðiÞ
w;‘A

ðiÞ
x;tA

ði9Þ
y;‘9A

ði9Þ
z;t9

h i
¼ D6pipi9 1 D7pip

2
i9 1 D8p2

i pi9 1 D15p2
i p2

i9: ðB5Þ

The desired result follows by substituting Equation B3 into Equations B4 and B5. n

Note that expressions mathematically identical to Equations B1 and B2 except with different notation appear in
Table 1 of Cockerham (1971). However, a slight conceptual difference is that our formulas involve an expectation of
a product among four arbitrary alleles, not necessarily four alleles in two pairs of diploid genotypes. We now use
Lemma 3 to derive Var p̂2

i

� �
and Cov p̂2

i ; p̂2
i9

� �
.

Lemma 4. Consider a locus with I distinct alleles, allele frequencies pi 2 [0, 1], and
P

I
i¼1 pi¼ 1. Suppose a sample from a

population has g groups, each with different ploidy, and nb mb-ploid individuals in group b, b¼ 1, 2, . . . , g, each of whom is possibly
inbred and related to other individuals in the sample. Then for allelic types i and i9 6¼ i,

E p̂4
i

� �
¼ F4pi 1 4F3 1 3F2;2 � 7F4

� �
p2

i 1 12F4 1 6F2 � 12F3 � 6F2;2

� �
p3

i

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p4

i ðB6Þ

E p̂2
i p̂2

i9

� �
¼ F2;2 �F4

� �
pipi9 1 2F4 1 F2 � 2F3 �F2;2

� �
pip

2
i9 1 2F4 1 F2 � 2F3 �F2;2

� �
p2

i pi9

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p2

i p2
i9 ðB7Þ

and therefore

Var p̂2
i

� �
¼ F4pi 1 4F3 1 3F2;2 � 7F4 �F2

2

� �
p2

i 1 12F4 1 4F2 1 2F2
2 � 12F3 � 6F2;2

� �
p3

i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p4

i ðB8Þ

Covðp̂2
i ; p̂2

i9Þ ¼ F2;2 �F4 �F2
2

� �
pipi9 1 2F4 1 F2

2 � 2F3 �F2;2

� �
pip

2
i9

1 2F4 1 F2
2 � 2F3 �F2;2

� �
p2

i pi9 1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p2

i p2
i9: ðB9Þ

Proof. Applying the definition of p̂i , we have
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E p̂4
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� �
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1 Fða;jÞðb;kÞða9;j9Þ1 Fða;jÞðb;kÞðb9;k9Þ1 Fða;jÞða9;j9Þðb9;k9Þ1 Fðb;kÞða9;j9Þðb9;k9Þ
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1 Fða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ1 Fða;jÞða9;j9Þ; ðb;kÞðb9;k9Þ1 Fða;jÞðb9;k9Þ; ðb;kÞða9;j9Þ

�7Fða;jÞðb;kÞða9;j9Þðb9;k9Þ
�
p2

i

1 12Fða;jÞðb;kÞða9;j9Þðb9;k9Þ
�
1 Fða;jÞðb;kÞ1 Fða;jÞða9;j9Þ1 Fða;jÞðb9;k9Þ1 Fðb;kÞða9;j9Þ1 Fðb;kÞðb9;k9Þ1 Fða9;j9Þðb9;k9Þ

�3ðFða;jÞðb;kÞða9;j9Þ1 Fða;jÞðb;kÞðb9;k9Þ1 Fða;jÞða9;j9Þðb9;k9Þ1 Fðb;kÞða9;j9Þðb9;k9ÞÞ
�2ðFða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ1 Fða;jÞða9;j9Þ; ðb;kÞðb9;k9Þ1 Fða;jÞðb9k9Þ; ðb;kÞða9;j9ÞÞ
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1 2ðFða;jÞðb;kÞða9;j9Þ1 Fða;jÞðb;kÞðb9;k9Þ1 Fða;jÞða9;j9Þðb9;k9Þ1 Fðb;kÞða9;j9Þðb9;k9ÞÞ
� 6Fða;jÞðb;kÞða9;j9Þðb9;k9Þ

� ðFða;jÞðb;kÞ1 Fða;jÞða9;j9Þ1 Fða;jÞðb9;k9Þ1 Fðb;kÞða9;j9Þ1 Fðb;kÞðb9;k9Þ

1 Fða9;j9Þðb9;k9ÞÞ�p4
i g

¼ F4pi 1 4F3 1 3F2;2 � 7F4

� �
p2

i 1 12F4 1 6F2 � 12F3 � 6F2;2

� �
p3

i

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p4

i :

For the case with alleles i and i9 6¼ i, we have
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b¼1nbmbÞ4
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b¼1
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Xnb9

k9¼1

mambma9mb9

3 Fða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ �Fða;jÞðb;kÞða9;j9Þðb9;k9Þ
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pipi9



1 2Fða;jÞðb;kÞða9;j9Þðb9;k9Þ1 Fða;jÞðb;kÞ
�
�
�
Fða;jÞðb;kÞða9;j9Þ1 Fða;jÞðb;kÞðb9;k9Þ

�
�Fða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ

�
pip

2
i9

1 2Fða;jÞðb;kÞða9;j9Þðb9;k9Þ1 Fða9;j9Þðb9;k9Þ
�
�
�
Fða;jÞða9;j9Þðb9;k9Þ1 Fðb;kÞða9;j9Þðb9;k9Þ

�
�Fða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ

�
p2

i pi9

1 1 1 Fða;jÞðb;kÞ; ða9;j9Þðb9;k9Þ1 Fða;jÞða9;j9Þ; ðb;kÞðb9;k9Þ1 Fða;jÞðb9;k9Þ; ðb;kÞða9;j9Þ
�
1 2

�
Fða;jÞðb;kÞða9;j9Þ1 Fða;jÞðb;kÞðb9;k9Þ1 Fða;jÞða9;j9Þðb9;k9Þ1 Fðb;kÞða9;j9Þðb9;k9Þ

�
� 6Fða;jÞðb;kÞða9;j9Þðb9;k9Þ

�
�
Fða;jÞðb;kÞ1 Fða;jÞða9;j9Þ1 Fða;jÞðb9;k9Þ1 Fðb;kÞða9;j9Þ1 Fðb;kÞðb9;k9Þ

1 Fða9;j9Þðb9;k9Þ
��

p2
i p2

i9g
¼ F2;2 �F4

� �
pipi9 1 2F4 1 F2 � 2F3 �F2;2

� �
pip

2
i9 1 2F4 1 F2 � 2F3 �F2;2

� �
p2

i pi9

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p2

i p2
i9:

Applying the definition of variance, we have
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Var p̂2
i

� �
¼ E p̂4

i

� �
� E p̂2

i

� �� �2

¼ F4pi 1 4F3 1 3F2;2 � 7F4

� �
p2

i 1 12F4 1 6F2 � 12F3 � 6F2;2

� �
p3

i

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p4

i � F2pið1� piÞ1 p2
i

� �2
¼ F4pi 1 4F3 1 3F2;2 � 7F4 �F2

2

� �
p2

i 1 12F4 1 4F2 1 2F2
2 � 12F3 � 6F2;2

� �
p3

i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p4

i :

Applying the definition of covariance, we have

Covðp̂2
i ; p̂

2
i9Þ ¼ E p̂2

i p̂2
i9

� �
� E p̂2

i

� �
E p̂2

i9

� �
¼ F2;2 �F4

� �
pipi9 1 2F4 1 F2 � 2F3 �F2;2

� �
pip

2
i9 1 2F4 1 F2 � 2F3 �F2;2

� �
p2

i pi9

1 1 1 3F2;2 1 8F3 � 6F4 � 6F2

� �
p2

i p2
i9 � F2pið1� piÞ1 p2

i

� �
F2pi9ð1� pi9Þ1 p2

i9

� �
¼ F2;2 �F4 �F2

2

� �
pipi9 1 2F4 1 F2

2 � 2F3 �F2;2

� �
pip

2
i9

1 2F4 1 F2
2 � 2F3 �F2;2

� �
p2

i pi9 1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p2

i p2
i9: n

We now utilize Lemma 4 to prove Theorem 2.

Proof of Theorem 2. Applying the definition of variance, we have

Var 1�
XI

i¼1

p̂2
i

" #
¼
XI

i¼1

XI

i9¼1

Covðp̂2
i ; p̂

2
i9Þ

¼
XI

i¼1

Var p̂2
i

� �
1 2

XI�1

i¼1

XI

i9¼i11

Covðp̂ 2
i ; p̂

2
i9Þ

¼
XI

i¼1

F4pi 1 4F3 1 3F2;2 � 7F4 �F2
2

� �
p2

i



1 12F4 1 4F2 1 2F2

2 � 12F3 � 6F2;2

� �
p3

i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p4

i

�
1 2

XI�1

i¼1

XI

i9¼i 11

F2;2 �F4 �F2
2

� �
pipi9 1 2F4 1 F2

2 � 2F3 �F2;2

� �
pip

2
i9



1 2F4 1 F2

2 � 2F3 �F2;2

� �
p2

i pi9

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �
p2

i p2
i9g

¼ F4 1 4F3 1 3F2;2 � 7F4 �F2
2

� �XI

i¼1

p2
i

1 12F4 1 4F2 1 2F2
2 � 12F3 � 6F2;2

� �XI

i¼1

p3
i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �XI

i¼1

p4
i

1 2 F2;2 �F4 �F2
2

� �XI�1

i¼1

XI

i9¼i11

pipi9

1 2 2F4 1 F2
2 � 2F3 �F2;2

� �XI�1

i¼1

XI

i9¼i 1 1

p
i
p2

i9

1 2 2F4 1 F2
2 � 2F3 �F2;2

� �XI�1

i¼1

XI

i9¼i 1 1

p2
i pi9

1 2 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �XI�1

i¼1

XI

i9¼i 1 1

p2
i p2

i9:

Simplifying, we get
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Var 1�
XI

i¼1

p̂2
i

" #
¼ F4 1 2 2F3 1 F2;2 � 3F4

� �XI

i¼1

p2
i 1 4 2F4 1 F2 � 2F3 �F2;2

� �XI

i¼1

p3
i

1 F2;2 �F4 �F2
2

� � XI

i¼1

p2
i 1 2

XI�1

i¼1

XI

i9¼i11

pipi9

 !

1 2F4 1 F2
2 � 2F3 �F2;2

� �
2
XI

i¼1

p3
i 1 2

XI�1

i¼1

XI

i9¼i11

p2
i pi9 1 pip

2
i9

� � !

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� � XI

i¼1

p4
i 1 2

XI�1

i¼1

XI

i9¼i11

p2
i p2

i9

 !

¼ F4 1 2 2F3 1 F2;2 � 3F4

� �XI

i¼1

p2
i 1 4 2F4 1 F2 � 2F3 �F2;2

� �XI

i¼1

p3
i

1 F2;2 �F4 �F2
2

� �XI

i¼1

XI

i9¼1

pipi9

1 2 2F4 1 F2
2 � 2F3 �F2;2

� �XI

i¼1

XI

i9¼1

p2
i pi9

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� �XI

i¼1

XI

i9¼1

p2
i p2

i9

¼ F4 1 2 2F3 1 F2;2 � 3F4

� �XI

i¼1

p2
i 1 4 2F4 1 F2 � 2F3 �F2;2

� �XI

i¼1

p3
i

1 F2;2 �F4 �F2
2

� � XI

i¼1

pi

 !2

1 2 2F4 1 F2
2 � 2F3 �F2;2

� � XI

i¼1

p2
i

 ! XI

i¼1

pi

 !

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� � XI

i¼1

p2
i

 !2

¼ F2;2 �F2
2 1 2 F2

2 �F4

� �XI

i¼1

p2
i 1 4 2F4 1 F2 � 2F3 �F2;2

� �XI

i¼1

p3
i

1 3F2;2 1 8F3 � 6F4 � 4F2 �F2
2

� � XI

i¼1

p2
i

 !2

:

Applying the identity Var 1�
P

I
i¼1 p̂2

i

� �
= 1�F2

� �� �
¼Var 1�

P
I
i¼1 p̂2

i

� �
= 1�F2

� �2
gives Equation 15. n

It is interesting (and convenient) that although the derivation requires the use of all 15 D-coefficients, the only
coefficients required in the variance formula are F2, F3, F4, and F2;2. The 15 D-coefficients in Figure B1 completely
specify the 14 F-coefficients in Equation B3 (along with the 15th F-coefficient equal to D15). Through symmetry of the
6 F-coefficients involving two individuals, symmetry of the 4 F-coefficients involving three individuals, and symmetry
of the 3 F-coefficients involving pairs of pairs of individuals, by averaging over sets of individuals, the variance of gene
diversity becomes a function of only 4 average F-coefficients.
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Figure B1.—Identity states. Two alleles (dots) are identical
by descent if and only if there is a line connecting them. This
figure is similar to Figure 6.2 of Jacquard (1974) and is re-
produced here for convenience.
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