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Abstract

Concatenated sequence alignments are often used to infer species-level relationships. Previous studies have shown that
analysis of concatenated data using maximum likelihood (ML) can produce misleading results when loci have differing gene
tree topologies due to incomplete lineage sorting. Here, we develop a polynomial time method that utilizes the modified min-
cut supertree algorithm to construct an estimated species tree from inferred rooted triples of concatenated alignments. We
term this method SuperMatrix Rooted Triple (SMRT) and use the notation SMRT-ML when rooted triples are inferred by ML.
We use simulations to investigate the performance of SMRT-ML under Jukes—Cantor and general time-reversible substitution
models for four- and five-taxon species trees and also apply the method to an empirical data set of yeast genes. We find that
SMRT-ML converges to the correct species tree in many cases in which ML on the full concatenated data set fails to do so.
SMRT-ML can be conservative in that its output tree is often partially unresolved for problematic clades. We show analytically
that when the species tree is clocklike and mutations occur under the Cavender—Farris—Neyman substitution model, as the
number of genes increases, SMRT-ML is increasingly likely to infer the correct species tree even when the most likely gene tree
does not match the species tree. SMRT-ML is therefore a computationally efficient and statistically consistent estimator of

the species tree when gene trees are distributed according to the multispecies coalescent model.

Key words: phylogenetics, phylogenomics, anomaly zone, anomalous gene tree, statistical consistency, lineage sorting.

Introduction

A species tree is a branching pattern representing the di-
vergence of multiple species, whereas a gene tree depicts
the evolutionary history of a single gene. Though only a sin-
gle species tree exists, trees for different genes often have
conflicting topologies. This discordance of gene trees with
the species tree is due to processes such as gene duplica-
tion, horizontal gene transfer, and incomplete lineage sort-
ing (Maddison 1997; Page and Charleston 1997; Than et al.
2007; Degnan and Rosenberg 2009).

When analyzing data from multiple loci, the most
frequently occurring gene tree topology is sometimes
used as an estimate of the species tree topology. For
example, in a study of 30 loci, Jennings and Edwards (2005)
used the gene tree that was inferred in 16 of 28 resolved
topologies from three ingroup species of Australian grass
finches as the species tree topology. However, even in the
absence of complications such as hybridization (Buckley
et al. 2006; Holland et al. 2008; Meng and Kubatko 2009)
and population structure (Slatkin and Pollack 2008),
this procedure is only justified for studies of three taxa.
This is because the most likely three-taxon gene tree
is expected to match the species tree topology when
incomplete lineage sorting is modeled by the multispecies
coalescent (Nei 1987; Pamilo and Nei 1988). However,
when a species tree has four taxa and is asymmetric or
has five or more taxa, the most likely gene tree does not
necessarily match the species tree (Degnan and Rosenberg
2006; Rosenberg and Tao 2008). Such anomalous gene

trees (AGTs; Degnan and Rosenberg 2006) occur when the
species tree falls into a particular space of branch lengths
called the anomaly zone. Anomaly zones for four-taxon
and five-taxon species trees are depicted in figure 2 of
Degnan and Rosenberg (2006) and figures 3—5 of Rosenberg
and Tao (2008), respectively.

The absence of AGTs for rooted three-taxon trees moti-
vates the development of methods for inferring species trees
using rooted triples, or three taxa at a time (Degnan and
Rosenberg, 2006), as has been described for rooted triple
consensus methods (Ewing et al. 2008; Degnan et al. 2009)
and supertree methods (Steel and Rodrigo 2008; Willson
2009). Supertree methods generalize consensus methods to
the setting in which input gene trees have overlapping sub-
sets of taxa that need not be identical (Bininda-Emonds
2004). Because a rooted tree is completely described by its
set of rooted triples (Steel 1992), we can utilize a supertree
method to construct the species tree from correctly inferred
rooted triples.

Supertree and other phylogenetic methods can be
applied to sets of concatenated alignments, or superma-
trices, to infer a species tree. A concatenated alignment
contains sequences of multiple loci linked together to
create a single “supergene” (Rokas et al. 2003; de Queiroz
and Gatesy 2007), thus increasing the size of the data
set. Though statistical power generally increases with
the size of a data set, the accuracy of concatenation
is currently under debate. Rokas et al. (2003) reported
that the application of phylogenetic inference methods to
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concatenated sequence alignments can vyield a strongly
supported inferred species tree. However, several studies
(Kolaczkowski and Thornton 2004; Mossel and Vigoda 2005;
Edwards et al. 2007; Kubatko and Degnan 2007) have also
shown that inferring trees from concatenated data with
maximum likelihood (ML) can perform poorly when sites
are generated under different tree topologies and can pro-
duce bootstrap values that are misleadingly high (Gadagkar
et al. 2005; Kubatko and Degnan 2007).

Here, we develop a divide-and-conquer approach
(Cormen et al. 2001) called SuperMatrix Rooted Triple
(SMRT), which is a polynomial time algorithm that circum-
vents some of the weaknesses of concatenation by linking it
with rooted triple and supertree methods. SMRT assembles
rooted triples inferred from concatenated alignments
into a species tree using a supertree algorithm such as
modified mincut (MMG; Page 2002). We compare SMRT in
which rooted triples are inferred by ML (SMRT-ML) to the
method in which all taxa are analyzed simultaneously by
applying ML to a supermatrix (SM-ML). In simulations that
assume a molecular clock, SMRT-ML performs favorably on
four- and five-taxon species trees both inside and outside
the anomaly zone. Furthermore, introducing two model
violations—analysis under a molecular clock when gene
trees are not clocklike and analysis under an incorrect
substitution model—has little effect on the performance
of SMRT-ML. We illustrate the SMRT-ML procedure using
a yeast data set frequently analyzed in phylogenetic studies
(Rokas et al. 2003; Gatesy and Baker 2005; Edwards et al.
2007) and find that SMRT-ML recovers the same species
tree as that found using either SM-ML or the software BEST
(Liu 2008).

Assuming that incomplete lineage sorting is the source of
discordance of gene trees with species trees and that there
are no hybridization or horizontal gene transfer events, we
prove that SM-ML is a statistically consistent estimator for
three-taxon clocklike species trees when concatenated se-
quence alignments are generated from a coalescent distri-
bution under a molecular clock and a binary substitution
model (Neyman 1971). Under the same set of assumptions,
we then prove in Theorem 3 that SMRT-ML is a statistically
consistent estimator of the species tree. Therefore, our com-
putationally efficient strategy is justified both theoretically
and through simulations in the context of gene tree con-
flict due to incomplete lineage sorting. Although we assume
here that rooted triples are inferred using a ML method,
we stress that SMRT is a general approach that can utilize
rooted triples that have been inferred from other methods
such as parsimony and distance methods as well. We fo-
cus on triples inferred from ML because we compare our
method to a method in which trees are inferred by ML from
concatenated alignments.

Methods

SuperMatrix Rooted Triple
The SMRT approach takes a concatenated alignment of n

taxa and breaks it into ('3’) alignments, one for each set of
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FIG. 1. Four- and five-taxon clocklike species tree topologies. (A, B)
Four-taxon species tree topologies with branch lengths x,y,and z. (C-
E) Five-taxon species tree topologies with branch lengths w, x, y, and
z. Branch lengths are in coalescent time units t /(2N ), where t is the
time in generations and Nk is the effective population size. For all sim-
ulations, we let z = 1.

three taxa. A rooted three-taxon tree is inferred for each
alignment using any phylogenetic method by either assum-
ing a molecular clock or including a known outgroup as
a fourth taxon to root the tree. The species tree is then
constructed by using the resulting rooted triples as input
for a supertree algorithm. Here, we use MMC, which ex-
tends the mincut algorithm (Semple and Steel 2000). The
mincut algorithm satisfies five desirable properties: 1) the
order of the input set of trees does not affect the method;
2) relabeling the set of taxa of the input trees produces the
same output tree on the relabeled set of taxa; 3) if there ex-
ists a tree that has each input tree as a subtree, then the
output tree will display all these trees; 4) any taxon that is
in the input set of trees is also in the output tree; and 5)
the method is polynomial in the number of distinct taxa
(Semple and Steel 2000). Page (2002) created MMC by mod-
ifying the mincut method so that uncontradicted nestings
are preserved in the output tree.

Simulation

We examined the performance of SMRT-ML using simu-
lated sequence alignments. First, we chose a species tree
o with topology (((AB)C)D), ((AB)(CD)), ((((AB)C)D)E),
(((AB)C)(DE)), or (((AB)(CD))E). Model species tree
topologies are depicted in figure 1. Branch lengths and
probabilities for the matching gene tree topology and
most probable nonmatching gene tree topologies are
shown in table 1. The branch lengths chosen for the
species tree (((AB)C)D) are the same as those used in
Kubatko and Degnan (2007). One additional case was
considered in which both internal branch lengths equal
0.1 coalescent units for the (((AB)C)D) species tree. For
each species tree and each simulation replicate, using
COAL (Degnan and Salter 2005) conditional on o, we
simulated m = 100, 200, 300, 400, 500, 600, 700, 800,
900, 1,000, 2,000, 3,000, 4,000, 5,000, and 6,000 indepen-
dent (within and across each set) gene trees with branch
lengths. Branch lengths were simulated in coalescent
units, t/(2Ne), where t is the number of generations
and N, is the effective population size. We converted the
branch lengths for each gene tree to mutation units by
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Table 1. Probabilities of Concordant and Most Probable Discordant Gene Trees and Performance of SM-ML and SMRT-ML with 6,000 Loci.

Branch lengths

(xy) or (w,x,y) Highest probability Concordance Highest probability SM-ML SMRT-ML
Species tree o (see Fig. 1) nonmatching gene tree probability nonmatchingtree correct >50% correct >50% Figures
(((AB)C)D) (0.01, 2.0) ((AB)(CD)) 0.30170 0.30039 NO NO 3A,
(0.05,1.0) ((AB)(CD)) 0.25483 0.24116 NO YES 3B)J
(0.1,1.0) ((AB)(CD)) 0.27762 0.23099 YES YES 3CK
(0.1568, 0.1568) ((AB)(CD)) 0.13344 0.133492 YES YES 3D,L
(0.01, 1.0) ((AB)(CD)) 0.23595 0.24948° NO NO 3EM
(0.05, 0.05) ((AB)(CD)) 0.07879 0.12079* NO YES 3FN
(0.1, 0.05) ((AB)(CD)) 0.08867 0.119012 NO YES 3G,0
(0.25,0.01) ((AB)(CD)) 0.10376 0.105112 YES YES 3H,P
(0.1,0.1) ((AB)(CD)) 0.10370 0.12792* NO YES S13B
((AB)(CD)) (0.01, 2.0) (((AB)C)D), (((AB)D)C) 0.30929 0.29280 YES NO 4A,l
(0.05, 1.0) (((AB)C)D), (((AB)D)C) 0.27612 0.21987 YES YES 4B
(0.1,1.0) (((AB)C)D), (((AB)D)C) 0.29946 0.20915 YES YES 4CK
(0.1568,0.1568)  (((AB)C)D), (((AB)D)C), 0.18497 0.08196 YES YES 4D,L
(((CD)A)B), (((CD)B)A)
(0.01,1.0) (((AB)C)D), (((AB)D)C) 0.25659 0.22884 YES NO 4EM
(0.05,0.05) ((AC)(BD)), ((BC)(AD)) 0.13384 0.10054 YES YES 4F,N
(0.1,0.05) ((AC)(BD)), ((BC)(AD)) 0.14516 0.09563 YES YES 4G,0
(0.25,0.01) (((CD)A)B), (((CD)B)A) 0.16346 0.11584 YES NO 4H,P
((((AB)C)D)E) (0.1,0.1,0.1) (((AB)C)(DE)) 0.02217 0.03321% NO YES 5AE
(0.1,1.0,0.1) (((AB)C)(DE)) 0.09388 0.08158 NO YES 5B,F
(0.1,0.1,1.0) (((AB)C)(DE)) 0.07055 0.089412 NO YES 5C,G
(1.0,0.1,0.1) (((AB)(CD))E) 0.06547 0.07705% YES YES 5D,H
(((AB)C)(DE)) (0.1,0.1,0.1) (((DE)C)(AB)) 0.04002 0.03034 YES YES GAE
(0.1,1.0,0.1)  (((AC)B)(DE)), (((BC)A)(DE)) 0.10506 0.07656 YES YES 6B,F
(0.1,0.1,1.0)  (((AB)D)(CE)), (((AB)E)(CD)) 0.10970 0.06465 YES YES 6C,G
(1.0,0.1,0.1) (((DE)C)(ABY)) 0.07781 0.088252 NO YES 6D,H
(((AB)(CD))E) (0.1,0.1,0.1)  (((AB)E)(CD)), (((CD)E)(AB)) 0.02914 0.03626* YES YES 7AE
(0.1,1.0,0.1) (((CD)E)(ABY)) 0.07339 0.09065% NO YES 7B,F
(0.1,0.1,1.0) (((AB)E)(CD)) 0.07339 0.090652 YES YES 7CG
(1.0,0.1,0.1)  (((AC)(BD))E), (((AD)(BC))E)  0.09591 0.05231 YES YES 7D,H
((((AB)(CD))E)F) see Figure S12A (((AB)(CD))(EF)) 0.01525 0.023432 NO YES S10B

2The most probable gene tree is an AGT.

multiplying each branch length by 6/2, where 6 = 4N,
and p is the mutation rate per site per generation. As
a consequence, all populations had equal values of 6.
For each gene tree, we converted branch lengths to the
expected number of mutations by multiplying them by
0/2, where 6 = 0.01. We generated sequence alignments
of length L =500 nucleotides (nt) with Seq-Gen (Rambaut
and Grassly 1997). These m independent alignments were
concatenated to create single n-taxon alignments of length
mL.

The concatenated alignments were then broken into
all ('3’) three-taxon alignments of length mL. We inferred
rooted ML trees for the n-taxon alignment, as well as for
all three-taxon alignments, employing an exhaustive search
over all tree topologies from PAUP* (Swofford 2003). All
three-taxon rooted trees were entered as input to the pro-
gram supertree (Page 2002), which implements the MMC al-
gorithm. Each time PAUP* was called, it returned k > 1tree
topologies tied for the most likely species tree. The count
for each of the tied topologies was increased by 1/k. We
repeated this procedure, beginning with the simulation of
gene trees, 300 times for each combination of species tree
topology and number of loci. The count for each tree topol-
ogy was averaged over all replicate simulations. Unless oth-
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erwise stated, the results are for data simulated under a
Jukes—Cantor (JC) model and analyzed under ML assuming
JCand a molecular clock. A schematic of the simulation pro-
cedure is provided in figure 2.

Empirical Example

SMRT-ML was applied to analyze a yeast data set consist-
ing of 106 genes spanning over 127,000 nt (Rokas et al.
2003). We used ML in PAUP* under a general time reversible
(GTR) + I + I model without a molecular clock on each of
the (;) = 35 three-taxon subsets of the seven ingroup taxa,
using the outgroup Candida albicans to root the triples.
In addition to the full concatenated alignment, we ana-
lyzed concatenated alignments of random subsets of m =
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 genes. For each
value of m, SMRT-ML was applied to 300 random subsets
of m genes, and we reported the proportion of times that
SMRT-ML returned either the presumed species tree or a
tree with at least one false clade. Bootstrapping for SMRT-
ML was performed by reading the concatenated sequence
data in R (R Development Core Team 2008) and using the
sample function to create 300 bootstrap eight-taxon align-
ments, SMRT-ML was applied to each bootstrap replicate in
separate PAUP* runs.
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Maximum likelihood rooted triple Maximum likelihood rooted triple
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Supertree

]
Modified mincut supertree

FIG. 2. Schematic of our simulation procedure. First, an n-taxon species tree is chosen with branch lengths, which is fed through COAL (Deg-
nan and Salter 2005) to produce a set of n-taxon gene trees simulated under this species tree. Seq-Gen (Rambaut and Grassly 1997) is then used
to create alignments of n species based on the gene trees, which are linked to create a single concatenated alignment. The concatenated align-
ment is analyzed under maximum likelihood (SM-ML) with PAUP* (Swofford 2003) to infer a species tree. The concatenated alignment is also
broken into all (’;) alignments of three species, which are then fed through PAUP™ to infer a total of (';) rooted triples. These rooted triples
are used as input to supertree (Page 2002) to infer a species tree (SMRT-ML). The dashed gray box represents the part of the procedure that

is SMRT-ML.
Results for Simulations

Four Taxa

A four-taxon asymmetric species tree is depicted in
figure 1A. Figure 3A-H and [-P display simulation results
for this species tree for SM-ML and SMRT-ML, respectively.
As shown by Kubatko and Degnan (2007) and replicated
here, SM-ML is misleading in that increasing the num-
ber of loci can make it more likely to return an incorrect
species tree. In contrast, SMRT-ML outperformed SM-ML
on the (((AB)C)D) species tree for all branch lengths tried
except for (x,y) = (0.25,001) (fig. 3H and P), where
both methods performed poorly. For these branch lengths,
using 6,000 loci, SM-ML returned the species tree 52% of
the time, SMRT-ML returned the species tree 54% of the
time, and both methods returned each of the nonmatch-
ing trees (((AC)B)D) and (((BC)A)D) less than 25% of the
time. For extremely small branch lengths of 0.01, the propor-
tion of times that SMRT-ML recovers the species tree topol-
ogy increases slowly (fig. 3/, M, and P). However, the method

does not appear to be misleading, suggesting that there is
a trade-off between consistency and speed of convergence
as was seen for consensus methods by Degnan et al. (2009).
For these sets of branch lengths, the proportion of times
that SM-ML returned the species tree either increased just
as slowly (fig. 3H) or was misleading (fig. 3A and E). Even
though SMRT-ML did not always infer the matching species
tree when x = 0.01, it often inferred the partially unre-
solved tree ((AB)CD) (e.g, fig. 3/ and M), which is not mis-
leading for the species tree topology. On the other hand,
for (x,y) = (0.1,1.0) (fig. 3C and K), both methods con-
verged to the species tree with SMRT-ML converging more
quickly than SM-ML; however, only SMRT-ML was increas-
ingly likely to recover the species tree as loci were added for
all branch lengths tried.

Simulation results on the four-taxon symmetric species
tree (fig. 1B) are shown in figure 4A-H (SM-ML) and
figure 4/-P (SMRT-ML). In contrast to what was observed
for the asymmetric tree, for the symmetric tree SM-ML is
not misleading and converges to the true species tree faster
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FIG. 3. Results of simulations for the four-taxon tree (((AB)C)D) (fig. 1A) generated under a JC model with § = 0.01 and a molecular clock and
analyzed under ML assuming a molecular clock and a JC model. (A -H) SM-ML (resimulated from Kubatko and Degnan 2007); (I-P) SMRT-ML.
Data for each combination of branch lengths and number of loci were generated from 300 independent simulations.

than SMRT-ML for each set of branch lengths tested. This
observation is not surprising given that no anomaly zone ex-
ists for the four-taxon symmetric species tree and that SM-
ML simultaneously analyzes all available sequence data for
the four taxa. However, one must also be careful in assum-
ing that SM-ML will perform well outside of the anomaly
zone because the anomaly zone has no obvious relationship
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to the problems encountered with concatenation. As with
the case for the asymmetric tree, SMRT-ML tends to have a
slow rate of convergence at extremely small branch lengths
(fig. 41, M, and P). However, it is still not misleading and
frequently returns either the ((AB)CD) or ((CD)AB) partially
unresolved tree. Thus, although SMRT-ML can be slower
to converge to the species tree for symmetric four-taxon
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FIG. 4. Results of simulations for the four-taxon tree ((AB)(CD)) (fig. 1B) generated under a JC model with § = 0.01 and a molecular clock and
analyzed under ML assuming a molecular clock and a JC model. (A -H) SM-ML; (I-P) SMRT-ML. Data for each combination of branch lengths
and number of loci were generated from 300 independent simulations.

trees, simulations for both symmetric and asymmetric four-
taxon species trees suggest that SMRT-ML has the desirable
property of not being misleading regardless of the species
tree topology or branch lengths.

Five Taxa
Five-taxon trees are illustrated in figure 1C-E. For these
trees, SM-ML is misleading with certain branch lengths

(figs. 5A-C and 6D). In contrast, SMRT-ML is not mislead-
ing under any parameters tested, attaining the correct tree
100% of the time with 6,000 genes for all topologies and
branch lengths tested.

Similarly to the results presented for four taxa, in cases
where both SM-ML and SMRT-ML recover the species
tree (given enough loci), the method that has faster
convergence depends on the topology and branch lengths
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FIG. 5. Results of simulations for the five-taxon tree ((((AB)C)D)E) (fig. 1C) generated under a JC model with # = 0.01 and a molecular clock and
analyzed under ML assuming a molecular clock and a JC model. (A -E) SM-ML; (E-H ) SMRT-ML. Data for each combination of branch lengths

and number of loci were generated from 300 independent simulations.

of the species tree. For the species tree ((((AB)C)D)E), the
only set of branch lengths tested for which SM-ML was
not misleading was (w,x,y) = (1.0,0.1,0.1), in which
case SMRT-ML converged more quickly to the species tree
than SM-ML. For these branch lengths, SMRT-ML recov-
ered the species tree 94% of the time with 1,000 loci,
whereas SM-ML recovered the species tree 84% of the
time. For the species tree (((AB)(CD))E), SM-ML showed
slightly faster convergence to the species tree for two branch
length combinations (fig. 7A and D). For example, with
1,000 loci and branch lengths (w,x,y) = (0.1,0.1,0.1),
SM-ML and SMRT-ML recovered the species 93% and 91%
of the time, respectively. However, for the same species
tree topology with (w,x,y) = (0.1,0.1,1.0), SMRT-ML
appears to converge more quickly, with the species tree
being estimated ~89% of the time with SMRT-ML using
1,000 loci versus ~60% of the time with SM-ML. Fur-
thermore, whereas SM-ML was never found to be mis-
leading for four-taxon symmetric species trees, SM-ML
can fail to converge to the species tree for every five-
taxon tree shape. SMRT-ML converged to the species
tree for all branch lengths tested on every five-taxon tree
shape.

Model Violations

To assess how SM-ML and SMRT-ML perform with vio-
lations of assumptions, we made gene trees nonclocklike
by independently multiplying each branch by a value sam-
pled from an exponential distribution with mean 1. The
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concatenated alignment generated by these gene trees was
then analyzed assuming JC and a molecular clock.

Figure 8 shows that, for the (((AB)C)D) tree, both meth-
ods were fairly robust to violation of the molecular clock
(when compared with fig. 3). The molecular clock vio-
lation slowed down the convergence to the species tree
that was inferred with clocklike gene trees. For example,
the species tree was inferred 98% of the time with 1,000
genes under a molecular clock (fig. 3K), whereas it was in-
ferred 80% of the time with 1,000 genes and 96% of the
time with 3,000 genes when the molecular clock was vio-
lated (fig. 8K). This trend also held for the symmetric four-
taxon species tree (supplementary fig. S1, Supplementary
Material online) and the three five-taxon species trees (sup-
plementary figs. S2-S4, Supplementary Material online).
Also, the violation of the molecular clock affected SMRT-
ML more than SM-ML. For example, when the molecu-
lar clock is violated, it may require 2,000 genes instead of
1,000 genes to obtain the same fraction of correctly in-
ferred trees (cf. fig. 5E with supplementary fig. S2E, fig. 6E
with supplementary fig. S3E, and fig. 7E with supplemen-
tary fig. S4E, Supplementary Material online). From these
results, we conclude that the performance of the two
methods is only slightly influenced by the molecular clock
violation.

We introduced a second model violation by generating
sequence alignments under a complex substitution model
(GTR) and then comparing SM-ML and SMRT-ML when
trees were inferred assuming a simple substitution model
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analyzed under ML assuming a molecular clock and a JC model. (A -E) SM-ML; (E-H) SMRT-ML. Data for each combination of branch lengths

and number of loci were generated from 300 independent simulations.

(JO). As with the case of the molecular clock violation,
the general patterns displayed by the two methods were
not significantly altered (supplementary figs. S5-S9, Sup-
plementary Material online). However, under this substitu-
tion model violation, SM-ML was more negatively affected
than SMRT-ML. Based on simulations, SM-ML can converge
more quickly to the wrong tree (cf. fig. 3A and B with
supplementary fig. S5A and B, Supplementary Material on-
line and fig. 7B with supplementary fig. S9B, Supplemen-
tary Material online) and more slowly to the correct tree
(cf. fig. 3C with supplementary fig. S5C, Supplementary Ma-
terial online and fig. 7C with supplementary fig. S9C, Sup-
plementary Material online) compared with analysis under
the correct model. Furthermore, this model violation can
reverse the effect of adding more data. For example, when
both branches of the four-taxon species tree (((AB)C)D)
had lengths of 0.1568, SM-ML was increasingly likely to in-
fer the correct tree when there was no model misspecifica-
tion (fig. 3D; 63% probability with 6,000 genes) but decreas-
ingly likely under model misspecification (supplementary
fig. S5D, Supplementary Material online; 26.7% chance of in-
ferring the matching tree with 6,000 genes). However, this
model violation can also favorably influence SM-ML by caus-
ing a faster convergence to the correct tree (cf. fig. 4A with
supplementary fig. S6A, Supplementary Material online and
figure 5B with supplementary fig. S7B, Supplementary
Material online).

In simulations, neither SM-ML nor SMRT-ML performed
uniformly better than the other method for all possible
species trees. Table 1 gives a summary of these results and
notes whether each method recovered the species tree in
more than 50% of simulations with 6,000 loci of 500 nt each.
A “NO” in the table indicates that either the method was
likely to pick one of several trees (including the species tree)
or converged to the wrong tree. Convergence to an incor-
rect tree only occurred for SM-ML. In cases where less than
50% probability of recovering the species tree was observed
for SMRT-ML, SMRT-ML typically returned the species tree
topology >40% of the time and frequently returned some
other tree, often a partially unresolved tree with no false-
positive clades. We note that a “NO” only occurred for
SMRT-ML in the four-taxon cases where there was one
extremely short branch length of 0.01 coalescent units, lead-
ing to a high probability of a partially unresolved tree.
SM-ML had poorer performance as the number of taxa was
increased even though branch lengths were less extreme
than for most of the four-taxon simulations. SMRT-ML,
however, had similar performance as the number of taxa
increased.

Results for Yeast Data

Although the causes of gene tree conflict in the yeast
data set analyzed by Rokas et al. (2003) are unknown, the
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analysis of this data set by several groups (e.g, Gatesy and
Baker 2005; Edwards et al. 2007) makes it useful for com-
paring methods of inferring species trees. Rokas et al. (2003)
reported that 20 concatenated genes were sufficient for
maximum parsimony or ML to infer the same tree with high
reliability. On the estimated species tree, the five taxa with
the most difficult relationships to infer form the five-taxon
subtree ((((Saccharomyces cerevisiae, Saccharomyces para-
doxus), Saccharomyces mikatae), Saccharomyces kudriavze-
vii), Saccharomyces bayanus).

Using SMRT-ML on all 106 genes, we recovered the
species tree found using SM-ML on the full data (i.e, the
same tree that was reported as the estimated species tree in
Rokas et al. 2003). When a clock was assumed, SMRT-ML re-
turned the species tree with the five-taxon subtree replaced
by (((S. cerevisiae, S. paradoxus), S. mikatae), (S. kudriavzevii,
S. bayanus)). The same result was produced by the program
BEST (Liu 2008) analyzing the full data under a molec-
ular clock; however, the molecular clock assumption is
unreasonable because the data are not clocklike at most loci
(Edwards et al. 2007).

To compare the efficiency of species tree estimation
methods when methods agree on the full data, it is useful to
consider subsets of the genes. For example, although Rokas
et al. (2003) found that 20 randomly chosen genes were suf-
ficient for SM-ML to estimate the species tree with high
probability, Edwards et al. (2007) found that eight genes
were sufficient using BEST. Because of the tradeoff between
consistency and speed of convergence, we expect SMRT-ML
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to perform less efficiently than SM-ML for many cases when
both methods have a high probability of returning the same
tree, and this expectation is indeed what we found with the
yeast data. The proportion of times SMRT-ML returned the
species tree, inferred from all 106 loci, using random sub-
sets of 20 loci was approximately 33%, with another 8% of
cases returning a tree that was unresolved with respect to
the taxa S. kudriavzevii and S. bayanus and the {S. cerevisiae,
S. paradoxus, S. mikatae} clade. With 60 genes, the pro-
portion of times that SMRT-ML returned the species tree
increased to 59% (supplementary fig. S10, Supplementary
Material online). The SMRT-ML method was therefore in-
creasingly likely to return the tree reported by Rokas et al.
(2003) as the number of genes from this data set was
increased.

Using SMRT-ML on the full data set of 106 genes, the
bootstrap support for clades {S. cerevisiae, S. paradoxus}
and {S. cerevisiae, S. paradoxus, S. mikatae} was 99% and
91%, respectively (as opposed to the 100% bootstrap sup-
port observed for the total concatenated data set in Rokas
et al. 2003), whereas the clade {S. cerevisiae, S. paradoxus,
S. mikatae, S. kudriavzevii } had 61% bootstrap support (sup-
plementary fig. S11, Supplementary Material online) (see
Methods under the “Empirical Example” section for how
the bootstrap with SMRT-ML was performed). The clade
{S. bayanus, S. kudriavzevii} occurred in 29% of bootstrap
replicates. Thus, although SMRT-ML and SM-ML produced
the same estimated species tree for the 106-gene yeast data
set, SMRT-ML converged to this estimated tree more slowly
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than SM-ML. The speed of approach to this tree could be
either a product of the trade-off between consistency and
speed of convergence sometimes observed for SMRT-ML or
misleadingly high bootstrap support for SM-ML (Gadagkar
et al. 2005; Kubatko and Degnan 2007). The slower con-
vergence of SMRT-ML compared with SM-ML observed for
this data set is not expected to generalize to all species
trees because simulations found that there are also species

trees for which SMRT-ML converges more quickly than
SM-ML.

In both simulations and analysis of the yeast data, SMRT-
ML was not misleading, in the sense of becoming increas-
ingly less likely to infer an incorrect tree with more data,
even in cases where SM-ML converged to the wrong tree.
To see whether the observation that SMRT-ML was not
misleading is expected to be true in general, we next assess
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the properties of SMRT-ML theoretically. We derive the
probability that a site has pattern x for a three-taxon species
tree by averaging over gene genealogies under a simple sub-
stitution model. This result is then used to prove that SMRT-
ML is statistically consistent when estimating species trees
from coalescent mixtures of site patterns at least in a sim-
plified setting.

Theory

In this section, we begin by developing the probability dis-
tribution of site patterns under a Cavender—Farris—Neyman
(CFN) substitution model given a clocklike three-taxon
species tree. This substitution model assumes binary char-
acters with equal rates of mutation between the charac-
ters. Assuming that incomplete lineage sorting is the source
of discordance between gene trees and species trees and
that the species tree has no hybridization or horizontal gene
transfer events, we then show that the frequency of a certain
site pattern in a concatenated alignment converges in prob-
ability to the probability of the site pattern (Lemma 1). From
this result, we provide a proof that SM-ML is a consistent
estimator of a clocklike three-taxon species tree (Lemma 2).
Utilizing Lemma 2, we show in Theorem 3 that SMRT-ML
is consistent for estimating clocklike species trees under the
CFN model.

Consider a species tree with three taxa. Denote the true
species tree by o with speciation times po and p; (see fig. 9).
Denote the topology of the species tree as ((AB)C). The
species tree is therefore written as follows:

o = ((Ap1,B:p1):p0 — 1, Cpo),

which has clocklike branch lengths. Furthermore, denote
the topology of the gene tree that matches the species tree
o as 7y and denote the other gene tree topologies as the star
tree 7o = (ABC) and the two discordant trees 7, = ((AC)B)
and 3 = ((BQ)A).

Random gene trees evolving along the species tree o can
take on any of the topologies 74, 75, or 3. Define 6 as the
population mutation rate for each branch of the tree. For a
random gene tree topology, we define t as the total length
of the gene tree and u as the time from the present to the
most recent coalescent event in mutation units.

Our goal is to determine the probability of a site pattern
x = (x1,x2,x3) under a CFN substitution model, where x;,
X, and x3 are the characters at a site for species A, B, and
G, respectively. If two species have the same character at a
site, then they share the same letter. Therefore, the possible
site patterns are xxx, xxy, Xyx, and yxx. We note that only
the xxy pattern supports the matching gene tree ((AB)C).
We will show that when data are concatenated under a co-
alescent model and an ML tree is inferred from the concate-
nated data, the probability that the ML tree has topology T
is higher than the probability of any other bifurcating tree
topology. Furthermore, we will show that this probability
approaches 1 as the number of sites approaches infinity.

The probability of a site pattern given the species tree
is obtained by conditioning on the gene genealogy and
integrating over the joint density of the two coalescent
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FIG. 9. A three-taxon gene tree within a model species tree with no-
tation used in the paper. In all cases, the species tree has the topol-
ogy ((AB)C). Dots represent coalescent events. (A ) and (B ) depict the
same gene tree topology with different coalescent histories. The gene
tree in (C) has the ((AC)B) topology; the gene tree in (D) has the
((BC)A) topology.

times. The form of the joint density depends on whether
both coalescent events occur more anciently than the root
of the species tree o or whether one coalescent event
occurs more recently than the root of the species tree. This
latter case only occurs when the gene tree matches the
species tree. In this case (fig. 9A), define g, (t,u, 7y) as the
joint density for the coalescent times and gene tree topol-
ogy T;. Following Rannala and Yang (2003), this joint density
is written as
g (tu,m) = %e%(p‘]ﬂﬁﬂ)- (1)

When all coalescent events occur more ancient than the
root and the genealogy has topology 7; (fig. 9B-D), the joint
density of coalescent times and topology is

foltou,m) = oeb Gortoro), o)
Note that when all coalescent events are above the root, the
form of the joint density for the gene tree topology and two
coalescent times is the same for each of the three topologies.
The probability of site pattern x given that the species tree
is o is

o [ e
e

i=1

t,u,T)go (t,u, 7)du dt

t,u, 7 )f, (t,u, 7 )du dt,

3)

where P, (x|t,u, ;) is the probability of the site pattern
given the gene genealogy with topology 7; and the branch
lengths u and t — u. The first term in the probability is for
the case that the gene tree matches the species tree and
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there is a coalescence between the A and B lineages more
recent than the root of the species tree (fig. 9A). The second
term is a summation corresponding to the three possible
gene tree topologies when all coalescent events are more
ancient than the root (fig. 9B-D).

For a CFN substitution model, Yang (2000) provided the
probabilities of the site pattern x conditional on the gene
tree topology with branch length t and u as

1 1 _ 1 _
P (xxx|t,u, ;) =215 4“+5e “,
1 1 1
P( ):——i-—eiw——ei['t,
4 4 2
1 T 4
P(xyx|t,u, 1) = P(yxx|t,u, ):Z_Ze ;o (4)

where the equality for xyx and yxx follows by symmetry of A
and B with respect to Cin tree 4. We have dropped the sub-
script o in P, (+|-) because the probability of a site pattern
is independent of the species tree given the gene genealogy
7;. Similarly,

P( ) = P( ) =P (xyx|t,u,T),
P (yxx|t,u,73) = P (xyx|t,u, 75) = P( ),
P(xyx|t,u,73) = P(yxx|t,u, 7)) = P(yxx|t,u, 7). (5)

We next derive the full distribution of site patterns for a
given species tree 0. Using the symmetries in equation (5),

Po(xxy)

L
WAL

X f,(t,u, T;)}du dt

/ /‘Po 1 + e74u _ 741‘ 4
0
—4 —4t
+/ / Al B iee(zpﬁp‘ 2u=t) dy dt
Po Po 4 92

14204 e —2e

)8 (t,u, 71)du dt

)+ 2P(

)l

%(pﬁ'm_t_“)du dt

6
4+ 80 ©
Analogously,
Po(xyx)
74u 4
/ / —ee<p°+m-f—“> du dt
4
oo - o4t
* / / et . — et Qpte=2u=t) gy g
Po Po 4 92
1420 —e )
- 4+80

By symmetry, we have that P, (yxx) = P, (xyx) and by the

law of total probability,

Py(xxx) =1 — Py (xxy) — P, (xyx) — Py (yxx)

1420 + e 4 2e 0 o

B 4+ 80 ' ®)

The probability in equation (6) is greater than the probabil-

ity in equation (7) if and only if py > p;, that is, the root

of the species tree is more ancient than the divergence of

species A and B. Therefore, the probabilities of the segre-

gating site patterns given the species tree o are related by

P,(xxy) > P,(yxx) = P,(xyx). Hence, the most proba-

ble segregating site pattern is the pattern that supports the
species tree.

It is possible to extend the above derivation to other
substitution models by modifying the expressions in equa-
tion (4) and including a term for P (xyz) if there are more
than two possible character states. Extending to site pat-
tern probabilities for four or more taxa is also accomplished
using the same approach but is considerably more tedious.
For example, with four taxa, there are 15 rooted gene tree
topologies rather than three, and the form of the joint
density of coalescent times and gene tree topology de-
pends on the “coalescent history,” a list of ancestral popula-
tions from the species tree where each coalescence occurs
(Degnan and Salter 2005; Rosenberg 2007). For four-taxon
trees, there are up to five coalescent histories for a given
gene tree in a species tree in contrast to the two expressions
for three taxa (egs. 1 and 2). Thus, the probability of a site
pattern x is found by summing over gene trees and comput-
ing triple integrals of P (x) with respect to each of the alge-
braic expressions taken by the joint densities of coalescent
times and gene tree topologies. Because SMRT-ML only uses
alignments of three taxa, we have only derived three-taxon
site pattern probabilities. We next provide two lemmas that
aid in the proof of the theorem that SMRT-ML is consistent.

Lemma 1 essentially says that the alignment lengths do
not matter asymptotically (under reasonable conditions)
because the proportion of sites with any given pattern x
will approach the probability of the site pattern. In prac-
tice, the length of the alignments could affect the rate at
which a method using concatenated data (e.g, SM-ML or
SMRT-ML) converges to a particular species tree. Lemma 2
says that because the most likely segregating pattern sup-
ports the species tree, SM-ML is consistent on concatenated
three-taxon alignments under some assumptions (e.g, a
clocklike species tree, constant ancestral 6s, and the CFN
substitution model). Theorem 3 puts these ideas together
and states that because SMRT-ML constructs the species
tree from several SM-ML estimates restricted to rooted
triples, SMRT-ML is a statistically consistent estimator of
clocklike species trees under the CFN model. The proofs for
the theorem and the lemmas are provided in the Appendix.

We begin by stating assumptions used for proving the
lemmas and theorem that follow:

1. Let the gene tree for the ith locus have topology 7() €
{71, 75, 73} and coalescent times u; and ¢; (fig. 9), where
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the joint distribution of topology and coalescent times is
given by equations (1) and (2). Assume that each site j in
locusi isindependent given the gene tree and coalescent
times and has site pattern probability P(x ti, ui, 70)),
given by equations (6-8), where the mutation param-
eter 6 is constant for each ancestral population in the
species tree. This derivation for site pattern probabilities
depends on the following assumptions:

e Mutations occur under the CFN substitution model.
e The species tree is clocklike.

e Incomplete lineage sorting is the source of discordance
between gene trees and species trees.

e There is no hybridization, horizontal gene transfer, or
other gene flow between species.

e There is no population subdivision within species.

2. Consider a concatenated alignment of m nonrecom-
bining loci that are conditionally independent given
the species tree, each with finite length L; > 1 for
i =12...,mDefineq, = (>, L2/, L)
and assume that, for any site pattern x, g,, — 0
asm — oo.

3. A supertree algorithm is used with the property that
if the input trees are compatible, then the supertree
is a rooted phylogenetic tree that displays all input
trees.

The condition under Assumption 2 that g,, — 0 as
m — o0 allows a version of the law of large numbers
(see Appendix) to be applied to site pattern probabilities for
concatenated alignments with different lengths and ensures
that the length of the concatenated alignment does not
grow too rapidly. For example, if we concatenate loci of con-
stant length L, then g,, = mL?/(mL)?> — 0asm — oc.
Similarly, if the gene length is bounded, so that 1 < L; < B,
for some upper bound B, then g,, < mB?/m?> — 0.
Because real genomes are finite, this assumption is reason-
able for biological data. However, if every new locus were
twice the length of the previous locus, say L; = 2 for
i =12...,mthenqg, — 1/3asm — oc. Thus, if the
concatenated alignment grows too quickly, Lemma 1 does
not apply.

Assumption 3 states that the only characteristic of the su-
pertree method that is necessary to prove Theorem 3 is that
the method must return a tree that displays all input trees
when they are compatible. Hence, if all rooted triples are
inferred correctly, then the tree that displays those rooted
triples is the species tree topology. A broad class of su-
pertree algorithms can be used to prove this result including
BUILD (Aho et al. 1981), matrix representation using parsi-
mony (Baum 1992; Ragan 1992), mincut (Semple and Steel
2000), MMC (Page 2002), matrix representation using flip-
ping (Chen et al. 2003), and normalized triplet supertrees
(Willson 2009).

Lemma 1 Under Assumptions 1 and 2, the proportion of
sites with pattern x converges in probability to P (x).
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Lemma 2 Under Assumptions 1 and 2, SM-ML is a statisti-
cally consistent estimator of a three-taxon clocklike species
tree.

Theorem 3 Under Assumptions 1-3, SMRT-ML is a statis-
tically consistent estimator of a clocklike species tree with
three or more taxa.

Discussion

Overview of Results and Implications

In this study, we have shown that combining concatena-
tion and supertree methods on rooted triples can over-
come the problems caused by incomplete lineage sorting
for concatenation-based ML inference of species trees. From
theory, we find that SMRT-ML is a consistent estimator of
species trees when sequences are generated under a CFN
substitution model assuming a molecular clock and equal
values of @ over the species tree.

Although neither SM-ML nor SMRT-ML performs uni-
formly better than the other, a scan of Table 1 shows
that SMRT-ML often outperforms SM-ML when no sin-
gle gene tree has high probability (typically < 25%) and
when two gene trees have very similar probabilities. Be-
cause the yeast data set has considerably less gene discor-
dance than these cases, it is not surprising that SM-ML needs
fewer loci than SMRT-ML to obtain the same species tree
that was inferred from all 106 loci. The yeast data analy-
sis also suggests that it may take a large number of genes
for SMRT-ML to have a high probability of recovering the
species tree and therefore that SMRT-ML may have an ad-
vantage with sizeable genomic data sets. Simulations show
that large amounts of data may also be necessary to resolve
phylogenies when no single gene tree topology predomi-
nates.

Through simulations, we find that SMRT-ML is not mis-
leading and often outperforms SM-ML given sufficiently se-
vere gene tree discordance when sequences are generated
under JC and GTR substitution models. This finding sug-
gests that SMRT-ML is consistent when assuming mod-
els that are more complex than CFN. However, analytical
results for three-taxon trees under more complex mod-
els are difficult to obtain. For example, Chor, Hendy, Snir
(2006) found that the exact ML solution for a rooted three-
taxon JC problem required finding roots of an 11th-degree
polynomial.

An attractive property of the SMRT method is computa-
tional efficiency. For each rooted triple, the tree space con-
tains only three trees and the number of branch lengths
to optimize is small. Therefore, the total number of trees
examined is 3(}) = n(n — 1)(n — 2)/2. In con-
trast, the total number of rooted tree topologies in an
n-taxon tree space is (2n — 3)!l. Although there are meth-
ods, such as branch and bound (Felsenstein 2004) that
can ignore the irrelevant part of the tree space, finding
globally optimal trees under criteria such as likelihood or
parsimony is NP-hard (Day et al. 1986; Chor and Tuller
2005; Roch 2006). Because MMC is a polynomial time al-
gorithm (Page 2002), and only a polynomial number of
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trees is evaluated using SMRT, both steps of inferring triples
and constructing the tree are polynomial in the number
of taxa. Thus, at least under a simple substitution model,
SMRT-ML is a polynomial time algorithm for inferring the
species tree and is statistically consistent when gene tree
discordance is described by the multispecies coalescent
model.

Taxon Sampling for Species Tree Inference

An issue that has received a lot of attention in phylogenetics
is whether increased taxon sampling can improve the accu-
racy of species tree inference. Some researchers argue that
increased taxon sampling generally improves phylogenetic
inference (Zwickl and Hillis 2002; Hedtke et al. 2006), and
others argue that it often does not (Poe and Swofford 1999;
Rosenberg and Kumar 2001; Rokas and Carroll 2005). These
studies have all focused on the effect of taxon sampling on
the estimation of gene trees, prompting the need for inves-
tigating its effects on species tree estimation (Degnan and
Rosenberg 2009).

Some of our results imply that the performance of
SM-ML can be either improved or impaired when ex-
tra taxa are sampled, depending on the branch lengths
and topology of the species tree. In general, SMRT-ML
is less sensitive to taxon sampling than SM-ML for the
range of species trees examined. As an example where
SM-ML performs worse with more taxa, consider the
species trees ((AB)(CD)) with branch lengths (x,y) =
(0.1,1.0) (fig. 4C) and (((AB)(CD))E) with branch lengths
(w,x,y) = (0.1,0.1,1.0) (fig. 7C). For the four-taxon
species tree, SM-ML recovered the species tree topol-
ogy ~99% of the time with 1,000 loci. The addition
of the E taxon with a short branch length separating
the root of the tree from the most recent common an-
cestor of A, B, C, and D impaired the performance of
SM-ML, making it incorrectly group E with (AB) 38% of
the time with 1,000 loci. In contrast, adding the E taxon
to the same four-taxon tree had a much smaller influ-
ence on the performance of SMRT-ML (cf. fig. 4K with
fig. 7G).

To investigate this effect further, we added a sixth taxon
separated from the root of the tree (((AB)(CD))E) by 0.1
coalescent units to create the species tree ((((AB)(CD))E)F)
(supplementary fig. S12A, Supplementary Material online).
Adding the sixth taxon caused the probability that SM-ML
inferred the AGT (((AB)(CD))(EF)) to approach 1 as more
genes were added (supplementary fig. S12B, Supplementary
Material online). On the other hand, SMRT-ML had a simi-
lar performance with this six-taxon tree on taxa A-F as with
the four- and five-taxon subtrees on taxa A-D and A-E,
respectively.

For the five-taxon species tree ((((AB)C)D)E) with branch
lengths (w,x,y) = (1.0,0.1,0.1) (fig. 5D), SM-ML recov-
ered the species tree 100% of the time given enough loci.
However, when taxon E was removed from this species tree,
SM-ML was misleading on the subtree (((AB)C)D) with
branch lengths (x,y) = (0.1,0.1) (supplementary
fig. S13, Supplementary Material online), with a probability

approaching 1 of returning the AGT ((AB)(CD)). SMRT-
ML was not as influenced by the presence of taxon E
for this example, though the extra taxon slightly hin-
dered the speed of convergence to the species tree. This
example shows not only that increased taxon sampling
had a less dramatic influence on SMRT-ML than SM-
ML but also that the same parameters can produce op-
posite effects that aid one method while hurting the
other.

Rooted Triple Consensus

A recent study used rooted triples estimated at each lo-
cus as input to the quartet puzzling algorithm (Ewing
et al. 2008) by treating a fourth taxon as a known out-
group. In quartet puzzling, ML trees for all (Z) quartets
of a set of n species are estimated and a heuristic al-
gorithm is used to construct the tree from the in-
ferred quartets (Strimmer and von Haeseler 1996). The
R* consensus method (Bryant 2003; Degnan et al. 2009)
is similar in that it uses rooted triples at each locus,
and these are generated by first inferring gene trees on
the full set of taxa. R* consensus then applies a dif-
ferent nonheuristic algorithm from that of the quartet
puzzling—based rooted triple consensus to construct the
tree from the estimated rooted triples. Like R* consensus,
rooted triple consensus constructs the estimated species
tree from m(:) rooted triples, where m is the num-
ber of loci. Neither method requires the estimation of
coalescent or population parameters, and each avoids the
problem of AGTs due to incomplete lineage sorting through
the use of rooted triples. R* consensus given known gene
trees at each locus is proven to be statistically consis-
tent when gene tree discordance is due to incomplete
lineage sorting (Degnan et al. 2009). A more general ap-
proach shows that supertree methods that have rooted
triples as input can be statistically consistent in this set-
ting under certain assumptions (see proposition 5, Steel and
Rodrigo 2008). SMRT is different from rooted triple con-
sensus and supertree methods in that only the (';) rooted
triples from a supermatrix are inferred. SMRT also differs
from rooted triple consensus in that rooted triples are in-
put into a supertree algorithm to construct the estimated
species tree.

One advantage of rooted triple consensus and R* over
SMRT is that they use the information of all available taxa
at a given locus to infer a gene tree, whereas SMRT only
uses information on three taxa. Because there may be a
lack of phylogenetic signal among the three taxa analyzed
by SMRT, the extra information about the relationships be-
tween taxa used by rooted triple consensus and R * can aid
in more accurate estimates of species trees when the total
amount of sequence is small. However, SMRT has the advan-
tage that it is both fast and tractable on a large number of
taxa. Because ML inference of phylogenetic trees is NP-hard
(Chor and Tuller 2005; Roch 2006), if gene trees are inferred
using ML at each locus, then both rooted triple consensus
and R™* are NP-hard, whereas SMRT is polynomial in the
number of taxa.
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Bayesian Approaches

Recent methods, such as BEST (Liu and Pearl 2007; Liu
2008) and BUCKy (Ané et al. 2007), for inferring species
trees from multilocus data take a Bayesian approach. The
program BEST simultaneously estimates a joint posterior
distribution of gene trees and the species tree assuming
that gene trees are distributed according to the coales-
cent process and that gene tree discordance is due solely
to incomplete lineage sorting. In contrast to BEST, which
models discordance among gene trees using the coales-
cent process, BUCKYy uses a prior to model the correlation
between gene trees without assuming the source (e.g, in-
complete lineage sorting) of discordance. These methods
are attractive in that they are designed to handle gene tree
discordance. However, both are computationally intensive,
relying on Markov chain Monte Carlo runs for separate
loci and for estimates of the species tree and are there-
fore tractable only for moderate numbers of taxa and loci
(Edwards 2009). Because SMRT is polynomial in the num-
ber of taxa and not heavily affected by the number of loci,
it is especially well suited for genomic-level data and large
numbers of taxa.

Other Sources of Discordance

SMRT gains its strength from the fact that when gene trees
are distributed according to the multispecies coalescent,
there are no anomalous three-taxon trees when the source
of gene tree discordance is due only to incomplete lineage
sorting. However, in the presence of other sources of discor-
dance, such as hybridization, horizontal gene transfer, gene
duplication, recombination, and population structure, the
most probable three-taxon gene tree might not match the
species tree (Slatkin and Pollack 2008). Hence, if there are
forces acting strongly to create gene tree discordance other
than incomplete lineage sorting, then SMRT may not have
enough information to obtain the correct tree. However, be-
cause SMRT has the ability to infer partially unresolved trees,
then it may be the case that forces such as horizontal gene
transfer will cause SMRT to infer a partially unresolved tree.
Future studies are needed to assess how SMRT and other
methods perform under various types and degrees of gene
tree discordance.

Summary

When genetic data from multiple loci are concatenated, the
distribution of site patterns is a mixture that depends on the
distribution of gene trees over the loci. Such mixture distri-
butions on site patterns make it difficult to obtain analytical
results for concatenated data and therefore to understand
theoretical properties of phylogenetic methods that use
concatenated data. We have obtained the distribution of
site patterns for three-taxon concatenated sequences under
a mixture distribution due to the multispecies coalescent
using the CFN substitution model. Thus, despite the poor
performance of SM-ML for some species trees, there is
enough information in the concatenated alignment, and
therefore in the distribution of site patterns, to recover the
species tree topology. SMRT-ML uses this information in
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the concatenated alignment to consistently recover the
species tree.

The consistency of SMRT-ML shows that the species tree
topology is identifiable from concatenated data in the sense
that two distinct species trees (with either different topolo-
gies or the same topology but different branch lengths) can-
not have the same distribution of site patterns. The analytic
framework in this paper could be extended to either more
complex substitution models or larger numbers of taxa to
yield further insights into some of the properties of concate-
nated data.

As a tool for inferring species trees, SMRT-ML could be
extended to cases where there are multiple individuals sam-
pled per species. Here, there could be multiple inferred
triples for each choice of three species, where one individual
from within each of the three species is chosen randomly,
or all possible combinations with one individual per species
are used. If there are n species and i individuals sampled per
species, this procedure would result in i (’3’) inferred rooted
triples from which the species tree could be constructed us-
ing a supertree method such as MMC. With multiple rooted
triples estimated on the same choice of three taxa, a su-
pertree algorithm designed for high levels of conflict in the
input triples might be useful, for example, normalized triplet
supertree (Willson 2009).

We have not investigated the performance of SMRT
when combined with methods of inferring gene trees other
than ML, such as parsimony and distance methods. Liu
and Edwards (2009) show that for concatenated data, un-
der similar assumptions as in this paper, distance meth-
ods and in many cases parsimony methods recover the
species tree when SM-ML is misleading. Although because
of long branch attraction (Felsenstein 1978), maximum par-
simony is not consistent for trees with five or more taxa,
even when there is a molecular clock (Hendy and Penny
1989). However, for cases in which rooted three-taxon gene
trees can be inferred consistently from concatenated data—
including distance and parsimony methods under a molec-
ular clock—SMRT is also consistent for larger trees because
of the fact that rooted triples identify a tree, indepen-
dently of how those rooted triples were inferred. Future
studies using simulation and real data will be needed to
further assess the performance of SMRT methods and its
extensions.

Supplementary Material

Supplementary figures ST to S13 are available at Molec-
ular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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Appendix

Lemma 4 is a version of the weak law of large numbers that
does not require identically distributed random variables.
This lemma is used to prove Lemma 1.

Lemma 4 (modified theorem 5.2.3 of Chung 1974) Con-
sider the sequence Xy, X5, ..., X, where X; > 0, of inde-
pendent random variables each with their own distribution
function. Define S, = > _, X;. Furthermore, let {b, } be a
sequence increasing to infinity and assume that X; < b, for
eachi =1,2,...,n.Iflim, ,oo >/, E[X?]/b2 = 0, then

Sn/bn L> E[Sn/bn]'

Proof of Lemma 1. First, we show that the expected pro-
portion of sites with a given site pattern x is equal to the
probability of that site pattern, P (x). We consider the ex-
pected proportion of sites with each pattern and note that
by Lemma 4, as the number of loci approaches infinity, the
probability approaches 1 that the proportion of sites with
a given pattern approaches the expected proportion. Let m
denote the number of loci and let L; denote the number of
sites at locus i. The total number of sitesis > . L;. For a
site pattern X, let dx,;; = 1if sitej in locus i has site pat-
tern x; otherwise dx;; = 0. Let Mx; = ZJL:1 dx,j denote
the number of sites in locus i that have site pattern x. Let
Sm =Y, Mx;andletb,, = > " L;.Becausethelength
of the concatenated alignment is increasing with each addi-
tional locus, we have that b,, — oo as m — o0. Note that
E[0%;;] = P (x). Also note that E [dx;,0x, x| = P (xx) for
j # k where P(x,x) is the probability of getting pattern
x at two different sites. Note that we do not need to know
the actual value of P (x,x)—only that it is between 0 and 1.
Then, it follows that

m Li Li—1 L
- blz (ZE[ xi,] JFZZ Z E[5x,i,j5x,i,k]>

j=1 j=1 k=j+1

_ é D _POOL + P (X)L — 1)

€)

The quantity in equation (9) approaches 0 as m — oo only

ifgm = > ,L?/b2 — 0asm — 0o. We assumed that

gm — 0asm — 00. Thus, Lemma 4 applies and therefore,
m m

Z,-:w: Mxi _ Sm g [E,-1 Mx,i

Ef:1 Li bm

Proof of Lemma 2. Let m denote the number of loci. The
total number of sites is 27'21 L;. Let My, denote the num-
ber of sites in locus i that have site pattern x. Furthermore,
let Mx = 27;1 My, be the number of sites with pattern
x in the concatenated alignment. Suppose three species, A,
B, and C, have the species tree 0 = ((A:p1,B:p1):p0 —
01, C:po), where pg and p; are measured in coalescent units,
and the two ancestral populations each have the same 6.
Furthermore, suppose there are My, Myyy, My, and My,
sites with site patterns xxx, xxy, xyx, and yxx, respectively.
By Lemma 1, we know that the relative frequency of pattern
xxy (Myy, / S, L;) converges in probability to P (xxy ). Be-
cause xxy is the most likely segregating site pattern (egs. (6)-
(8)), it follows that the probability that xxy is the most
frequently occurring segregating site pattern (i.e, M,,, >
Miyx, Myx) approaches 1as m — oo. Theorem 3 of Chor,
Hendy, Penny (2007) states that if M, > My, My, then
((AB)Q) is the inferred ML tree under a molecular clock. Uti-
lizing this theorem, the probability that the ML tree topol-
ogy is ((AB)C) approaches 1as m — oo. (I

Proof of Theorem 3. Suppose we have an n-taxon species
tree. There are (g) subsets of three taxa. Let the rooted
triples on the species tree be enumerated 04,05, ...,0),
where ] = ('3') Let aj* denote a rooted triple defined
on the same taxa as o; but which is not a rooted triple
on the species tree. From equations (6) and (7) and from
equation (5), if x is the most probable segregating site pat-
tern for 0y, then Py (x) > Py:(x). Let the most fre-
quently occurring segregating site pattern for supermatrix
rooted triple j be x. Applying Lemma 1, for any ¢ >
0, we can choose the number of loci m such that the
probability of Py (x) > Py:(x) is greater than 1 —
e/ (';) By Lemma 2, the ML estimate for each of these
] sets of three taxa is 0j, j = 1,2,...,]. Therefore,
the probability that all J rooted triples in the species tree
are inferred by SMRT-ML is greater than 1 — €. In this case,
the rooted triples will be compatible and the tree with the
same topology as the species tree is uniquely identified by
these J triples by proposition 4 of Steel (1992). Applying a
supertree algorithm to these J rooted triples with the prop-
erty that if the input trees are compatible, then the su-
pertree method returns a tree that displays all its input trees,
the supertree algorithm is guaranteed to return the match-
ing species tree with probability greater than 1 — &. Thus,
the supertree method applied to the J supermatrix rooted
triples returns the species tree with probability greater than
1 — €. Therefore, SMRT-ML is statistically consistent under
the CFN substitution model when the species tree is clock-
like. [l
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