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Worldwide patterns of genetic variation are driven by human
demographic history. Here, we test whether this demographic
history has left similar signatures on phonemes—sound units that
distinguish meaning between words in languages—to those it has
left on genes. We analyze, jointly and in parallel, phoneme inven-
tories from 2,082 worldwide languages and microsatellite polymor-
phisms from 246 worldwide populations. On a global scale, both
genetic distance and phonemic distance between populations are
significantly correlated with geographic distance. Geographically
close language pairs share significantly more phonemes than distant
languagepairs,whether or not the languages are closely related. The
regional geographic axes of greatest phonemic differentiation corre-
spond to axes of genetic differentiation, suggesting that there is
a relationship between human dispersal and linguistic variation.
However, the geographic distribution of phoneme inventory sizes
does not follow the predictions of a serial founder effect during
human expansion out of Africa. Furthermore, although geographi-
cally isolated populations lose genetic diversity via genetic drift,
phonemes are not subject to drift in the same way: within a given
geographic radius, languages that are relatively isolated exhibit
more variance in number of phonemes than languages with many
neighbors. This finding suggests that relatively isolated languages
are more susceptible to phonemic change than languages with
many neighbors. Within a language family, phoneme evolution
alonggenetic, geographic, or cognate-based linguistic treespredicts
similar ancestral phoneme states to those predicted from ancient
sources. More genetic sampling could further elucidate the relative
roles of vertical and horizontal transmission in phoneme evolution.
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Both languages and genes experience descent with modifica-
tion, and both are affected by evolutionary processes such

as migration, population divergence, and drift. Thus, although
languages and genes are transmitted differently, combining lin-
guistic and genetic analyses is a natural approach to studying
human evolution (1, 2). Cavalli-Sforza et al. (3) juxtaposed a
genetic phylogeny with linguistic phyla proposed by Greenberg
(described in ref. 4) and observed qualitative concordance;
however, their comparison of linguistic and genetic variation was
not quantitative. A later analysis of genetic polymorphisms and
language boundaries suggested a causal role for language in
restricting gene flow in Europe (5). More recently, population-
level genetic data have been compared with patterns expected from
language family classifications (2, 6–12). Other studies addressed
whether the serial founder effect model from genetics—human
expansion from an origin in Africa, followed by serial con-
tractions in effective population size during the peopling of the
world (13, 14)—explains various linguistic patterns (15–19).
Past studies are generally asymmetrical in their approaches to

the comparison of genes and languages: some focus on genetic
analysis and use linguistics to interpret results, and others ana-
lyze linguistic data in light of genetic models. Our study directly

compares the signatures of human demographic history in
microsatellite polymorphisms from 246 worldwide populations
(20) and complete sets of phonemes (phoneme inventories) for
2,082 languages; these are the largest available datasets of both
genotyped populations and phonemes, the smallest units of
sound that can distinguish meaning between words. Languages
do not hold information about deep ancestry as genes do, and
phoneme evolution is complex: phonemes can be transmitted
vertically from parents to offspring or horizontally between
speakers of different languages, and phonemes can change over
time within a language (21–23). We compare the geographic and
historical patterns evident in phonemes and genes to determine
the traces of human history in each data type.
Phonemic data were compiled by M.R. (the Ruhlen database);

for 2,082 languages with complete phoneme inventories and
referenced sources in this database, we annotated each language
with geographic coordinates (Fig. 1A) and the number of speakers
reported (24). We also analyzed PHOIBLE (PHOnetics Infor-
mation Base and Lexicon) (25), a linguistic database with pho-
neme inventories for 968 languages. For 139 globally distributed
populations in the Ruhlen database (114 in PHOIBLE), we
matched each population’s genetic data to the phoneme inventory
of its native language (20), producing novel “phoneme–genome
datasets” that allow joint analysis of genes and languages.
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out of Africa has not left a strong signature on phonemes.
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To compare the signatures of human demographic history on
genetic variation and phoneme inventories, we used Procrustes
analyses to compare principal components (PCs) for both data
types with sample geographic locations and determined whether
phonemic and genetic distance are more correlated than ex-
pected from geographic distance alone. We also developed a new
method for identifying regional axes of linguistic and genetic
differentiation and tested whether the origin of the human ex-
pansion out of Africa can be detected from the geographic dis-
tribution of the numbers of phonemes in languages (phoneme
inventory sizes). Conflicting predictions exist for the effects of
geographic isolation and population contact on language evolu-
tion (e.g., refs. 26–29); we tested these by comparing phoneme
inventories according to language density at varying radii. We
also quantified the extent to which phoneme evolution can be
modeled along genetic, geographic, and cognate-based phylo-
genies. With these joint analyses, we tested whether phonemes
and alleles carry signatures of ancient population divergence and
recent human migrations, and we identified demographic pro-
cesses that have different effects on phonemes and alleles.

Results
Global Principal Component Analyses of Phonemic and Genetic
Variation. Principal component analysis (PCA) is used to iden-
tify axes of variation in high-dimensional datasets (30, 31). To
quantify broad similarities between geographic locations of
samples (Fig. 1A) and PCs of phonemic and genetic data, we

used Procrustes analyses (32) for all pairs of data types. We
found significant concordance (P < 10−5) between the first two
PCs of phoneme presence/absence data and geographic locations
for 2,082 languages in the Ruhlen database (Procrustes t0 = 0.57)
and for 968 languages in PHOIBLE (t0 = 0.52), as well as be-
tween microsatellite data and geographic locations of 246 pop-
ulations (t0 = 0.69) (SI Appendix, Fig. S1). The mean values of
Procrustes-transformed PCs of both phonemes and alleles corre-
sponded to relative locations of geographic regions (Fig. 1 B–D):
Africa was most differentiated from the Americas and Oceania,
and Eurasian regions had intermediate locations.
Some differences between phonemic and genetic variation are

also evident in Fig. 1 B–D. For example, the South American
genetic sample was more differentiated from all other pop-
ulations than the North American sample (Fig. 1D). In contrast,
South American languages were near Oceanic languages in PC-
space; on average, languages in both of these regions have small
phoneme inventories (Fig. 1 A–C). The significant association
between PCs and geographic locations for both languages and
genes suggests that spatial diffusion has contributed to both pho-
nemic and genetic variation.

Global Comparisons of Phonemic and Genetic Differentiation. To fur-
ther quantify these associations with geography, we calculated
pairwise Mantel correlations between phonemic distance, genetic
distance, and geographic distance. Geographic distance and
phonemic [Jaccard (33)] distance were significantly associated
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Fig. 1. Procrustes-transformed PCs for all phonemes and regional axes of phonemic and genetic differentiation. (A) Locations of 2,082 languages in the
Ruhlen database. Phoneme inventory size of each language is indicated by the color bar. We performed Procrustes analyses to compare the first two PCs of
phonemic data (B and C) and genetic data (D) to the geographic locations of languages/populations (P < 10−5 for all three comparisons after 100,000
permutations). The mean Procrustes-transformed PC values (B) for phonemes in the Ruhlen database (t0 = 0.57), (C) for phonemes in PHOIBLE (t0 = 0.52), and
(D) for allele frequencies (t0 = 0.69) are displayed in each geographic region. Circle size corresponds to number of languages (B and C) or populations (D). (E)
For the Ruhlen phoneme–genome dataset, pairwise geographic distance matrices were projected along different axes (calculated at 1° intervals); within each
region, the rotated axis of geographic distance that was most strongly associated (greatest Mantel r) with phonemic distance (black arrows) and genetic
distance (gray dashed arrows) is shown. Thinner arrows (Europe, East Asia, South America) indicate nonsignificant associations. Black dots indicate population
locations for the Ruhlen phoneme–genome dataset. With the exception of North America, axes of phonemic differentiation and genetic differentiation are
similar in most regions (North America: 78° difference; other regions: mean difference 16°).

1266 | www.pnas.org/cgi/doi/10.1073/pnas.1424033112 Creanza et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424033112/-/DCSupplemental/pnas.1424033112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1424033112


for both the Ruhlen database (Mantel r = 0.18, P < 10−4) and
PHOIBLE (r = 0.22, P < 10−4). The association between pho-
nemic and geographic distance was also significant within all
geographic regions except South America in the Ruhlen data-
base and North/Central America in PHOIBLE (SI Appendix,
Table S1). The phoneme–genome datasets showed a significant
association (Mantel r) between phonemic distance and genetic
distance (Ruhlen r = 0.157, P = 2 × 10−3; PHOIBLE r = 0.240,
P = 2 × 10−4), between phonemic and geographic distances (r =
0.18, P < 10−4; r = 0.27, P < 10−4), and between genetic and
geographic distances (r = 0.76, P < 10−4; r = 0.78, P < 10−4) (SI
Appendix, Table S2). Thus, both phonemic and genetic data
exhibited significant spatial autocorrelation; samples in geographic
proximity were similar to one another, because of shared ancestry,
spatial diffusion, or both (34, 35). To test the distance range of this
spatial autocorrelation, we partitioned the geographic distance
matrix into distance classes (SI Appendix). Whereas genetic distance
showed spatial autocorrelation worldwide, phonemes were more
similar among languages in the same distance class only within
a range of ∼10,000 km (SI Appendix, Fig. S2B); beyond 10,000 km,
phoneme inventories within a distance class were not more similar
to one another than to those in another distance class.
To identify variables driving correlations between phonemic,

genetic, and geographic distance (as in ref. 35), we controlled for
each variable in turn with partial Mantel tests (36) (SI Appendix,
Fig. S2). The partial Mantel correlation between genetic and
phonemic distance was not significant when controlling for
geographic distance (Ruhlen r = 0.05, P = 0.16; PHOIBLE r =
0.05, P = 0.17), suggesting both genetic and phonemic distance
between samples can be predicted by their relative geographic
locations (SI Appendix, Fig. S2 and Table S2). The relationship
between geographic and phonemic distance controlling for ge-
netic distance was significant (r = 0.11, P = 0.01; r = 0.13, P < 0.01),
as was that between geographic and genetic distance controlling for
phonemic distance (r = 0.75, P < 10−4; r = 0.77, P < 10−4). Through
processes including migration and isolation by distance, geographic
separation of populations could have led to spatial structuring in
both data types, suggesting that geographic distance drives the
similarity between genetic and phonemic distance.
These Mantel tests gave similar results within geographic re-

gions, with a notable exception: in Oceania, genetic and pho-
nemic distance were significantly correlated when controlling
for geographic distance (Ruhlen P = 2 × 10−4; PHOIBLE P =
2.6 × 10−3) (SI Appendix, Table S2). Thus, for Oceanic pop-
ulations, whose history includes extensive migration over water
in the recent past (9), genetic and phonemic distance were more
correlated than predicted by geographic distance.

Fine-Scale Geographic Axes of Variation.We developed a novel method
to identify the geographic axes that are most closely associated
with both phonemic and genetic differentiation. The significant
association that we observed between geography and both
phonemic and genetic variation (SI Appendix, Table S2) does
not establish directions of geographic movement that best explain
the current geographic distribution of phonemes and alleles.
Furthermore, axes of variation determined from PCA do not
necessarily represent specific large-scale migrations (37).
To determine fine-scale geographic axes that reflect differ-

entiation between languages, we measured geodesic distance
projected along different axes: the latitudinal and longitudinal
axes, and the 1° increments between them. Within regions, we
calculated Mantel correlations between geographic distance pro-
jected along each of these axes and phonemic distance. The axis
with the greatest Mantel r identified the direction with the strongest
association between geographic distance and phonemic distance
(Fig. 1E and SI Appendix, Fig. S3 and Table S3).
For the phoneme–genome datasets, the rotated geographic

axis identified as having the strongest association with phonemic
distance was similar to that identified for genetic distance (Fig.
1E and SI Appendix, Fig. S3), suggesting that similar signatures of
the directions of human differentiation within regions can be

inferred from human genetic data and phonemic data. The
greatest difference (78°) between the axes of differentiation
predicted by phonemes and genes for the Ruhlen phoneme–
genome dataset was based on eight populations unevenly spread
across North America. However, genetic and phonemic axes of
differentiation were similar for the six North American pop-
ulations in the PHOIBLE phoneme–genome dataset (SI Appen-
dix, Table S3). Further genotyping in this region will determine
whether sparse sampling has driven this result. Our analysis does
not specify which population processes, such as migration events,
isolation by distance, and cultural diffusion, contribute to these
axes of differentiation. Although these global analyses indicate
strong associations between languages, genes, and geography, the
worldwide patterns can be violated in local areas (e.g., Oceania in
SI Appendix, Table S2 and North America in Fig. 1E).

Geographic Isolation and Neighboring Languages. Geographic iso-
lation and drift could also drive local genetic and linguistic dif-
ferentiation. Whereas geographic isolation decreases genetic
diversity, studies disagree about the impact of isolation and pro-
cesses analogous to drift on languages (e.g., refs. 26–29 and 38).
Over a series of radial distances, we assessed the effect of

geographic isolation on phonemes in each language by comparing
the phoneme inventories of each language and its neighbors.
For languages that have fewer than or equal to the median
number of neighboring languages within a radius of k kilometers
(“fewer neighbors”), we observed a small but significant increase
in phoneme inventory size as well as significantly higher phone-
mic distance between geographically close languages for many
values of k (Fig. 2); this trend was also observed within Africa,
Central/South Asia, East Asia, and Oceania (SI Appendix, Fig.
S4). In areas with greater language density, phonemes were on
average more similar between languages than in areas with fewer
neighbors (SI Appendix, Fig. S5). In addition, languages with
fewer neighbors had significantly higher variance in both pho-
neme inventory size and phonemic distance (Ansari–Bradley P <
2 × 10−3); this trend was also significant within Africa, Central/
South Asia, East Asia, North America, and Oceania (SI Appendix,
Fig. S6).

Geographic Signal Within and Between Language Families. The an-
alyzed languages did not evolve independently: neighboring
languages are often in the same family and related languages
might share more phonemes. To address this, we compared
phonemic distance with geographic distance to each language,
separately for languages in the same language family and in
different families. Geographic distance was significantly posi-
tively correlated with phonemic distance; this was true both for
language pairs within the same family and for language pairs in
different families within the same geographic area. Associations
significantly different from zero (P < 10−3) were positive for 99%
of within-family comparisons and 87% of between-family com-
parisons. There was no significant difference in this relationship
for languages in the same and different language families (Wil-
coxon P = 0.22) (Fig. 3C). When two languages were geo-
graphically near, they tended to share more phonemes even if they
were not closely related, suggesting a relationship between pho-
nemes and geography both within and between language families.

The Signature of Ancient Population Divergence on Genes and
Languages. Global genetic and phonemic patterns were not uni-
versally concordant: the most genetically polymorphic pop-
ulations [top fifth percentile for number of microsatellite alleles
observed (20)] are all in Africa, whereas the largest phoneme
inventories in the Ruhlen database (top 5% of 2,082 languages,
corresponding to at least 43 phonemes) (SI Appendix, Table S4)
were globally distributed, predominantly in Africa (41 languages),
Asia (32 languages), and North America (18 languages). Similarly,
in PHOIBLE the languages with the most phonemes (top 5% of
968 languages, corresponding to at least 54 phonemes), were
mainly in Africa (29 languages), Asia (12 languages), and North
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America (7 languages). These distributions suggest that population
divergence across large distances might have affected phonemic
and genotypic variation differently.
Ancient population divergence is evident in human genetic

diversity, which decreases with distance from southern Africa,
a signature of the serial founder effect (13, 39, 40). Parallel
patterns of decreasing diversity out of Africa have been reported
for the partially vertically transmitted human pathogen Heli-
cobacter pylori (41) and in human morphometric data (42). In-
ference of the human expansion out of Africa has also been

attempted using categorical phoneme inventories (15), although
phonemes are not necessarily lost after a population bottleneck.
The conclusions from Atkinson (15) that language expansion
followed a serial founder effect out of Africa and that phoneme
inventory size was significantly correlated with current speaker
population size (as in ref. 43) have both generated much debate
(e.g., refs. 16–19, 25, 28, and 44–46). Using both databases of
phoneme inventories, we tested whether ancient human pop-
ulation divergence out of Africa left a similar signature on pho-
nemes to that on genes.
To compare the Ruhlen database and PHOIBLE with pre-

vious studies (15–18, 25), we regressed phoneme inventory size
on geographic distance from 4,210 geographic centers on Earth
(2, 13) and tested for a linear decrease in number of phonemes
with distance to each center. For both databases, the geographic
center with the most support for this model (lowest Akaike In-
formation Criterion, AIC) was in northern Europe (Fig. 3) (Ruhlen
67.6684°, 36.2°; PHOIBLE 77.1614°, 16.4°); the distance between
these centers is 1233.5 km. A decrease in number of phonemes with
distance from Eurasia has been observed before (16).
Although our analysis identifies a Eurasian center as the best-

fit origin, we do not claim that a serial founder effect is an ap-
propriate model for language expansion: phoneme inventory size
is a coarse summary statistic, and phoneme loss does not neces-
sarily occur with reduced population size or geographic isolation.
Rather, the identified location is roughly equidistant from most
languages in Oceania and South America, effectively grouping
these regions of generally small phoneme inventory size to pro-
duce a significantly negative slope. Furthermore, the 2,082 points
in the regression are not independent: many represent closely
related languages (Fig. 3A). To reduce this dependence, we re-
peated the regression analysis using the mean or median values
for the independent and dependent variables within each lan-
guage family (Fig. 3B). As with individual languages, the best-fit
origin was found in Northern Europe for the within-family mean
and median values for both the Ruhlen database and PHOIBLE
(SI Appendix, Fig. S7 and Table S5).
To address the relationship between current speaker pop-

ulation size and phoneme inventory size (25, 28, 44–46), we re-
peated the regression analysis using speaker population size as an
additional independent variable, and we found no statistical
support in the Ruhlen database for including it in our regression
models (P = 0.35). For PHOIBLE, including the base 10 loga-
rithm of speaker population sizes reported by Ethnologue as
another independent variable in the regression model produced
the same best-fit center as the simple linear regression (67.6684°,
36.2°) and led to a modest but significant increase in the variance
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Fig. 2. The effect of geographic isolation on phonemes. Languages with
fewer neighbors (less than or equal to median number of neighbors) had
significantly more phonemes (Wilcoxon rank-sum test) than languages with
more neighbors for all tested radii in the Ruhlen database (black line) and
for radii < 175 km in PHOIBLE (red line). Examples are shown as inset box-
plots: within a radius of 75 km for languages in PHOIBLE, the median
number of neighbors was three languages; we observed slightly but signif-
icantly more phonemes in languages with zero to three neighbors than in
languages with four or more neighbors (red boxplot inset). Similarly, within
a radius of 125 km for languages in the Ruhlen database, there was a small
but significant increase in the number of phonemes for languages with the
median number of neighbors (8) or fewer (black boxplot inset).
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Fig. 3. Best-fit linear regressions of phoneme inventory size on geographic distance. For both databases, the best-fit geographic center was located in
northern Europe, roughly equidistant from Oceania and South America, grouping two regions with small phoneme inventories and producing a significantly
negative slope. This finding suggests that phonemes do not show a strong signature of ancient population divergence. (A) Regression from the best-fit of
4,210 geographic centers on the Earth for languages in the Ruhlen database (see SI Appendix, Fig. S7 for PHOIBLE). (B) Using the median number of pho-
nemes within each family, the best-fit geographic center for language families in PHOIBLE remained in northern Europe (see SI Appendix, Fig. S7 for Ruhlen).
Geographic regions are indicated by color as in A, but y-axis scales differ. (C) Phonemic distance increases with geographic distance, even for languages in
different families. For significant correlations between phonemic distance and geographic distance, the slope of the regression line for both within-family
and between-family comparisons (y axis) was positive the vast majority of the time, and the distributions of these slopes were not significantly different from
one another (Wilcoxon P = 0.22).
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explained by the regression (from r = 0.2082 in the simple re-
gression to r = 0.2114 in the multiple regression, P = 4.33 × 10−3).

Ancestral Character Estimation of Phonemes Along Genetic, Geographic,
and Linguistic Phylogenies. In regression analyses, phoneme in-
ventory size did not show a signature of ancient population di-
vergence (Fig. 3), and horizontal transmission between languages
could play a role in phoneme evolution (Fig. 3C). Linguistic trees
are constructed using cognate words predicted to have shared
ancestry; similarly, genetic phylogenies assume vertical trans-
mission of alleles. To account for the effect of borrowing be-
tween neighboring populations on phoneme distributions, we
constructed a tree from geographic distances between languages.
To assess the extent to which linguistic, genetic, and geographic
relationships each describe phoneme evolution, we used three
trees to estimate ancestral phoneme inventories and checked
the concordance of these with ancestral phoneme inventories
found in the literature (Table 1).
For an Indo-European linguistic tree (47), a genetic tree of

Indo-European-speaking populations, and a neighbor-joining
tree of the geographic distances between language locations, we
estimated the probability of phoneme presence at two internal
nodes. Fig. 4 A–C illustrates the results of ancestral character
estimation for an example phoneme, /ʈ /. We then compared
these ancestral character estimates to the phoneme inventories
of well-studied ancient languages for which primary sources ex-
ist: we used Vulgar Latin phonemes to approximate the pho-
neme inventory ancestral to modern Romance languages (48, 49)
and Vedic Sanskrit phonemes to approximate the phoneme in-
ventory ancestral to modern Indo-Aryan languages (50). For
phoneme inventories in both databases, the cognate-based phy-
logeny (47), a geographic tree, and a genetic phylogeny gave
similar predictions of the phoneme inventories of Vulgar Latin
and Vedic Sanskrit (Table 1). The prediction of phoneme
presence/absence with the ancestral character estimation algo-
rithm was consistent with published sources for 67–88% of
phonemes. Of the phonemes in published inventories that were
accurately predicted by ancestral character estimation, most
(53–94%) were predicted by multiple trees (SI Appendix, Fig. S8).
In addition, each tree gave similar estimates for relative rates of
phoneme change (Fig. 4D).

Discussion
We have analyzed the largest available datasets of both phoneme
inventories and genotyped populations. Across multiple analyses,
phonemic and genetic samples showed strong signatures of their
geographic location. Phonemic and genetic differentiation also
occurred along similar axes, indicating that genetic and linguistic
data show similar signatures of human population dispersal within
regions. The data types were discordant in two ways: first, al-
though relatively isolated populations lose genetic diversity, their
languages might be more susceptible to change than those of
populations with many neighbors; second, phonemes might not
retain a signature of human expansion out of Africa as genes do.
Differences among populations in both phonemes and allele

frequencies were strongly correlated with geographic distance.
Furthermore, phonemes showed an association with geographic

distance regardless of language classification but did not show
the strong signatures of ancient population divergence found in
genetic data. This suggests that phoneme inventories are affected
by recent population processes and thus carry little information
about the distant past (e.g., ref. 23); in contrast to genes, pho-
neme inventories in our analyses did not follow the predictions
of a serial founder effect out of Africa. We also pinpoint where
differences between genes and languages occur, both geographi-
cally and by characteristics of the surrounding populations. Our
findings suggest that geographic isolation has different effects
on genes and phonemes. Languages with fewer neighboring lan-
guages were more phonemically different from their neighbors
than those with more neighbors, and geographically isolated pop-
ulations may gain phonemes while losing genetic variation. In ad-
dition, ancestral phoneme inventories estimated along genetically,
geographically, and lexically determined phylogenies produced
similar results (Table 1).
We quantified the similarity between phoneme inventories and

genetic polymorphisms on a worldwide scale. To guard against
spurious correlations between phoneme inventories and geogra-
phy, we analyzed two databases and repeated the analyses using
subsets of the data. The two phoneme databases yielded similar
results, giving additional support for our conclusions (51). Geo-
graphic distance was a significant predictor of both phonemic
distance between languages and genetic distance between pop-
ulations (SI Appendix, Fig. S2 and Table S2). The spatial distri-
bution of populations, via migration and isolation by distance,
could have led to geographic structure in both genes and lan-
guages; this result alone does not shed light on the existence or
extent of any deep historical signal in either data type. The as-
sociation between genetic variation and phonemic variation was
largely explained by the geographic distribution of populations:
beyond common signatures of spatial structure in genes and
languages, genetic distance was not causally related to phonemic
distance. Furthermore, the spatial structuring in genes and lan-
guages did not occur on the same scale: genetic samples showed
spatial autocorrelation worldwide, but phoneme inventories were
spatially autocorrelated only within a range of ∼10,000 km (SI Ap-
pendix, Fig. S2B).
Phonemic distance increased with geographic distance, even

for languages that were not classified as belonging to the same
language family, that is, without recent shared ancestry (Fig. 3C).
Nearby languages shared more phonemes than distant ones,
suggesting that geographic proximity and opportunities for lan-
guage contact could lead to phoneme borrowing between lan-
guages that do not have recent shared ancestry (21, 22, 27, 28).
Relatively isolated languages exhibited more variance in number
of phonemes than languages with many neighbors (Fig. 2). This
finding supports the hypothesis that more geographically isolated
populations, with smaller social networks and fewer second-
language learners, may be more likely to undergo sound changes,
such as losing or gaining phonemes (27–29, 38).
Geographically isolated languages tended to be more different

from their neighbors than languages in regions of high language
density (SI Appendix, Fig. S5). This finding agrees with Trudgill’s
hypothesis that isolation can both preserve existing language
complexity and lead to spontaneous complexification (28) but is
in stark contrast to genetic drift, whereby isolation reduces genetic
diversity within populations (13, 52). Contact among speakers of
different languages could initiate phoneme change, as borrowed
words could introduce phonemes or use existing phonemes in new
phonological contexts (22, 27). Long-term contact could promote
phoneme sharing between languages (27, 28), perhaps increasing
phoneme similarity in areas of high language density but not for
isolated languages.
Genetic differentiation between human populations increases

with geographic distance (13, 52–54), but the degree of differen-
tiation may vary along different geographic axes (54–56). Within
large regions, we computed the geographic axes along which
phonemic differentiation was most closely associated with geo-
graphic distance between languages; these were consistent with

Table 1. Accuracy of ancestral character estimation for Vulgar
Latin and Vedic Sanskrit

Language Cognate tree Genetic tree Geographic tree

Vulgar Latin 71% (88%) 67% (75%) 69% (86%)
Vedic Sanskrit 68% (83%) 72% (77%) 62% (80%)

Using cognate, genetic, and geographic trees of Indo-European popula-
tions, ancestral character estimates (63) of phoneme presence/absence were
compared with published phoneme inventories for Vulgar Latin and Vedic
Sanskrit (48–50); percent accuracy is indicated for the Ruhlen database and
PHOIBLE (in parentheses).
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axes predicted using microsatellite data (Fig. 1E and SI Appendix,
Fig. S3). This analysis could provide an alternative to PCA for
making inferences about human populations. The first two PCs of
both allele frequencies and phoneme inventories were significantly
associated with geographic locations; however, PCA does not
specify the mechanism underlying this association (37) or directly
suggest deep historical signal in either data type.
A regression-based analysis of phoneme inventory size (15)

concluded that a global sample of 504 languages fit a serial
founder effect model of expansion out of Africa (but see refs. 16–
19). Using a similar approach, we found that phoneme inventory
size decreased with geographic distance from northern Europe
(Fig. 3); we do not conclude that this supports an origin for lan-
guage in Europe for several reasons. Although a population’s
genetic diversity reflects the number of its founders, the re-
lationship between the number of founders of a population and its
language’s phonemes is more complex (18, 21, 25, 27, 43–46).
Furthermore, only a subset of the model’s predictions apply to
languages (16), and the mutation rate of phonemes may be high
enough that signatures of ancient divergence are erased faster in
phonemes than in genes (39, 57). In contrast to previous studies
(15, 43), speaker population sizes did not explain a significant
proportion of variation in phoneme inventory size (as in ref. 25)
(SI Appendix, Fig. S9).
Human genetic phylogenies display relationships among pop-

ulations that reflect the vertical transmission of genes. Cognate-
based phylogenies offer an independent linguistic approach to
identifying relationships among populations (21, 47). At a time-
scale over which linguistic inference is possible, we estimated
ancestral phoneme states from phoneme inventories using ge-
netic, geographic, or cognate-based phylogenies (Fig. 4). For each
tree, our estimates of ancestral phoneme states are consistent
(62–88%) (Table 1) with published ones. Differences between
estimated and published phoneme inventories could occur be-
cause the ancestral character estimation algorithm makes in-
accurate assumptions regarding phoneme evolution (such as
a constant rate of phoneme change) or because a binary scheme
of phoneme presence and absence does not reflect that certain
sound changes are more likely than others. In estimating ancestral

phoneme inventories, the performance of the genetic phylogeny
depends on the distribution of genotyped populations in the
language family (Fig. 4B). Despite few genetic samples, the ge-
netic, geographic, and linguistic trees predicted roughly similar
ancestral phoneme inventories, and this type of analysis could
provide an opportunity for future collaboration between linguists
and geneticists. Vertical descent from a common ancestor is not
an ideal model for phoneme evolution over long timescales; anal-
yses like those in Fig. 4 and Table 1 shed light on the extent to
which a vertical model is appropriate for a given dataset.
Our results reflect that both borrowing and vertical trans-

mission influence phoneme distributions among languages; in-
creasing the density of genetic samples is necessary to rigorously
estimate the relative roles of these processes in phoneme evolu-
tion. Moreover, joint analysis using genetic, geographic, and lin-
guistic phylogenies provides a framework for future applications to
data: given genetic or geographic relationships among a set of
populations, a subset of information about ancestral languages may
be extracted without prior knowledge of linguistic relationships.
These joint analyses of genetic and linguistic data yield insight into
the effect of evolutionary forces on linguistic traits that could not be
achieved by either data type alone.

Materials and Methods
Preparation of Linguistic and Genetic Data. For 2,082 languages, the Ruhlen
database has complete phoneme inventories, sources, and a corresponding
entry in the Ethnologue database (24); the presence/absence matrix of
phonemes in the Ruhlen database is archived at PNAS. PHOIBLE (phoible.
org) (25) contains phoneme inventories for 968 languages; 621 could be
matched across databases (SI Appendix, Fig. S10).

For the Ruhlen database, we annotated languages with an International
Organization for Standardization (ISO) 639-3 language code and an ISO
3166-1 alpha-3 country code corresponding to an entry in the Ethnologue,
which contained latitude and longitude coordinates and speaker population
size estimates. PHOIBLE contains ISO 639-3 codes, geographic coordinates,
and phoneme inventories. We encoded the presence of 728 phonemes in
2,082 languages in the Ruhlen database and 1,587 phonemes in 968 lan-
guages in PHOIBLE into separate binary matrices for analysis (SI Appendix).
Unless specified, we performed analyses on both databases.

A B

C

D

Fig. 4. Estimating ancestral phoneme states with cognate-based, geographic, and genetic trees. (A) Phylogeny of Indo-European languages (47) with
presence of the phoneme /ʈ / indicated by gray circles at each tip. Based on the tree topology and branch lengths, the probability of phoneme presence at
interior nodes was predicted by ancestral character estimation (63). The amount of gray in the bar at each node represents the probability of phoneme
presence, with white representing absence. The green rectangle highlights the low probability (2.84 × 10−3) of the presence of phoneme /ʈ / in the ancestor to
Romance languages, as shown by the lack of gray at that node. The orange rectangle highlights the probability of /ʈ / presence in the ancestor to Indo-Aryan
languages (~1). (B) Phylogeny of Indo-European populations constructed with genetic data from ref. 20. (C) Neighbor-joining tree of geographic distances
between Indo-European-speaking populations. As in A, the presence of /ʈ / in the language spoken by a given population is indicated in B and C by gray circles,
and the probability of this phoneme’s presence at interior nodes (predicted by ancestral character estimation) is shown by the amount of gray at each node.
For all three trees, the phoneme /ʈ / was estimated to be likely absent in the language ancestral to the Romance languages (indicated by a mostly white bar
inside each green rectangle) and likely present in the language ancestral to the Indo-Aryan languages (orange rectangle). (D) Examples of phonemes in the
Ruhlen database were grouped by their relative rate of change from high (red) to low (blue) as predicted by the ancestor character estimation algorithm with
all three trees. Predictions of relative rates of phoneme change were consistent among all pairs of the three trees (Spearman’s ρ ≥ 0.73, P ≤ 4.9 × 10−15).
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We also analyzed a dataset of 645 microsatellite loci from several studies
(20). Using population names and locations (20), we matched genotyped
populations to their native language (SI Appendix). For 139 populations in
the Ruhlen database and 114 in PHOIBLE, we were able to merge genetic,
geographic, and phonemic data (the phoneme–genome datasets).

Principal Components and Procrustes Analyses. For the Ruhlen database and
PHOIBLE, we performed PCA on the binary matrices of phonemic data (SI
Appendix, Fig. S11) along with Procrustes analysis of phoneme PCs versus the
geographic coordinates of languages analyzed. Following Wang et al. (32),
we calculated a similarity statistic t0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−DÞp
, where D is the minimized

sum of squared distances after Procrustes analysis. We calculated empirical P
values for t0 values over 10

5 permutations of geographic locations. For eight
geographic regions (detailed in SI Appendix), we calculated the mean values
of the Procrustes-transformed principal components (Fig. 1 B–D). For the
phoneme–genome datasets, we performed Procrustes comparisons between
each pair of data types: phoneme PCs, genetic PCs, and geographic locations.

Correlations Between Phonemic, Genetic, and Geographic Distance. For the
Ruhlen database and PHOIBLE, we compared geographic (great-circle with
waypoints) and phonemic [Jaccard (33) and Hamming (58)] distance matrices
using Mantel tests (P values calculated over 104 permutations). In addition,
we considered latitudinal and longitudinal distance separately by calculating
the absolute value of the difference in latitude and longitude coordinates.
For the phoneme–genome datasets (139 populations in Ruhlen and 114 in
PHOIBLE), we assembled pairwise geographic, phonemic, and genetic (allele-
sharing) distance matrices and performed Mantel tests between each pair of
matrices. We then performed partial Mantel tests to compare each pair of
distance matrices while controlling for the third. We repeated each test for
each region separately. (See SI Appendix for further details.)

For each pair of languages, let ~A be the vector connecting their geo-
graphic locations. We projected ~A in the direction of a given vector ~B by
computing

��~A
��cosðθÞ, where θ is the angle between ~A and ~B. ~B was then

rotated at 1° intervals around the unit circle, and the distance between each
pair of languages projected in the direction of ~B was recorded in a projected
distance matrix. Within each geographic region, we performed Mantel tests
between these distance matrices projected in different directions and both
genetic and phonemic distance and recorded the direction with the largest
Mantel r statistic (Fig. 1E, and SI Appendix, Fig. S3 and Table S3).

Phoneme Similarity as a Function of Language Density. We performed a series
of Wilcoxon rank-sum and Ansari–Bradley tests, comparing the phoneme
inventory sizes in languages with less than or equal to the median number
of neighbors versus the phoneme inventory sizes in languages with greater
than the median number of neighbors. We defined the number of neigh-
boring languages as the number of languages whose geographic location in
the Ethnologue database (24) occurs within a certain radius of the focal
language’s Ethnologue coordinates. We varied radii from 25 km to 250 km
in steps of 25 km for this analysis.

We also analyzed Hamming distance between languages, defined as the
number of phonemic differences between languages divided by the number
of possible phonemes in the database. For each linguistic database, we
calculated the pairwise phonemic distance between a focal language and all
other languages within a given radius, and we recorded the number of
languages neighboring the focal language within that radius. Languages
with no neighboring languages within a given radius were excluded. With
Wilcoxon rank-sum and Ansari–Bradley tests, we then compared the distri-
bution of phonemic distances from languages with the median number of
neighbors or fewer to those with greater than the median number of
neighbors, varying radii from 100 km to 1,000 km in steps of 100 km. Note
that we could only test phonemic distance at radii with a median number of
neighbors greater than or equal to 2.

Phoneme Similarity Within and Between Language Families in PHOIBLE. We
compared the relationship between phonemic distance and geographic
distance for pairs of languages in the same language family and in different
language families. If a given languagewas classified into a language family by
PHOIBLE (25, 59), we performed “within-family comparisons” by calculating
both the pairwise geographic distance and the pairwise phonemic distance
[Hamming (58) and Jaccard (33)] between that language and other members
of the same language family (excluding members of the same language
family located more than 10,000 km away). For these within-family com-
parisons with the given language, we then regressed phonemic distance
onto geographic distance and recorded the correlation coefficient, the
P value of the correlation coefficient, and the slope of the fitted linear model.

We then performed “between-family comparisons” with the same lan-
guage using languages in other language families that were within the
same geographic radius as the within-family comparisons: either the maxi-
mum distance to a member of the same family or 10,000 km, whichever was
smaller. For the between-family comparisons, we again regressed phonemic
distance onto geographic distance and recorded the correlation coefficient,
the P value of the correlation coefficient, and the slope of the fitted linear
model. After completing this procedure for all languages, we compared the
distribution of regression slopes and correlation coefficients for within-
family and between-family comparisons using a Wilcoxon rank-sum test.
Because languages in the Ruhlen database were not annotated with this
classification system, this analysis was performed only on PHOIBLE.

Regression Analyses. We performed a series of regressions of phoneme in-
ventory size on geographic distance from each of 4,210 centers drawn from
the surface of the earth as in ref. 13. One independent variable in all models
fitted was geographic distance between languages and each of 4,210 cen-
ters, calculated using obligatory waypoints from refs. 13 and 2. In regression
analyses, we only used languages with Ethnologue speaker population size
greater than 0 (2,004 languages in Ruhlen, 967 in PHOIBLE).

For each linguistic database, let our dependent variable, ~Y , be the vector
of phoneme inventory sizes across languages with speaker population size > 0.
We used two types of model for each database: (i) phoneme inventory sizes
in ~Y were regressed on geographic distances to a center for each of 4,210
centers, and (ii) phoneme inventory sizes in ~Y were regressed on geographic
distances to a center and the base 10 logarithm of speaker population size for
each of 4,210 centers. We estimated model parameters Θ (regression coef-
ficients, intercept, and residuals) using linear regression of ~Y as a function of
geographic distance to a center (and speaker population size).

For model selection, we used AIC. Because values of AIC lie on a relative
scale, values were rescaled by subtracting the minimum AIC observed for a
given model fit across 4,210 centers. Models with a rescaled AIC ≤ 2 are
considered to have equivalent support (60) (SI Appendix, Fig. S12).

More detail on regression analyses conducted here, such as jackknifing over
geographic regions and using different measures of phoneme inventory size
(e.g., eliminating click phonemes) for the dependent variable ~Y are discussed in
SI Appendix and produced qualitatively similar results to those presented here.

We repeated the regression analyses with languages grouped by Ethno-
logue language family (Ruhlen database) or family/root (PHOIBLE). For both
databases, simple linear regressions (geographic distance to the center as the
independent variable) and multiple linear regressions (geographic distance
to the center and base 10 logarithm of speaker population size as in-
dependent variables) were fitted, and the dependent variable was total
phoneme inventory size. We then calculated the mean and median value of
the independent and dependent variables within each family (root).

The Ruhlen database has 2,046 languages classified in 98 Ethnologue
language families; 36 Ruhlen entries with language families labeled as
“Unclassified,” “Language Isolate,” or “Mixed Language”were excluded from
this analysis. PHOIBLE has 949 language classified into 81 language roots; 19
languages listed with unclassified roots (denoted as “UNCL” by PHOIBLE) were
excluded from this family-based analysis.

Phylogenetic Analyses. To construct a rooted tree of 246 nonadmixed human
populations, we analyzed the 246microsatellite loci from theMS5339 dataset
of Pemberton et al. (20) with chimpanzees as an outgroup. First, we gen-
erated allele-sharing genetic distance matrices, bootstrapping over loci
1,000 times using MICROSAT (61). We constructed a consensus neighbor-
joining tree (NEIGHBOR; extended Majority Rule CONSENSE) (62). We gen-
erated maximum-likelihood estimates for consensus tree branch lengths
using CONTML (62), with an allele-sharing distance matrix generated from
all 246 loci. This tree was trimmed using the drop.tip function (63) to include only
the subset of populations speaking Indo-European languages. For these pop-
ulations, we also constructed a neighbor-joining tree of geographic distances
(using waypoints as in ref. 13) between languages. Branch lengths of the lin-
guistic and geographic trees were rescaled to be comparable to the genetic tree.

We then applied an equal-rates ancestral character estimation algorithm
to the Indo-European subset of populations using the ace function in the
Analyses of Phylogenetics and Evolution package in R (63) to predict the
probability that each phoneme was present at each ancestral node of
the tree. For populations with Indo-European languages, we performed this
analysis with three phylogenies: the genetic consensus tree, the tree of
geographic distances, and a published Bayesian cognate-based linguistic
tree of Indo-European languages (47). We tested 728 phonemes in the
Ruhlen database and 1,587 phonemes in PHOIBLE and estimated: (i) the rate
of change of each phoneme along both trees and (ii) the ancestral character
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states at two nodes, the common ancestor to Romance languages and the
common ancestor to Indo-Aryan languages. Most phonemes in each database
did not occur in any Indo-European languages and were thus estimated to be
absent at all ancestral nodes. For phonemes present in at least one Romance or
Indo-Aryan language, we compared the phoneme presence/absence predicted
by the ancestral character estimation algorithm with a published phoneme
inventory and calculated the percent accuracy by dividing the number of
phonemes correctly predicted by the number of phonemes tested.
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