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variants c.306+5G>A and c.1865T>A (p.Leu622His) of the DNA repair gene MLH1 occur frequently in
h Lynch syndrome families. To understand their ancestral history and clinical effect, we performed
onal assays and a penetrance analysis and studied their genetic and geographic origins. Detailed family
ies were taken from 29 carrier families. Functional analysis included in silico and in vitro assays at the
nd protein levels. Penetrance was calculated using a modified segregation analysis adjusted for ascer-
ent. Founder effects were evaluated by haplotype analysis. The identified MLH1 c.306+5G>A and
T>A (p.Leu622His) variants are absent in control populations and segregate with the disease. Tumors
arriers of both variants show microsatellite instability and loss of expression of the MLH1 protein. The
5G>A variant is a pathogenic mutation affecting mRNA processing. The c.1865T>A (p.Leu622His) variant
defects in MLH1 expression and stability. For both mutations, the estimated penetrance is moderate

umulative colorectal cancer risk by age 70 of 20.1% and 14.1% for c.306+5G>A and of 6.8% and 7.3% for
T>A in men and women carriers, respectively) in the lower range of variability estimated for other path-
Spanish MLH1 mutations. A common haplotype was associated with each of the identified mutations,

ming their founder origin. The ages of c.306+5G>A and c.1865T>A mutations were estimated to be 53 to
d 12 to 22 generations, respectively. Our results confirm the pathogenicity, moderate penetrance, and
122 an

founder origin of the MLH1 c.306+5G>A and c.1865T>A mutations. These findings have important implications
for genetic counseling and molecular diagnosis of Lynch syndrome. Cancer Res; 70(19); 7379–91. ©2010 AACR.
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ch syndrome (MIM 120435) is an autosomal-dominant
ion caused by germline mutations in mismatch repair
) genes MLH1, MSH2, MSH6, and PMS2 (1). It is char-
zed by early-onset colorectal cancer (CRC) and an
of other cancers (1). At age 70, cumulative
een estimated to be 27% to 66% for men
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2% to 47% for women; risk for endometrial cancer
aries between 14% and 40% (2–5).
eral founder mutations have been described in MMR
(6). In MLH1, founder mutations were identified in sev-
opulations (6–8), where they can explain a substantial
n of Lynch syndrome occurrences (9, 10), facilitating

c diagnosis. In Spain, founder mutations in MMR genes
nly been identified in the MSH2 gene (11, 12).
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R founder mutations reported thus far are heteroge-
in function and frequency (6). Most of them encode
ted proteins and are readily categorized as patho-
mutations. However, founder MMR variants with un-
pathogenicity have also been identified (11, 13, 14).

vestigate the functional effect of MMR variants, nu-
s assays at the RNA and protein level have been de-
ed (15, 16). The classification of a variant as a
e-causing mutation requires integration of data from
nt sources, including its frequency in control popu-
s, its cosegregation with the disease in families, its
pathologic features, and its properties in functional
s (17).
have identified and characterized two frequently oc-
g MLH1 variants in the Spanish population. To address
linical significance, we examined their penetrance and

med functional studies. The founder effect hypothesis Table
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rials and Methods

ts and samples
tal of 57 families were included in this study. Twenty-
amilies were carriers of c.306+5G>A or c.1865T>A
variants (17 and 12 families, respectively) and were
ed through Spanish genetic counseling and molecular
stic laboratories. Twenty-eight families were carriers
er pathogenic MLH1 germline mutations assessed at
talan Institute of Oncology (ICO). Detailed family his-
from at least three generations and geographic origins
btained. Clinical data collection included tumor loca-
ge at diagnosis, microsatellite instability (MSI) testing,
munohistochemistry of MMR proteins in tumors.

logic investigations based on interviews failed to iden-
lationships between individuals from different families.
udy protocol was approved by the Human Research
Committees of participating centers, and informed
t was obtained from all subjects evaluated.
omic DNA was extracted from whole blood using the
ene DNA kit (Qiagen) or from formalin-fixed, paraffin-
ded tissues using the QIAamp DNA Mini kit (Qiagen).
amples from 325 cases and 309 controls in a hospital-
CRC case-control study conducted to assess gene-
nment interactions in relation to CRC risk (18) were used.

ning for the c.306+5G>A and c.1865T>A
mutations and loss of heterozygosity analysis
ening for the c.306+5G>A and c.1865T>A MLH1 muta-
was performed by conformation-sensitive capillary
ophoresis (CSCE) in DNA samples from the same
ase-control study (Supplementary Table S1; conditions
ble on request; ref. 18). DNAs with patterns differing
hose of controls were amplified using nonfluorescent
r and sequenced with BigDye Terminator v.3.1 Cycle
ncing kit (Applied Biosystems). The methods for anal-

loss of heterozygosity (LOH) of the variant c.1865T>A
H1 in tumors are included in Supplementary Methods.

sess e
fied u

r Res; 70(19) October 1, 2010
utational methods
following computational methods were used to predict
ications in splice-sites or exonic splicing enhancer sites:
port (19), NNSplice (20), Rescue_ESE (21), and ESEfinder
he Polyphen (23) algorithm was used to predict the
genicity of p.Leu622His variant using default settings.
lustalw program was used to align the amino acid
nce of MLH1 in 13 phylogenetically diverse species.

of the c.306+5G>A and c.1865T>A MLH1
tions on mRNA processing and stability
al RNA was extracted from peripheral blood lympho-
using Trizol (Invitrogen), and cDNA was synthesized
random primers (Invitrogen) and SuperScript II reverse
riptase (Invitrogen). Specific primers were used to am-
he appropriate MLH1 coding region (Supplementary
S1). The methods for allele-specific expression (ASE)
is of the variant c.1865T>A of MLH1 are descibed in
mentary Methods.

irected mutagenesis and construction
eu622His-MLH1
pcDNA3.1+ vector containing wild-type (WT) MLH1
(Genbank accession no. NM_000249.2) was kindly
ed by Dr. R. Kolodner (Ludwig Institute for Cancer
rch, UC San Diego School of Medicine, La Jolla, USA).
utant p.Leu622His-MLH1 cDNA was constructed using
uikChange Site-Directed Mutagenesis kit (Stratagene)
rimer 5′-AAGAAGAAGGCTGAGATGC(A)TGCAGAC-
TCTCTTTG-3′ (sense strand; mutagenesis site is in pa-
ses). Sequencing was used to verify the presence of the
ion. The cDNA insert between XhoI and BamHI sites
bcloned into WT MLH1-pcDNA3.

ulture and transfection
T116 [deficient for endogenous MLH1 (24)] and 293
ere obtained from the American Type Culture Collec-
esuscitated from stocks frozen at low passage within 6
s of purchase, and cultured as described (25, 26). Cell
ere routinely tested by Mycoplasma presence and ver-
y morphology, growth curve analysis, and expression of
ns (e.g., MLH1 and PMS2). HCT116 cells were trans-
with pGFP (green fluorescent protein) and WT

-pcDNA3.1 or p.Leu622His-MLH1-pcDNA3.1 vector us-
pofectamine 2000 (Invitrogen) and Plus (Invitrogen).
fection efficiency was measured by cytometry 24 hours
ransfection.

and PMS2 protein expression and
ity experiments
tein extraction from peripheral blood lymphocytes and
16 and 293 cells was performed as described elsewhere
LH1 and PMS2 expression levels were examined by

AGE, followed by Western blotting analysis with anti-
and anti-PMS2 antibodies (clones G168-15 and A16-4;
osciences). β-Tubulin antibody (Sigma) was used to as-

qual loading in all lanes. Band intensities were quanti-
sing Quantity One software (Bio-Rad), and expression
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H1 and PMS2 was normalized to β-tubulin expression.
crease of protein expression was calculated by dividing
rmalized protein expression in p.Leu622His-trans-
cells by the expression in WT MLH1–transfected

The stability of WT and variant MLH1 was assessed
ating cells with cycloheximide, a global inhibitor of
o protein synthesis, as described (25).

ation of age-specific cumulative risk
used information on the occurrence of CRC and EC in
es of MMR mutation-positive index cases to estimate
nd gender-specific incidences of CRC and EC (females)
R mutation carriers by maximum likelihood using

ied segregation analysis (2). The method was imple-
d in MENDEL (v3.3.5; refs. 28, 29).
tives were assumed to be followed from 20 years of
nd to be censored at the age of CRC diagnosis, at
e of death, at the age of last follow-up, or at age
rs, whichever occurred earliest. We did not ignore
ses beyond age 70 but assigned them the same risk
70 to avoid the larger variances observed when only
data are available. In estimating the risk of CRC and
male relatives were censored at age of CRC or EC
sis, whichever was diagnosed first. Information on
mutation status in relatives was included whenever
le. For individuals with missing age information, the
as imputed based on relationship with the proband,
the proband, and deceased status at last follow-up
or alive).
orrect for ascertainment, we maximized the condition-
lihood of observing the phenotypes (CRC and/or EC)
notypes (c.306+5G>A or c.1865T>A MLH1 variants) of
tire pedigree given the phenotypic and genotypic infor-
n of the index case (proband) and phenotypic informa-
f the pedigree to account for multiplex ascertainment
ge-specific cumulative risks (penetrance) and hazard
HR) estimates of CRC and EC risks in families with
gene variants were calculated assuming a proportional
s model, with λ(t) = λ0(t)exp[g(t)], where λ0(t) is the
round incidence. They were compared with the risks
general population, which were assumed to follow
pulation incidence from the Spanish Cancer Registries
he age-specific relative risks in carriers compared
he population rates are modeled through the function
t)]. We estimated the age-specific log HR parameters
e two age intervals <50 and ≥50, assuming that
Pn

k¼1

exp½�k�; a piecewise constant HR in the kth age band
2. In all analysis, cancer incidences in noncarriers were
ed to follow the population cohort–specific rates as
ed through the Spanish Cancer Registries.
construct confidence intervals (CI) for the log(HR)
ates, we assumed that the maximum likelihood
tes of the parameters were asymptotically normally
uted with covariance matrix given by the inverse of
sher information matrix. Cumulative risk (e.g., pene-
) and its 95% CI were calculated from the cumulative

nce Λ(t) given by �ðtÞ ¼Pn

k¼1
iktk exp½�k�, where ik is the

ation incidence obtained from the Spanish Cancer
the un
alogy

acrjournals.org
ries, tk is the length of the kth age interval, and βk is
g(RR) in the kth age interval k = 1, 2. The cumulative
given by F(t) = 1 − exp[−Λ(t)] and a 95% CI for F(t) is
p½��ðtÞ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arð�ðtÞÞp �, where

ðtÞÞ ¼
Xn

k¼1

i2kt
2
kV arð�kÞ exp½2�k�

þ 2
Xn

j < k;k¼1

ikijtktj½V arð�kÞV arð�jÞ�1=2 expð�k
þ �jÞcorrð�k; �jÞ:

type tests and CIs were then used based on the point
te and the estimated SEs (28, 29).
analysis accounted for both genotyped and ungeno-
relatives. Missing genotype information was handled
luding the allele frequency as a parameter in the like-
and then maximizing the marginal likelihood of the
type and genotype data of the entire pedigree, sum-
over all possible configurations of the unobserved
pe matrix, given the observed genotypes. Cumulative
and HR for CRC and EC were estimated separately
ales and females; risk of EC was estimated only
ales.

type analysis
lotype analysis was performed using three MLH1
-nucleotide polymorphisms and seven microsatellite
rs (Supplementary Table S1; conditions available on re-
). One hundred and twenty-two DNA samples from
ers of the studied families and 50 control individuals
mly selected from the CRC case-control study (18) were
ed, including individuals that come from the areas of
of the founders. To deduce the mutation-associated
ype, intrafamilial segregation analysis was performed
the assumption that the number of crossovers

en adjacent markers was minimal. The frequency of
e haplotypes in the control population was estimated
PHASE2 (default settings; ref. 31).

ation of founder mutation age
used a modification of the method of Schroeder and
gues (32) to estimate the time to the most recent
on ancestor (TMRCA) separately for the c.306+5G>A
1865T>A alleles. This method uses a count of the num-
recombination events that have occurred on copies
ancestral mutant haplotype, together with an estimate
recombination map length of the haplotype, to estimate
tal time length of the genealogy of sampled copies of a
t allele in units of generations. In our application of the
ach (32), to estimate TMRCA from the genealogy length,
ied on a multiplier c(n), a ratio of TMRCA to tree length
as estimated from coalescent simulations with sample
The TMRCA estimate was then taken as an estimate of
e of the mutation, and CIs were obtained by considering

certainty in converting the length estimate for the gene-
into an estimate of TMRCA. Because analysis of family
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Table

Family

A. c.30
A1

A2

A3

A4

A5

A6

A7
A8

A9
A10
A11

A12

A13

A14

A15

A16
A17

B. c.18
B1

B2

B3

B4

B5
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A16.1
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0 M

(Continue
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ng page
−
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+ + R

C

0

B
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Referral center Criteria
met

Affected
carrier

Gender Tumor
type

Age of
onset

MSI IHC CRC
location

CRC stage:
TNM/DukesMLH1 MSH2 MSH6
6+5G>A
 families

ICO, B
arcelona AC
 A1.1
 F
 CRC
 38
 +
 −
 +
 +
 R
 T4N
0M0
A1.2
 F
 CRC
 41
 R
 T2N
0M0

A1.3
 M
 CRC
 69
 +
 −
 +
 +
 R
 T3N
0M0
ICO, B
arcelona BC
 A2.1
 F
 CRC
 28
 +
 −
 +
 +
 Rc
 T2N
0M0

A2.2
 M
 CRC
 51
 +
 −
 +
 +
 R
 T3N
0M0
ICO, B
arcelona BC
 A3.1
 M
 CRC
 38

A3.8
 M
 CRC
 52
 R
 T2N
0M0

A3.1
0 M
 CRC
 52
GC
 70

ICO, B
arcelona AC
 A4.1
 F
 CRC
 38
 +
 NV
 +
 +
 R
 T3N
1Mx
A4.2
 F
 CRC
 60
 +
 NV
 +
 +
 R
 T4N
xMx

ICO, B
arcelona BC
 A5.1
 F
 CRC
 50
 +
 −
 +
 +
 R
 T2N
xM0
DC
 68

CRC
 80
 Rc
 T3N
0M0
ICO, B
arcelona BC
 A6.1
 F
 CRC
 38
 +
 NV
 +
 NV
 L
 T4N
1Mx

A6.2
 F
 CRC
 49
 L
 T2N
0Mx
ICO, B
arcelona BC
 A7.1
 F
 CRC
 52
 +
 −
 +
 +
 R
 T1N
0M0

HCSC
, Madrid/ BC
 A8.1
 F
 BC*
 48
HUL
B, Zaragoza
 3CRC
 50
 +
 NV
 +
 +
 R,R,L
 B1,B
1,B2

HCSC
, Madrid AC
 A9.1
 F
 CRC
 20
 +
 −
 L
 T3N
2Mx

CNIO,
 Madrid BC
 A10.1
 F
 CRC
 30
 +
 R
 B
1

H. Cru
ces, Bizkaia BC
 A11.1
 M
 CRC
 59
 R
 T2N
0M0
A11.2
 M
 CRC
 48
 L
 T3N
0M0

H. Cru
ces, Bizkaia BC
 A12.1
 F
 EC
 51
TC*
 65

ICO, B
arcelona AC
 A13.1
 F
 EC

2CRC

42
42
 −
 +
 +
 R,R
 T3N
 M0,
T3N
0M0

ICO, B
arcelona AC
 A14.2
 M
 CRC
 45
 L
CRC
 49

IBGM,
 Valladolid AC
 A15.1
 F
 CRC
 27
 +
 −
 +
 +
 Rc
 T4N
0M0
A15.2
 F
 CRC
 50
 R
2

Valladolid AC
ic, AC
A15.8
 M
 CRC
 39
 R
 T3N
0Mx
H. Clin
Bar
celona/HVC
A17.1
A17.1
M
 CRC
 59
 +

−
−

+
 +
 R
Pamplona
1 M CRC 35 + + R C
65T>A
 families

ICO, B
arcelona BC
 B1.1
 M
 CRC
 27
 +
 −
 +
 +
 R
 T3N
0M0
CRC
 39
 L
 T1N
0M0

H. St J
oan, Reus AC
 B2.1
 M
 2CRC
 56
 R,L
 T1N
0M0
H. St P
au, AC

B2.2
B3.1
M
 CRC
 24
 +
 −
 +
 NV
 L
 T3N
0M0

F
 CRC
 43
 +
 −
 +
 NV
 R
 T3N
0M0
Bar
celona
 B3.2
 F
 CRC
 28
 L
 T3M
1N0

ICO, B
arcelona AC
 B4.1
 F
 CRC
 33
 +
 −
 +
 NV
 R
 T3N
2Mx
B4.2
 M
 CRC
 42
 R
 T3N
0M0

OC* 58

ICO, Girona AC B5.1 M CRC 42 + − + + R T3N0M0
search
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y revealed no relationships among sampled families in
ost recent three to five generations, our age estimation
rformed from a reference point four generations in the
o that at the end of the estimation process, the estimate
creased by four generations. See Supplementary Mate-
nd Methods for further details.

lts

ification of frequently occurring germline
variants

tational screening of MMR genes performed in sus-
Lynch syndrome patients at ICO led to the identifica-
f two frequently occurring germline MLH1 variants:
5G>A and c.1865T>A. No other alterations in MLH1
sequence or at exon-intron boundaries were detected
iers. Of the 83 families with germline MMR alterations
fied at ICO, 45 were carriers of an MLH1 alteration
thogenic mutations and 17 variants of unknown signif-
e). The c.306+5G>A and c.1865T>A variants were
fied in nine and four families, constituting 20% and
all MLH1 carrier families, respectively. An extended
orative study with other referral centers (see legend

le 1) enabled the identification of 16 additional carrier
s. In all, we identified 17 families with c.306+5G>A and

For
predic

acrjournals.org
h c.1865T>A MLH1 variants (Table 1). Neither of these
riants was detected by CSCE in a panel of paired CRC
and controls, reducing the probability of being poly-
isms or CRC risk alleles.

ial clinical features
st of the included families fulfilled the modified Am-
m criteria (Table 1). The majority of tumors diagnosed
riers belonged to the Lynch syndrome spectrum. The
n age at diagnosis was 49.5 years (range, 20–80) for
5G>A carriers and 45.5 years (range, 24–79) for
T>A carriers. CRC and EC tested were microsatellite
le (MSI+), and informative cases showed loss of ex-
on of the MLH1 protein (Table 1).
h c.306+5G>A and c.1865T>A MLH1 variants cosegre-
with cancer in 29 and 21 affected members, respectively,
ere absent in 37 and 18 unaffected members, respective-
c.306+5G>A variant was also identified in 21 unaffected
ers (median age, 34.0; range, 22–63), and c.1865T>A in
ffecteds (median age, 29.0; range, 18–41).

genicity assessment of the c.306+5G>A and
5T>A MLH1 variants
1. Cli
nical features of
 affected
 carriers
 (Cont'd
)
the c.30
ted the
6+5G
creat
>A variant, splicing pr
ion of a new donor si
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ediction p
te 5 bp u

9) Octobe
Refe
rral center Criter
met
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Gende
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r Age o
onset
f MSI
LH1
IHC

MSH2
 MSH6
CRC
locatio
n

CRC
TNM/
tage:
ukes
HCSC
, Madrid AC
 B6.
 F
 CRC
 38
 +
 −
 +
 +
 R
 D

B6.
2 F
 EC
 53
 +
 −
 +
 +
CRC
 65
 L
 B

B6.
3 F
 EC
 55
 +
 −
 +
 +

B6.
4 M
 CRC
 32
 R
 T3N
2Mx
HCSC
, Madrid BC
 B7.
1 M
 CRC
 59
 +
 −
 +
 +

IOC, B
arcelona BC
 B8.
2 F
 CRC
 43
 −
 +
 +

HVH,
 Barcelona BC
 B9.
1 M
 CRC
 55
 +
 −
 +
 +
 R
 B

ICO, B
arcelona AC
 B10.
1 F
 EC
 54
 +
 NV
 +
 +

CNIO,
 Madrid AC
 B11.
1 M
 CRC
 56
 +
 R
 A

CNIO,
 Madrid AC
 B12.
5 F
 EC
 38
BC*
 79

B12.7 F CRC 48 + R A
B12.8 F 2CRC 51 R A

E: A. Clinical features of affected carriers of variant c.306+5G>A of MLH1. B. Clinical features of affected carriers of variant
65T>A of MLH1.
reviations: ICO, Institut Català d'Oncologia; HCSC, Hospital Clínico San Carlos; CNIO, Centro Nacional de Investigaciones
ológicas; H. Cruces, Hospital de Cruces; HVH, Hospital Vall d'Hebron; H. St Joan, Hospital Universitari Sant Joan; H. St
, Hospital de la Santa Creu i Sant Pau; IDOC, Institut d'Oncologia Corachan; IBGM, Instituto de Biología y Genética Molecular;
linic, Hospital Clinic; HVC, Hospital Virgen del Camino; HULB, Hospital Universatario Lozano Blesa; AC, Amsterdam criteria;
Bethesda criteria; M, male; F, female; BC, breast cancer; CRC, colorectal cancer; DC, duodenal cancer; EC, endometrial
cer; GC, gastric cancer; OC, otorhinolaryngological cancer; TC, thyroid cancer; IHC, immunohistochemical analysis of MMR
eins in tumor tissue; NV, not evaluable result; R, right; L, left; Rc, rectum.
rograms
pstream.

r 1, 2010 7383



Revers
lymph
aberra
genera
with a
consti
skippi
c.306+
mal b
observ
sessed
The

missen
ogenic
SIFT p
is high
for M
ref. 35
on mR
predic
SRp p
ences
(data
(Supp
(data
of the
which
MLH1
cells (
its exp
expre
compa
cycloh
p.Leu6
Howev
cells,
than W
from
menta

Figure
transcr
produc

Borràs et al.

Cance7384
with lo
suppo
mutation via a mechanism in which MLH1 protein expression
is decreased.

1. Characterization of the c.306+5G>A MLH1 variant. A, schematic overview of MLH1 exons 2 to 4 with a representation of the normal and aberrant
ipts caused by the c.306+5G>A mutation. Black arrows represent primers used for RT-PCR amplification. B, acrylamide gel showing RT-PCR

t sequ

Figure 2. Expression and stability of the p.Leu622His variant of MLH1 in
HCT116 cells. A, time course of expression of WT MLH1 and
p.Leu622His (L622H) variants. Top and middle, cell lysates probed with
anti-PMS2 and anti-MLH1 antibodies; bottom, to verify equal protein
loading, cell lysates were probed with variant anti-tubulin antibody.
Untransfected HCT116 and 293 cells were used as controls. One
representative experiment among three is shown. The ranges of decrease
in MLH1 expression at 24, 48, and 72 h were 35% to 55%, 42% to
75%, and 81% to 100%, respectively. The ranges of decrease in PMS2
expression at 24, 48, and 72 h were 57% to 89%, 48% to 55%, and
43% to 64%, respectively. B, stability of WT MLH1 and p.Leu622His
variant as assessed by cycloheximide (CHX) treatment. “+” and “−”
represent treatment with cycloheximide or DMSO as vehicle,
respectively. The decrease in expression at 1, 4, 6, and 9 h after
e transcription-PCR (RT-PCR) analysis on RNA from
ocytes of carriers confirmed the generation of this
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MLH1 c.1865T>A variant is predicted to generate the
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). Spliceport and NNSplice did not predict any effect
NA processing, whereas ESEfinder and Rescue_ESE
ted the creation of a new potential binding site for
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neither at the mRNA level [as assessed by RT-PCR
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lementary Fig. S1)] nor at the protein expression level
not shown) were observed. The transient transfection
p.Leu622His variant into the HCT116 cell line (24),
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Table 2. Characteristics of the study population by mutation type

+ 5 r

No. pr 2
Total n 7
No. fe 4
No. m 1
No. ind 2
No. ind 8
No. fir 6
No. su 0
No. te 2
Percen 0
Media 0
Media 3
Percen 7
Perc
Perc
Perc

NOTE: Blood- and nonblood-related relatives are included.
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lative risks and HRs derived from the
rance analysis
tal of 1,936 individuals were included in the pene-
analysis, 57 of which were probands and 388 of which
irst-degree relatives of probands (Table 2). Age-specific
ative risks of CRC by decade compared with risks in
h Cancer Registries (30) are shown in Table 3A. For
5G>A carriers, the risk of CRC by age 50 significantly
s the cumulative risk in the general population. Risk of
ontinues to increase, and by age 70, lifetime risk for
s estimated at 20.1% (95% CI, 1.4–35.9%) for men and
for women (95% CI, 1.2–25.2%). The overall HR for CRC
(95% CI, 2.9–20.6) for males and 9.0 (95% CI, 3.6–22.6)
ales (Table 3B). The age-specific HR estimates in the
tervals 20 to 49 and 50 to 69 clearly indicate much
relative risk compared with the general population,

ing in the age range from 50 to 69 years. Cumulative
r EC also exceeds that of the general population at
years, equaling 7.2% (95% CI, 0–16.9%) with HR of
% CI, 1.4–27.9; Table 3).
ough the cumulative risk of CRC for c.1865T>A car-
exceeds the risk in the general population by age
rs, it is lower than for c.306+5G>A. Risk of CRC con-
to increase and by age 70 is 6.8% (95% CI, 0–15.8%)
les and 7.3% (95% CI, 0–16.5%) for females. The overall
CRC is 2.4 (95% CI, 06–10.2) for males and 4.5 (95% CI,
.0) for females. Risk for EC tends to exceed that of the
l population at age 70 years, equaling 3.4% (95% CI,
%) with HR of 2.9 (95% CI, 0.4–23.6; Table 3).
arriers of other Spanish MLH1 pathogenic mutations,
ted lifetime risk for CRC is 26.3% (95% CI, 7.8–41.1%)

n and 10.7% for women (95% CI, 0–16.8%), with HR of
5% CI, 5.0–21.8) for males and 5.4 (95% CI, 2.0–14.9) for

in fam
type w

acrjournals.org
s, and cumulative risk for EC is 6.5% (95% CI, 0–13.1%)
R of 5.7 (95% CI, 1.9–17.0; Table 3). Therefore, both
5G>A and c.1865T>A mutations show a penetrance
the range of variability estimated in families with

MLH1 mutations, with a nonsignificant trend to lower
ance for the c.1865T>A mutation.

type analysis and estimation of mutation age
estors of families carrying the c.306+5G>A mutation
from the Ebro river valley in northern Spain, whereas
ors of families with the c.1865T>A mutation originated
he region of Jaén in southern Spain (Fig. 3). Common
phic origins of carrier families suggested that each of
o mutations could have occurred as a unique event in
le founder individual. This hypothesis was confirmed
lotype analysis (Table 4).
existence of a clear shared haplotype in carrier indivi-
permitted estimation of mutation age. In this estima-
or the c.306+5T>A mutation, we considered disease
types in the region extending from D3S2369 to
98 (D3S1612 to D3S1298 for c.1865T>A; Table 4), which
recombination map length of 0.9796 cM (2.2578 cM for
T>A). In the control population, the estimated frequen-
he identified minimum common haplotype, excluding
sease mutation, was 0.069 for c.306+5T>A and 0.048 for
T>A (Supplementary Table S2).
estimate the age of the mutation, we relied on an esti-
of the number of recombination events that occurred
ancestral disease haplotype for each disease mutation.
5′ end of the common haplotype of c.306+5G>A, a like-
ombination event at marker D3S2369 was detected

ily A10
as lost
; at the 3′ end
in 6 of the 17

Ca
(D3S1298), t
families, lik

ncer Res; 70
c.306
 5G>A c.186
 T>A Othe
 MLH1 mutations
obands/pedigrees 1
7 1
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o. individuals 51
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n age at diagnosis of CRC in men (range) 52 (3
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 –65)
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n age at diagnosis of CRC in women (range) 50 (2
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 44 (18–77)

tage of CRC diagnosed before age 50 among affected subjects 3
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tage of CRC or EC affected subjects among carriers 5
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he common haplo-
ely in two separate
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e risk MLH1
 % Cum
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Cancer R
c.306+
5G>A c.186
5T>A Other
muta
MLH1
tions
c.306+
5G>A c.1865
T>A Other
mutat
MLH1
ions
0 0
 0
 0
 0 0
 0
 0
0
.01 0.0
8 0.0
46 0.1
2 0.
4 0.
10 0
63 0
.01 0.0
9 0.0
54 0.2
4 0.0
7 0.3
5
3
0

0

.06 0.
.28 2.1
4 0.6
8 2.
90 0
.06 0.

.24 2.1
4 1.0
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3
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4.20) (0–1

46 2.4
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0 10.
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00 0
(0.17–
4.06) (0–2.

29 3.1
54) (0–2

8 3.8
.59)

5
1.00 7. .72 6.
2.87 20.13 6.80 26.32 1.67 14.05 7.26 10.74
(1.42–
35.95) (0–15.80) (7.85–41.07)
 (1.20–2
5.23) (0–16.50) (0–16.80)
EC (fem
ales)
 CRC and EC
 (females)
0 0
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 0 0
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0 0
 0

13 0.0

0

6 0.

0

11 0

.01 0.1
2 0.0
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4 0.0
5 0.4
6
6
0

0

.02 0.
.13 0.8
2 0.3
8 0.
74 0
.08 0.

.37 4.4
1 1.6
3 2.1
0

(0–2
.02) (0–1

42 1.6

.16) (0–1
0 3.
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1 1
(1.25–
7.47) (0–3.
41 5.5
50) (0.43–
0 7.0
3.74)
7

1.17 7.16
(0–16.88)

3.37
(0–10.05)

6.5
(0–13.12)
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(9.34–45.29)
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(0–24
8
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(3.32–2
4
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 (95% CI)
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muta
MLH1
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ions
14.
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73.23)

4.1
(0.18–
0
95.72)

32.
(12.57–
42
83.57)
13.3
6
60.94)

9.5
(1.33–6
6
8.44)

12.6
(3.49–4
3
5.62)
(3.03–

5.
37
19.72)

1.8
(0.325–
9
10.95)

3.
(0.88–
21
11.70)
(2.93–
6.8
8
24.28)

1
(NA
)

2.3
(0.48–1
0
1.05)
(1.47– (1.95–

l HR 7.72 2.42 10.48 8.99 4.4

(2.89–
20.59) (0.57–10.23) (5.04–21.81)
 (3.58–2
2.56)

8
(1.11–18.01)

5.42
(1.97–14.93)
EC (fem
ales)
 CRC and EC
 (females)
20.
00
144.19)

5.2
(0.15–1
2
85.08)

16.
(3.19–
02
80.42)
22.5
2
67.70)

9.1
(1.62–5
3
1.61)

20.3
(7.84–5
0
2.27)
(2.77–

3.
67
24.51)

2.1
(0.15–
7
32.45)

2.
(0.55–
98
15.92)
(7.49–
8.4
1
22.78)

1.7
(0.16–1
3
8.49)

1.9
(0.54–
9
7.34)
(0.55– (3.10–

ll HR 6.32
(1.43–27.94)

2.92
(0.36–23.57)

5.71
(1.91–17.02)

12.17
(5.92–25.01)

4.43
(1.37–14.36)

5.73
(2.59–12.71)

: A. Age-specific cumulative risk of CRC and EC for male and female carriers of MLH1 mutations compared with
sponding values for the population incidences as reported in the Spanish Cancer Registries (95% CIs are provided for
lative risk at ages 50 and 70). B. Age-specific and overall HR for CRC and EC for male and female carriers ofMLH1 mutations
Wald CI is provided for the HR parameters).
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Figure 3. Map of Spain showing locations where Lynch syndrome
families with the c. 306+5G>A mutation (white circles) and the c.1865T>A
mutation (black circles) originated. For six families (four c.306+5G>A
and two c.1865T>A), the original location is not known. The Ebro valley
is highlighted in dark gray. The insert shows a larger-scale map of the
Jaén pr
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bination events (Table 4A). Therefore, for c.306+5T>A,
unted a minimum of three recombination events nec-
to explain all disease haplotypes in the region. For
T>A, we counted a minimum of one event, which oc-
at the 3′ end (D3S1298) and which explained the loss
common haplotype by 5 of the 12 families (Table 4B).
m the map lengths (r) and recombination counts (k),
timated genealogy lengths (L) using the formula
r. We obtained L̂Ebro ¼ 3=0:009796 ¼ 306 generations

Jaén=1/0.022578=44 generations. To estimate TMRCA
these lengths, we required an estimate of the ratio c
upplementary Materials and Methods). By simulating
7 trees under a coalescent model of constant popula-
ize with n = 17 lineages representing 17 families, we
ted ĉEbro ¼ 0:2324, which gives an estimate of ĤEbro ¼
bro ¼ 3=0:009796 ¼ 75 generations (1,879 years assum-
years per generation) for the c.306+5G>A mutation.
rly, using n = 12 lineages, we estimated ĉJaén =
, producing an age estimate of Ĥ Jaén ¼ ĉJaénL̂Jaén +
generations (384 years assuming 25 years per genera-
for c.1865T>A. The 95% CI for ĤEbro is 53 to 122

ovince.
tions, and the corresponding interval for Ĥ Jaén is 12 Fou
in trad
in ML
Ashke
syndro
report
identi
freque
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nonfo
with m
found
in the
generations (Supplementary Table S2).

ssion

have identified and characterized two frequent
variants, c.306+5G>A and c.1865T>A (p.Leu622His),
Spanish Lynch syndrome families. They represent

st founder MLH1 mutations identified in the Spanish
tion.
predicted effect of the previously reported MLH1 var-
.306+5G>A (36) on splicing was confirmed, consistent
bservations on the nearby mutations c.306+2dupT
306+4A>G (37, 38). At the protein level, no differences

ression were observed in mutation carriers when com-
with controls, presumably because of a lack of stability

Our
the vi

acrjournals.org
tated MLH1 proteins or due to the limitations of the
rn blotting assay.
c.1865T>A variant (p.Leu622His) was previously de-

d as a germline MLH1mutation in two Spanish families
). Prior functional assays for p.Leu622His were incon-
e to assess its pathogenicity: In yeast-based assays, it
eficient in MMR activity (33, 41), whereas HCT116 cells
sfected with MLH1 and PMS2 retained partial MMR
y (69.2%). The effect on protein expression levels was
clusive (33). In vitro expression studies in MLH1-
ected HCT116 cells indicated that this mutation may
ntially reduce MLH1 expression by affecting its stabil-
ich in turn leads to a reduction in the expression of its
erpart PMS2. A pathogenic role for the p.Leu622His mu-
was further supported by the frequent loss of theMLH1
lele observed in tumors (42). An additional effect of the
ion on the capacity to bind PMS2 or on the intracellular
king of MLH1/PMS2 could not be ruled out.
e the functional effect of the founder mutations was
, we explored whether penetrance estimates differed
other MLH1 mutations. The estimated penetrance of
h MLH1 mutations was moderate and consistent with
eported for Dutch families (5). The penetrance of
er mutations was within the range of variability of pen-
e observed for Spanish MLH1 mutations. The pene-
for c.1865T>A missense mutation may be lower, a

hat may be attributed to the observed decrease in
expression. The penetrance estimates are sensitive
type of ascertainment correction, and elevate with
an unconditional likelihood or likelihood conditioned
n the proband, a phenomenon also noted in (2). Of
enetrance estimates for Spanish Lynch syndrome fam-
re lower than those reported in North American popu-
s (2, 3). The fact that we have used the same method as
l and colleagues (2) and that similar cumulative risks
served in the United States and Spain suggests that
phic differences in cancer risk might exist in Lynch
me carriers. Several factors including lifestyle, environ-
l factors, mutational spectrum, or, as recently reported,
istence of distinct weak alleles capable of producing
nic effects (43) may account for this observation.
nder mutations in MMR genes have an important effect
itional “founder populations”: Four different mutations
H1 and MSH2 genes in Finland, Newfoundland, and in
nazi Jews account for between 25% and 50% of all Lynch
me cases in these populations (9, 10, 13, 44). Before our
, two founder mutations in the MSH2 gene had been
fied in Spanish Lynch syndrome families, although their
ncies were low in our population (11, 12). In the cohort
ch syndrome families from ICO, the identified c.306
and c.1865T>A mutations account for 28.8% of the
ilies carrying MLH1 alterations (13 founders and 32
unders) and represent 17.6% (13 of 74) of all families
utations in MMR genes. In addition, the c.306+5G>A

er accounts for up to 25% ofMLH1mutations identified
Ebro basin area (data not shown).

detection of founder mutations in MLH1 supports

ew that they can occur not only in groups commonly
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Table 4. Haplotypes associated with the c.306+5G>A (A) and c.1865T>A (B) mutations in carrier families

A

Marker (Mb on
chromosome 3)

D3S1609
(29.915)

D3S1612
(34.565)

D3S2369
(36.472)

c.306+5G>A
(37.018)

rs4234259
(37.024)

rs179997
(37.029)

D3S1611
(37.044)

rs9876116
(37.059)

D3S3623
(37.419)

D3S1298
(38.024)

D3S3564
(42.394)

Families
A1 254 106 103 Yes G A 256 G 224 199 209
A2 250//254 106 103 Yes G A 256 G 224 199 213
A3 250 96 103 Yes G A 256 G 224 205 213
A4 254 92 103 Yes G A 256 G 224 205 201/211
A5 254/256 92 103 Yes A/G A 250/256 A/G 224 205 201/213
A6 250 104 103 Yes G A 256 G 224 205 201/213
A7 250 96/104 103 Yes G A 256 G 224 201 211
A8 250/254 96/106 103 Yes G A 256 G 218/224 199/201 203/209
A9 254 96 103 Yes A/G A 256/260 A/G 216/224 197/199 213/215
A10 250/256 96/104 101 Yes G A/G 256 G 224 199 203/215
A11 250 96 103 Yes G A 256 G 224 199 209/213
A12 250 96/104 103 Yes G A/G 256 G 216/224 195/199 201/215
A13 250 96 103 Yes G A/G 256 G 220/224 199/209 209/213
A14 252 96 101/103 Yes G A/G 256 G 224 205 211
A15 250//254 96 103 Yes G A 256 G 224 199 213
A16 250//254 96 103 Yes G A 256 G 224 199 213
A17 254 96 103 Yes A/G A 256 G 224 199 209//213

Max 1.55 Mb

Min 0.40 Mb

Shared alleles 103 Yes G A 256 G 224 199
Control frequencies (%) 67 0 44 66 44 44 12 30

(Continued on the following page)
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Table 4. Haplotypes associated with the c.306+5G>A (A) and c.1865T>A (B) mutations in carrier families (Cont'd)

B

Marker (Mb on
chromosome 3)

D3S1609
(29.915)

D3S1612
(34.565)

D3S2369
(36.472)

rs4234259
(37.024)

rs1799977
(37.029)

D3S1611
(37.044)

rs9876116
(37.059)

c.1865T>A
(37.064)

D3S3623
(37.419)

D3S1298
(38.024)

D3S3564
(42.394)

Families
B1 256 104 101 G G 256 G Yes 222 205 207
B2 256 104 101 G G 256 G Yes 222 205 207
B3 252//256 92/104 101 G G 256 G Yes 222 205 201//207
B4 256 104 101 G G 256 G Yes 222 205 201
B5 250 104 101 G G 256 G Yes 222 197 203
B6 250 104 101 G G 256 G Yes 222 205 207
B7 250/256 104 101/103 A/G A/G 256 G Yes 222 205 211
B8 250/256 104 101/103 G A/G 256 G Yes 222 205 201/207
B9 256 104 101 G G 256 G Yes 222 197 203
B10 250/254 92/104 101 A/G A/G 256/260 A/G Yes 214/222 197/199 201/203
B11 250/256 96/104 101 G G 256 G Yes 222 197/199 203/213
B12 250//256 104 101 G G 256 G Yes 222 197 209

Max 3.46 Mb

Min 0.95 Mb

Shared alleles 104 101 G G 256 G Yes 222 205
Control frequencies (%) 32 31 44 34 44 44 0 22 10

NOTE: The “/” symbol indicates that the phase of the disease haplotype cannot be established. The “//” symbol indicates that recombination has likely occurred within a family.
Intragenic MLH1 markers are shown in a box. Dark gray shading indicates nonrecombinant haplotypes. The sizes of the minimum and maximum conserved haplotypes are
shown at the bottom. Inferred haplotypes of subjects in the fifth generation in each family are in bold. The frequencies of disease-associated alleles among a panel of control
DNAs are shown at the bottom.
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high prevalence and moderate penetrance of the
5G>A and c.1865T>A variants have implications for
ular and clinical approaches to founder mutations in
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ficiency of testing of molecular diagnostic labs. Even
importantly, careful clinical characterization of founder
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ved clinical care.
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