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ABSTRACT

Estimating the number of ancestral lineages of a sample of DNA sequences at time t in the past can be
viewed as a variation on the problem of estimating the time to the most recent common ancestor. To
estimate the number of ancestral lineages, we develop a maximum-likelihood approach that takes ad-
vantage of a prior model of population demography, in addition to the molecular data summarized by the
pattern of polymorphic sites. The method relies on a rejection sampling algorithm that is introduced for
simulating conditional coalescent trees given a fixed number of ancestral lineages at time t. Computer
simulations show that the number of ancestral lineages can be estimated accurately, provided that the
number of mutations that occurred since time t is sufficiently large. The method is applied to 986 present-
day human sequences located in hypervariable region 1 of the mitochondrion to estimate the number of
ancestral lineages of modern humans at the time of potential admixture with the Neanderthal population.
Our estimates support a view that the proportion of the modern population consisting of Neanderthal con-
tributions must be relatively small, less than�5%, if the admixture happened as recently as 30,000 years ago.

MUCH attention has been paid in population
genetics to the estimation of the time since the

most recent common ancestor (TMRCA) of a sample of
homologous genes (Tavaré et al. 1997; Wilson and
Balding 1998; Thomson et al. 2000; Tang et al. 2002).
This has been particularly true for the TMRCA of
human mitochondrial DNA and of the nonrecombin-
ing portion of the Y chromosome. Arguments based on
TMRCA estimates have been used in evaluating his-
torical models for human evolution, as smaller esti-
mates are thought to be more compatible with a recent
departure of anatomically modern humans from Africa
followed by replacement of all other existing hominids
(Cann et al. 1987; Vigilant et al. 1991), whereas larger
estimates are potentially suggestive of ancient admix-
ture with Eurasian Homo erectus (see Garrigan and
Hammer 2006).

In this article, we consider a variation of the TMRCA
estimation problem. Rather than estimating the TMRCA,
i.e., the first time (measured backward from the present)
when the genealogical tree contains only one lineage, we
aim at estimating the number of ancestral lineages at a
fixed point of time in the past. To ensure that there are a
unique number of ancestral lineages at time t, we assume
that the sequences under consideration are nonrecom-
bining. The population of interest is assumed to be

panmictic, but possibly of varying size, so that a simple
coalescent approximation holds.

The problem of estimating the number of ancestral
lineages is of particular relevance in testing for admix-
ture between pairs of ancient populations. When the
first Neanderthal mtDNA sequence was published,
Krings et al. (1997) concluded that admixture between
Neanderthals and modern humans was unlikely be-
cause the Neanderthal sequence coalesced with the mo-
dern human sequences much further in the past than
the time of the most recent common ancestor of the
modern human sample. However, Nordborg (1998)
argued that the evidence against admixture was consid-
erably weaker than was suggested by Krings et al. (1997),
as the 986 modern human sequences studied by Krings
et al. coalesced to a much smaller number of sequences
contemporaneous with the Neanderthal sequence. Thus,
the likelihood of admixture should have been evaluated
by assessing the chance that this smaller number of
ancestral sequences would coalesce separately from the
Neanderthal.

Because at the time of the potential admixture, the
number of sequences ancestral to modern humans may
have been rather small, the ability to reject ancient gene
flow between Neanderthals and modern humans may
be very low. Using a coalescent model as an approxima-
tion to the genealogy of the sequences, Nordborg

(1998) argued that the number of ancestral sequences is
likely to have been small, except if the beginning of the
human population expansion was further in the past
than the potential contact between the two populations.
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Whereas Nordborg was making theoretical predictions
concerning the number of ancestral lineages of modern
humans, we propose to estimate this number using mo-
lecular data. The coalescent-based statistical method
that we present in this article uses the pattern of poly-
morphic sites contained in a mitochondrial DNA data
set similar to that used by Krings et al. (1997) to esti-
mate the number of ancestral mtDNA sequences of
modern humans at the time of potential admixture.

A variety of statistical methods have been proposed
for inferential problems in a coalescent setting. The
oldest methods used moment estimators, which rely on
a simple formula connecting the expected value under
the coalescent model of some summary statistic, such as
the number of segregating sites, and a parameter of in-
terest. For example, a widely used moment estimator is
Watterson’s estimator (Watterson 1975), which relies
on the number of segregating sites to estimate u, the
product of the effective population size N and the muta-
tion rate per generation. A disadvantage of moment
estimators, however, is that confidence intervals may be
hard to derive, and the estimators usually do not apply as
the model becomes more complex.

Maximum-likelihood methods that use all of the data
available are a second class of methods. These methods
must contend with the fact that computing the proba-
bility of the data requires knowledge of the unknown
genealogy on which sequences have evolved. Impor-
tance sampling methods (Griffiths and Tavaré

1994a) and Markov chain Monte Carlo (MCMC) ap-
proaches (Kuhner et al. 1995) have been proposed for
integrating over possible genealogies. Although in prin-
ciple these methods give the most accurate estimates, in
practice they are quite computationally intensive.

A third type of approach that is becoming increas-
ingly popular is rejection sampling (see, e.g., Fu and Li

1997; Tavaréet al. 1997; Weiss and von Haeseler 1998;
Pritchard et al. 1999; Beaumont et al. 2002; Jakobsson

et al. 2006). These methods typically consist of accepting
the values of model parameters that produce summaries
of simulated data that match summaries of the observed
data and rejecting values for which the simulations do
not match the observations. Rejection methods can
combine a reasonable level of accuracy with more rapid
execution compared to maximum likelihood.

For the problem of estimating the number of ances-
tral lineages from a set of sequences, we propose a
maximum-likelihood method that is based on summa-
ries of the observed data. The likelihood of a given value
for the number of ancestral lineages is computed using
an algorithm that simulates coalescent trees conditional
on a given number of lineages at a given point of time in
the past. We propose a new rejection algorithm for these
simulations. The statistical properties of the maximum-
likelihood estimator are then investigated using simu-
lated genetic data, and the estimator is applied to data
on 986 human sequences of hypervariable region 1 of

mtDNA. Our method provides estimates of the number
of ancestral mtDNA lineages of modern humans that
were contemporary to the Neanderthals, with conse-
quent implications for the possible levels of admixture
between the Neanderthal population and early modern
humans.

THEORY AND METHODS

The pattern of segregating sites: Segregating sites are
sites that are variable in a sample of DNA sequences.
They can be classified according to their sizes or their
types. The size of a mutation is defined as the number of
individuals that carry the mutation. Because we assume
that the sequences evolve according to the infinitely many
sites model (Watterson 1975), there are exactly two
alleles for each segregating site, and the type of the
mutation is defined as the smaller of the counts of the
two alleles. Because a mutation that affects the whole
sample does not generate a polymorphic site, there are
only n � 1 possible sizes of segregating sites in a sample
of n sequences. We denote by zi the number of segre-
gating sites that are of size i and by z the vector of these
counts:

z ¼ ðz1; . . . ; zn�1Þ:

The computation of the size of a site assumes that the
ancestral nucleotide at this site is known, for example,
using an outgroup sequence. When the ancestral nucle-
otide is unknown, the type of a mutation—rather than
its size—should be determined. We denote by ti the
number of segregating sites that are of type i and by t the
vector of these counts:

t ¼ ðt1; . . . ; tºn=2ßÞ:

The vectors z and t denote the site frequency spectrum
and the folded site frequency spectrum, respectively. We
choose the site frequency spectrum and the folded site
frequency spectrum as our summary statistics for two
reasons. First, the pattern of segregating sites (i.e., the
site frequency spectrum or the folded site frequency
spectrum) is highly informative about underlying pop-
ulation-genetic parameters such as u, the product of the
effective population size and the mutation rate (Fu

1994). Second, once the coalescent tree is known, the
probability of a pattern of segregating sites can be
computed using an explicit formula (Fu 1998). By
contrast, the probability distributions of most summary
statistics ½e.g., mean pairwise differences, Tajima’s D
(Tajima 1989)� do not have known explicit formulas,
even when the coalescent tree is known. For most sum-
mary statistics, the probability of a particular set of
values is computed using a Monte Carlo approximation
by jointly simulating coalescent trees and mutations.
When computing the probability of a particular pattern
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of segregating sites, however, because of the existence of
an exact formula for the probability of the pattern given
a coalescent tree, only coalescent trees need to be simu-
lated, but not mutations.

The probability of a particular pattern of segregating
sites can be computed conditional on the coalescent
tree as follows. First, the number of segregating sites S is
a Poisson random variable of rate u‘, where ‘ is the total
length of the coalescent tree. Second, conditional on
S ¼ s, the vector of the sizes of the segregating sites
ðz1; . . . ; zn�1Þ has a multinomial ðs; ‘1=‘; . . . ; ‘n�1=‘Þ
distribution, where ‘i denotes the total length of the
branches ancestral to exactly i individuals. Therefore,
conditional on the coalescent tree Cn , the probability of
the vector z that counts the number of mutations of
each size is

Pðz j CnÞ ¼ e�u‘ðu‘Þsð‘1=‘Þz1 . . . ð‘n�1=‘Þzn�1

z1! . . . zn�1!

¼ e�u‘u
s‘

z1
1 . . . ‘

zn�1
n�1

z1! . . . zn�1!
ð1Þ

(Fu 1998). Similarly, the probability of the vector t that
counts the mutations of each type is

Pðt j CnÞ ¼ e�u‘
usð‘1 1 ‘n�1Þt1 . . . ‘9

tºn=2ß

ºn=2ß

t1! . . . tºn=2ß!
; ð2Þ

where ‘9ºn=2ß ¼ ‘ºn=2ß if n is even and ‘9ºn=2ß ¼ ‘ºn=2ß 1

‘ºn=2ß11 if n is odd.
Because the coalescent tree Cn is not known, Equa-

tions 1 and 2 must be integrated over the space of coa-
lescent trees. This is accomplished using Monte Carlo
integration and is the subject of the next section. More
precisely, the computation of the likelihood of the pa-
rameter j that denotes the number of ancestors is per-
formed as follows:

1. Simulate M coalescent trees Cm ðm ¼ 1; . . . ;M Þ,
given that the number of ancestors at time t ¼ j.

2. Compute the likelihood of j using a Monte Carlo
estimator

Lð jÞ ¼ 1

M

XM
m¼1

Pðn j CmÞ; ð3Þ

where n ¼ z or n ¼ t.

The second step of the algorithm is performed using
Equation 1 or 2. The next section proposes a method for
performing the first step, that is, for simulating coales-
cent trees given that the number of ancestors at time t¼
j. Nevertheless it is important to point out that using the
complete vector of the sizes or the types of the segre-
gating sites may be too time consuming. If a sample with
1000 sequences, for example, contains one mutation of
size 400, it is unlikely that the simulated coalescent trees
will contain a branch leading to 400 individuals. Thus,

most of the time, the likelihood computed in step 2 will
be zero. To avoid this problem, the segregating sites are
binned into different categories that may contain one or
more possible sizes (or types). The likelihood is then
computed as in Equations 1 and 2, but the parameter of
the multinomial distribution that corresponds to the
binned category containing mutations of sizes (or types)
s1 to s2 is equal to the sum of the branch lengths an-
cestral to s1; s1 1 1; . . . ; s2 individuals divided by the
total branch length of the tree. Because coalescent
branches ancestral to a small number of individuals are
more likely to occur than coalescent branches ancestral
to a large number (see Blum and Francxois 2005,
Theorem 1, and Rosenberg 2006, Theorem 4.4), the
general binning strategy that we adopted was to bin the
mutations with large sizes (or types) into large clusters
and to bin mutations with small sizes (or types) into
small clusters. Note that binning all the mutations into a
single category is equivalent to using the number of
segregating sites as the only summary statistic in the
estimation framework.

Simulating coalescent trees conditional on the num-
ber of ancestors at time t : The simplest approach for
simulating coalescent trees conditional on a fixed num-
ber of ancestors j at time t is basic rejection sampling.
This method consists of simulating standard coalescent
trees and accepting the trees whose number of an-
cestors at time t ¼ j. However, the number of simulated
coalescent trees that is required to simulate only one
conditional coalescent tree may be prohibitively large,
especially when having j lineages at time t is unlikely
under the coalescent model. Therefore, we propose an
alternative method for simulating conditional coales-
cent trees. This method is based on the conditional dis-
tribution of the intercoalescence times given that there
is a fixed number of lineages j at time t.

For a sample of size n lineages, we denote by An(x) the
random number of lineages in the coalescent process at
time x and by qn,i(x) the probabilities P(An(x) ¼ i)
(Tavaré 1984; Takahata and Nei 1985). The inter-
coalescence times are denoted by Ti (i ¼ n; . . . ; 2),
where Ti corresponds to the time during which there
are exactly i lineages. Initially, we assume that the pop-
ulation size is constant, so that the distribution of the
time Ti is exponential with parameter li¼ i(i� 1)/2. To
lighten the notation, we denote by ui11 the time elapsed
since the (n � i)th coalescence event and time t

ui11 ¼ t � ðtn 1 . . . 1 ti11Þ

(see Figure 1). By convention, we set un11 ¼ t. The
number of lineages An(x) starts at n at time x ¼ 0 and
eventually reaches 1 for x ¼ TMRCA. The remaining
part of this section is devoted to simulating coalescent
trees given that An(t) ¼ j.

Because the random process An(x) is independent of
the topology of the coalescent process (see, e.g., Tavaré
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2004, pp. 44–46), the distribution of the topology of the
coalescent conditional on An(t)¼ j remains the same as
in the unconditional case. Using the Markov property
for coalescences more ancient than t, it is clear that the
distribution of the intercoalescence times ðTj�1; . . . ;
T2Þ is the same in the conditional and the unconditional
cases and that the intercoalescence time Tj during
which there are j lineages is the sum of uj11 and an
exponential random variable of rate lj. Thus, the only
difficulty when simulating a coalescent tree conditional
on having j ancestors at time t resides in the simulation
of the joint intercoalescence times ðTn; . . . ;Tj11Þ given
that An(t) ¼ j. In appendix a, we show that the con-
ditional distribution of the intercoalescence time Ti

(i ¼ n; . . . ; j 1 1) given Tn ¼ tn; . . . ;Ti11 ¼ ti11 and
An(t) ¼ j is a mixture of truncated exponential distri-
butions with positive and negative coefficients

f ðtiÞTi jTn¼tn ; ... ;Ti11¼ti11;AnðtÞ¼j ¼
Xi�1

k¼j

pkgli�lk ;ui11ðtiÞ; ð4Þ

where gg,t denotes the probability density function
(p.d.f.) of the exponential distribution of parameter g

truncated at time t and the coefficients of the mixture
pk are given in appendix a (Equation A3). Mixtures with
positive and negative coefficients can be simulated
using a simple rejection algorithm of Bignami and
De Matteis (1971) (see also Devroye 1986, p. 74). The
Bignami and De Matteis method uses the fact that the
mixture is less than or equal to the sum of only its posi-
tive components, so that

f ðtiÞTi jTn¼tn ; ... ;Ti11¼ti11;AnðtÞ¼j #
Xi�1

k¼j

p1
k gli�lk ;ui11ðtiÞ;

where p1
k ¼ pk if pk . 0 and p1

k ¼ 0 otherwise. The
algorithm for simulating Ti given the intercoalescence
times Tn; . . . ;Ti11 and An(t) ¼ j is as follows.

Algorithm 1—Bignami and De Matteis rejection sam-
pling for simulating Ti given the intercoalescence times
Tn, . . . , Ti11 and An(t) ¼ j, where j , i # n:

1. Generate a random variate X with density hiðxÞ ¼Pi�1
k¼j p1

k gli�lk ;ui11
ðxÞ=

Pi�1
k¼j p1

k .
2. Generate a uniform-½0, 1� random variate U.
3. If ðU #

Pi�1
k¼j pkgli�lk ;ui11

ðX Þ=
Pi�1

k¼j p1
k gli�lk ;ui11

ðX ÞÞ
return X; otherwise go back to step 1.

Step 1 is performed by simulating a random variate
according to hi. This is straightforward, because hi is a
finite mixture of truncated exponential distributions
with positive coefficients (see Devroye 1986, p. 66).

The expected number of iterations to get one ac-
ceptance in the Bignami and De Matteis algorithm isPi�1

k¼j p1
k (Bignami and De Matteis 1971). Using Equa-

tion 4 and the expressions for the coefficients of the
mixture, we find in our setting that the expected num-
ber of iterations to get one acceptance is proportional to
1/qi,j(ui11). This means that for some values of n, i, and
t, the algorithmic cost of the rejection algorithm will be
prohibitive. This happens when qi,j(ui11) is very small,
that is, when it is extremely unlikely under the co-
alescent model that i lineages will be reduced to j line-
ages during ui11 units of time. Using simulations, we
found that for values of the intercoalescence time
,0.05, the rejection method is not tractable because
of its prohibitive algorithmic cost (results not shown).
Therefore, when ui11 , 0.05, our simulation method in-
stead relies on asymptotic results obtained by Griffiths

(1984, Theorem 6) for the distribution of the number of
lineages under the coalescent.

Griffiths showed that the number of coalescences that
occur during x units of time when x is small can be
approximated by a Poisson distribution with parameter
lix, where i is the number of initial lineages

qi;jðxÞ �
e�li xðlixÞi�j

ði � jÞ! ; i . j : ð5Þ

Using the Markov property and the definition of
conditional probabilities, we have for i . j

f ðtiÞTi jTn¼tn ;...;Ti11¼ti11 ;AnðtÞ¼j ¼ f ðtiÞTi jAi ðui11Þ¼j

¼ fTi ðtiÞqi�1;jðui11 � tiÞ
qi;jðui11Þ

; 0 # ti # ui11:

Thus, approximating qi�1,j(ui11) by a Poisson distribu-
tion (Equation 5) provides an approximate p.d.f. for the
conditional intercoalescence time Ti,

f ðtiÞTi jTn¼tn ; ... ;Ti11¼ti11 ;An ðtÞ¼j ¼ Ke�ti ðli�li�1Þ 1� ti
ui11

� �i�1�j

; 0 # ti # ui11;

ð6Þ
where K is the normalizing constant. Simulating variates
according to this p.d.f. is performed using a simple
rejection algorithm, and the details of the simulation

Figure 1.—A coalescent tree with n ¼ 5 sequences condi-
tioned on having j ¼ 3 lineages at time t. The Ti’s correspond
to the intercoalescence times and ui corresponds to the time
elapsed between the (n � i)th coalescence event and time t.
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procedure are given in appendix b. The approximation
of Equation 4 by Equation 6 is excellent for t , 0.05. For
instance, Figure 2 displays the exact p.d.f. and the
approximate p.d.f. for the conditional intercoalescence
time when t ¼ 0.01. The approximation appears to be
quite accurate.

We can now write an algorithm for generating co-
alescent trees given that there are j lineages at time t.
Two example trees simulated by the following algorithm
are displayed in Figure 3.

Algorithm 2—algorithm to generate a coalescent tree
given that there are j lineages at time t:

1. Simulate the topology of a standard coalescent tree
and set u ¼ t.

2. For i ¼ n to 2 do

If i . j
If (u . 0.05) use Equation 4 and Algorithm 1 to
simulate Ti conditional on Tn ¼ tn; . . . ;Ti11 ¼
ti11;AnðtÞ ¼ j .
If (u # 0.05) use Equation 6 and the rejection
method given in appendix b to simulate Ti con-
ditional on Tn ¼ tn; . . . ;Ti11 ¼ ti11;AnðtÞ ¼ j .
Set u ¼ u � Ti.

If i ¼ j, simulate Ti ¼ u 1 Exp(li).
If i , j, simulate Ti ¼ Exp(li).

So far, we have assumed that the population size is
constant so that the intercoalescence times are expo-
nentially distributed. The framework above can easily be
extended using the method of Griffiths and Tavaré

(1994b) (see also Tavaré 2004, pp. 23–29) that de-
scribes the coalescent process when the population size
evolves deterministically. We denote by N(r) the pop-
ulation size r generations before the present. Time is
measured in units of N ¼def N ð0Þ generations. The rel-
ative size function sN(x) is defined by

sN ðxÞ ¼
N ðdNxeÞ

N ð0Þ

¼ N ðrÞ
N ð0Þ;

r � 1

N ð0Þ, x #
r

N ð0Þ; r ¼ 1; 2; . . . :

We suppose that the limit of sN(x) as N goes to infinity
exists and is denoted by s(x). We also denote by
{An

n(x)}x$0 the process that counts at time x the number
of ancestors of a sample with initial size n, when the
population size is not constant. The result obtained by
Griffiths and Tavaré (1994b) (see also Tavaré 2004,
pp. 27–28) is that the process An

n(�) may be constructed
using the equality

An
nðxÞ ¼ AnðLðxÞÞ; ð7Þ

where An(�) is the ancestral process when the popula-
tion size is constant and

Figure 2.—For different values
of i and j, the exact (Equation
4) and approximate p.d.f. (Equa-
tion 6) of the intercoalescence
time Ti given that An(t) ¼ j and
Tn ¼ tn; . . . ;Ti11 ¼ ti11. The
dashed lines correspond to the
approximate p.d.f. and the points
correspond to the exact p.d.f. The
time elapsed between Tn 1 . . . 1
Ti11 and t is fixed at ui11 ¼ 0.01.

Figure 3.—Two coalescent trees with n¼ 10 individuals con-
ditional on having, at time t ¼ 2, (a) j ¼ 2 lineages or (b) j ¼ 8
lineages. Both trees were simulated using Algorithm 2.
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LðxÞ ¼
ðx

0
1=sðyÞdy:

When population size varies, it follows from Equation 7
that generating coalescent trees given that there are j
lineages at time t can be performed using Algorithm 2.
More precisely, a coalescent tree given that there are j
lineages at time L(t) can be generated using Algorithm
2. The number of lineages in the simulated coalescent
jumps at times Tn, Tn 1 Tn�1; . . . ;Tn 1 . . . 1 T2. Thus,
the Griffiths and Tavaré equality ensures that An

n(�) jumps
at times L�1(Tn), L�1(Tn 1 Tn�1), . . . , L�1ðTn 1 . . . 1

T2Þ. If we denote by T n
j the time during which An

n(�) has j
ancestors, we have

T n
n ¼ L�1ðTnÞ

T n
j ¼ L�1ðTn 1 . . . 1 TjÞ � L�1ðTn 1 . . . 1 Tj11Þ;

j ¼ n � 1; . . . ; 2:

SIMULATIONS

We performed computer simulations to study the
statistical properties of the maximum-likelihood esti-
mator of the number of ancestral lineages. The coa-
lescent trees were simulated using Algorithm 2, assuming
a population of constant size, and mutations were pro-
pagated along the trees assuming an infinitely many
sites model. The rate at which mutation occurs, u ¼ Nm

(m is the mutation rate per generation and N is the ef-
fective population size, that is, the number of female
individuals when considering mtDNA) was set to 1, 5, or
10 to mimic the scaled mutation rate in the mtDNA
control region in humans ½note that our definition of u

is half of the value used in the usual definition (Tavaré

2004)�. The number of simulated trees that were used
for the estimation of the likelihood at each value of the
parameter j was fixed at 1000 and the location ĵ with the
highest likelihood was found by simply choosing the
value of j that maximized the estimated likelihood. All
estimates were obtained using the site frequency and
folded site frequency spectra. The number of sequences
was set to 50 except where otherwise specified. The

different binning schemes that were used are shown in
Table 1.

To compute confidence intervals, we used a para-
metric bootstrap percentile method (see, e.g., Carpenter

and Bithell 2000). Parametric bootstrapping proceeds
by approximating the null distribution of an estimator
by the distribution of the estimator applied to samples
simulated under the null hypothesis. The simulations are
performed by assuming that the true value of the pa-
rameter is equal to the estimated value. The number of
bootstrap replicates is denoted by B. In our setting, the
parametric bootstrap consists of simulating genetic data
on simulated coalescent trees given that the number of
lineages at time t is equal to the maximum-likelihood esti-
mate ĵ. For each bootstrap replicate, a maximum-likelihood
estimate ( ĵ b ; b ¼ 1; . . . ;B) of the number of ancestral
lineages is found. The lower and upper endpoints of the
95% confidence interval are estimated simply by the 2.5
and 97.5% quantiles of the set ð ĵ 1; . . . ; ĵ BÞ. In our analysis,
the number of bootstrap replicates is set at B ¼ 1000.

To provide an example of our estimation procedure,
we computed the log-likelihood of the parameter j using
a simulated data set. The simulated data set contained
n ¼ 100 sequences, and the number of ancestors j one
coalescent time unit before the present was set to 25.
The mutation parameter u was fixed at 5. On a 1.6 GHz
Centrino Duo processor, evaluating the likelihood for
all values of the parameter j took�81 sec. The profile of
the log-likelihood is displayed in Figure 4. When using
either the site frequency spectrum or the folded site
frequency spectrum, the maximum-likelihood estimate
was 26, and the 95% confidence interval ranged from 19
to 35. When using only the number of segregating sites
as the summary statistic, we found that the maximum-
likelihood estimate was 33 and the confidence interval
was much wider, ranging from 18 to 49.

TABLE 1

The binning schemes used when the simulated site frequency
spectrum and the simulated folded site frequency

spectrum were analyzed

No. of
sequences
(n) Binning scheme

n ¼ 50 Sizes of mutations 1 2–5 6–10 11–25 26–49
Types of mutations 1 2–5 6–10 11–17 18–25

n ¼ 100 Sizes of mutations 1 2–5 6–25 26–50 51–99
Types of mutations 1 2–5 6–14 15–24 25–50

Figure 4.—The profile of the log-likelihood of the number
of ancestors estimated from a simulated data set summarized
in each of three ways. The number of sequences was set at n ¼
100 and the number of ancestors 1 coalescent time unit be-
fore the present was set at 25. The mutation rate was fixed
at u ¼ 5. The log-likelihood functions have been shifted so
that their maximum values are 0.
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To investigate the statistical properties of the maximum-
likelihood estimator ĵ, we estimated its bias E ½ ĵ� j � and

its root mean square error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ½ð ĵ� jÞ2�

q
. The

bias and the RMSE were both estimated using Monte
Carlo approximation with 1000 simulated genetic data
sets. For both the site frequency spectrum and the
folded site frequency spectrum, the bias of the estimator
is displayed in Figure 5 for different values of u and t, as
is the difference between the biases of the estimator us-
ing the site frequency and folded site frequency spectra.
Provided that the value of the mutation parameter is
large enough (u $ 5) and the time at which the number

of lineages has been fixed is also large enough (t $ 1),
the estimator based on the site frequency spectrum is
almost unbiased. In other words, the estimator is un-
biased if enough mutations have occurred since the
time at which we want to estimate the number of line-
ages. When using the folded site frequency spectrum,
the bias is slightly larger, but it remains small (,0.5).
When the true number of ancestral lineages is suffi-
ciently large, the estimator is always almost unbiased.
However, for t ¼ 0.5 and j ¼ 5 or 10, the bias of the
estimator is substantially larger when using the folded
site frequency spectrum (see Figure 5). Also, the esti-
mator overestimates the number of ancestral lineages
when the true value is 1. This result is expected because
the estimator necessarily finds a value $1.

Similarly to the bias, the RMSE of the estimator is
large when t is small (t ¼ 0.5) and u is small (u¼ 1) (see
Figure 6). When the number of ancestral lineages j¼ 1,
the RMSE is rather small. As j increases, the RMSE
increases, reaching a plateau around j ¼ 10 and de-
creasing slightly for j . 25. To give a sense of the quality
of our estimator, we assume that the maximum-likelihood
estimator is approximately unbiased and Gaussian. This
means that we assume the estimate ranges with a prob-
ability of 95% from ĵ� 1:96RMSE to ĵ 1 1:96RMSE. When
j¼ 25, for example, the worst situation corresponds to t
¼ 0.5 and u ¼ 1. Using the site frequency spectrum, we
find that the estimate ranges between 13 and 36. When
the mutation parameter increases 10-fold, the interval
where the estimator is likely to be found is reduced,
ranging from 19 to 31. The most favorable case for
estimating j¼ 25 corresponds to t¼ 2 and u¼ 10. In that
scenario, the probability is 95% that the estimate ranges
between 22 and 28. The difference of RMSEs obtained
when using the site frequency spectrum and the folded
site frequency spectrum is small except when t¼ 0.5 and
j ¼ 5 or 10, where the difference is .1.

We investigated the gain obtained by using the site
frequency spectrum or the folded site frequency spec-
trum rather than the number of segregating sites. The
relative difference of RMSEs—the difference between
the RMSE using the number of segregating sites and the
RMSE using one of the spectra, divided by the RMSE
using the number of segregating sites—is displayed in
Figure 7. This difference is always positive, as the site
frequency spectrum contains more information than
the number of segregating sites. The relative decrease
of the RMSE when using one of the spectra ranges be-
tween 0 and 60%. When the number of ancestral line-
ages is large (40) there is a clear increase of the relative
difference of RMSE except when t ¼ 0.5. When the
number of ancestors ranges from 5 to 25, the gain in
accuracy of the estimator is consistently larger when
using the site frequency spectrum than when using the
folded site frequency spectrum, as is expected from Fig-
ure 6. For these values of the number of ancestral line-
ages, the relative decrease of RMSE is small when using

Figure 5.—The bias of the estimator, E ½ ĵ� j �. At each of
several values for the number of ancestors at time t, the bias
was estimated using 1000 simulated genetic data sets with a
sample size of n ¼ 50. (A) Bias for the estimator based on
the site frequency spectrum. (B) Bias for the estimator based
on the folded site frequency spectrum. (C) Bias in B minus
bias in A.
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the folded site frequency spectrum, ranging from 0 to
25%. In contrast, the relative decrease of RMSE when
using the site frequency spectrum ranges from 10 to 50%.
When the number of ancestral lineages is 1, there is no
major decrease of RMSE, except mainly when u ¼ 10.

Last, we investigated if the maximum-likelihood esti-
mator is robust to violations of the infinitely many sites
assumption. Using the software Seq-Gen (Rambaut and
Grassly 1997), we simulated 422 bp according to the
Hasegawa–Kishino–Yano (HKY85) substitution model
(Hasegawa et al. 1985). We assumed equal base fre-
quencies and a transition–transversion ratio of 4. The
sites containing three or four distinct nucleotides were
removed so that the frequency spectrum could be com-

puted. We considered the folded site frequency spec-
trum as the summary statistic. The scaled mutation rate
was set at u ¼ 1 and u ¼ 3.58. A value of u at 3.58 corre-
sponds to a mutation rate of 2.5 3 10�6/site/genera-
tion, which is consistent with estimates of the mutation
rate for the control region of mtDNA (Tamura and Nei

1993; Jazin et al. 1998) and an effective population size
of 3400 female individuals (Nordborg 1998). As can be
seen from Figure 8, the estimate is biased downward
when the number of ancestors at time t is large. The bias
also increases with the time t at which the number of
ancestral lineages has been fixed. Essentially, the bias
increases as the number of sites at which multiple muta-
tions occur increases. Despite this slight bias for large
values of the number of ancestors, the RMSE of the
estimator remains moderate.

APPLICATION TO HUMAN mtDNA DIVERSITY

We estimated the number of ancestral lineages of
mtDNA in modern humans, both 30,000 years ago and

Figure 7.—The relative difference between the RMSE of
the estimator computed from the number of segregating sites
and the RMSE of the estimator computed from the (A) site
frequency spectrum or the (B) folded site frequency spectrum
½the relative difference between two variables A and B is de-
fined by (A � B)/A�. At each of several values for the number
of ancestors at time t, the RMSEs were estimated using 1000
simulated genetic data sets with a sample size of n ¼ 50.

Figure 6.—The root mean square error (RMSE) of the es-

timator,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ½ð ĵ� jÞ2�

q
. At each of several values for the number

of ancestors at time t, the RMSE was estimated using 1000 sim-
ulated genetic data sets with a sample size of n ¼ 50. (A)
RMSE for the estimator based on the site frequency spectrum.
(B) RMSE for the estimator based on the folded site fre-
quency spectrum. (C) RMSE in B minus RMSE in A.
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100,000 years ago. These estimates are of particular
interest when investigating the level of admixture be-
tween Neanderthals and modern humans using mtDNA
data. Indeed, Nordborg (1998) showed that the find-
ing of a Neanderthal mtDNA fragment with a large
number of sequence differences from 986 sequences of
modern humans (Krings et al. 1997) was not sufficient
proof for the absence of admixture. Nordborg intro-
duced a simple model of admixture under which
Neanderthals formed an isolated population until the
time of admixture tm, when a fraction of the Neander-
thal population merged with modern humans to form a
single panmictic population. From now on, we refer to
modern humans who lived at the time of the admixture
as ‘‘early modern humans.’’ We denote by c the pro-
portion of the early modern human population consist-
ing of Neanderthals, at the time tm of admixture (and
just after the admixture occurred). A model with no
admixture corresponds to c ¼ 0 and a model where all
present-day humans descend from Neanderthals corre-
sponds to c ¼ 1. Assuming that the sampled Neander-
thal comes from the Neanderthal population at a time
that is more ancient than the time when Neanderthals
mixed with modern humans, the probability that the
Neanderthal sequence differs strikingly from the se-
quences of modern humans is equal to the probability

that none of the ancestors at the time of the admixture
came from the Neanderthal fraction. The probability
that none of the early modern humans are Neanderthal
descendants is simply (1 � c)j, where j is the number of
ancestral sequences of modern humans (Nordborg

1998). Because all the ancestors are not descendants of
Neanderthals, there is no more extreme scenario for
rejecting admixture. Thus, the probability that none of
the ancestors at the time of the admixture came from
the Neanderthal fraction can be viewed as a P-value for a
null model in which admixture occurred with param-
eter c. The P-value is estimated simply by ð1� cÞĵ, where ĵ
is the maximum-likelihood estimate of the number of
lineages at the time of the potential admixture.

For the sake of comparison with Nordborg’s results,
we chose 986 worldwide mtDNA HV1 sequences (422 bp
long) contained in the database MOUSE (Burckhardt

2002). We removed 102 sites that were missing in more
than one-fourth of the individuals. Because we assumed
the infinitely many sites model, we removed 30 sites that
contained 3 or 4 distinct nucleotides. These excess mu-
tations can be explained by an actual violation of the
infinitely many sites model or by the occurrence of
laboratory artifacts (Bandelt et al. 2002). The remain-
ing sequences were 290 bp long and still contained
some missing data. At each nucleotide position, missing
nucleotides were artificially replaced by nucleotides
simulated according to the nucleotide frequencies at
that position. Thus, in the end, we analyzed 986 se-
quences each containing 290 nucleotides. Two values
of the mutation rate were used in the analysis, a value
of 5 3 10�5/site/generation as estimated from human
pedigree studies (Parsons et al. 1997) and a value of
2.5 3 10�6/site/generation as estimated from the diver-
gence time between humans and chimpanzees (Tamura

and Nei 1993; Jazin et al. 1998). The generation time of
the human female population was set at 20 years/
generation.

To apply the maximum-likelihood method, the sizes
or the types of the mutations must be computed. As
mitochondrial sequences from chimps are available, it is
in principle possible to determine the state of the an-
cestral sequence. However, because the control region
of the mtDNA sequence evolves relatively fast, the chimp
sequence is likely to differ from the chimp–human
ancestral sequence. As a result, we used the folded site
frequency spectrum, because its use does not require
knowledge of the ancestral sequence. To check that our
results were not too dependent on the binning scheme,
we considered two different ways of binning the folded
site frequency spectrum of the human mtDNA data (see
Table 2).

For the demographic model of the human popula-
tion, we used a model where the effective population
size is constant and equals 3400 (Nordborg 1998) and
two models of population expansion. The first of these
models was considered by Nordborg and assumes that

Figure 8.—The (A) bias and the (B) RMSE of the estimator
when the genetic data are simulated according to a finite-sites
model. At each of several values for the number of ancestors
at time t, the RMSEs were estimated using 1000 simulated ge-
netic data sets with a sample size of n ¼ 50.
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the population was constant before the date of the ex-
pansion, 50,000 years ago, and then grew exponentially
to 5 3 108 individuals. The second model of expansion
is better supported by demographic estimates for the
human population (Biraben 1979; Cohen 1995). It
assumes that the population was constant before the
date of the first expansion, 50,000 years ago, grew ex-
ponentially to attain 2.5 3 106 female individuals 10,000
years ago, and then grew at a faster rate to reach 3 3 109

female individuals today. A mathematical description
of the population growth models can be found in
appendix c.

Figure 9 displays the profile of the log-likelihood
function when the larger mutation rate is assumed. For
all models of population demography, the maximum-
likelihood estimate of the number of ancestors at tm ¼
30,000 years and tm ¼ 100,000 years is always 1. More-
over, the likelihood function decreases very fast: the
confidence interval of the number of ancestors is re-
stricted to 1 when a model of constant population size
is assumed and ranges from 1 to 2 or 3 when popula-
tion growth models are assumed. In contrast, when the
smaller mutation rate is assumed, the maximum-likelihood
estimate of the number of ancestral lineages is sensitive
to the model of human demography and to the time tm
at which the number of lineages is estimated (Figure
10). The estimated number of ancestral lineages is al-
ways larger than the expectation of the number of line-
ages that was computed by Nordborg (1998), using a
coalescent model without any data (Table 3). The
number of ancestral lineages of the 986 sequences of
modern humans 30,000 years ago was estimated at 111
for the model with constant population size and at 50
and 52 for the two models of expansion. One hundred
thousand years ago, the number of ancestral lineages was
estimated at 41 for the model of constant population
size, at 20 for the model with a single stage of expansion,
and at 1 for the model with two stages of expansion. The
confidence intervals of the number of ancestral line-
ages are much wider when the smaller mutation rate is
assumed. These results were almost unaffected by the
choice of binning scheme (see Figures 9 and 10).

In Table 3, we display the minimum value of c, cmin,
such that the admixture model can be rejected with a
type I error rate of 0.05. The value cmin was computed by

finding the value of c such that the P-value ð1� cÞĵ ¼
0.05. By definition of cmin, all the models of admixture
with a value of c . cmin can be rejected with a 0.05 type I
error rate. When the larger mutation rate is assumed,
cmin is always 0.95. Therefore, when assuming the larger
mutation rate, the finding of a Neanderthal sequence
that coalesces deeper than the MRCA of the modern
human sequences is not sufficient evidence for the
rejection of admixture, except if the admixture hypoth-
esis is that the Neanderthal population constituted
almost the entire population of early modern humans
(c . 0.95). When the smaller mutation rate is assumed,
the conclusions depend on the demographic model
considered. In the following, the results using the
smaller mutation rate are described. If the admixture
happened 30,000 years ago, the admixture model can
be rejected unless the Neanderthal proportion of the
admixed population was quite small (c , 0.06). If the
admixture happened 100,000 years ago, the choice of
demographic model matters. When the constant pop-
ulation size model or the expansion model with one
stage is assumed, the admixture model can be rejected
unless the Neanderthal proportion of the admixed
population was small (c , 0.07 and c , 0.14). However,
when assuming the expansion model with two stages,
we cannot reject the admixture model except if the ad-
mixture was almost complete (c . 0.95).

Last, we took into account the fact that Serre et al.
(2004) sequenced mtDNA from five early humans from
the Upper Pleistocene. Because their mtDNA sequences
indicated that these individuals are not likely to be direct
ancestors to modern human mtDNA sequences, we add
five ancestors to the estimated number of early modern
human ancestors. When we take into account the five
extra ancestors, the minimum value of the admixture
parameter such that the admixture model can be rejected
is denoted c15

min. When the number of ancestors estimated
before incorporating these five lineages was larger than
one, the results were not qualitatively modified by the
inclusion of these lineages. However, when the estimated
number of ancestors was equal to one prior to the in-
corporation of the five extra early modern human line-
ages, the minimum value of the admixture parameter
that enabled rejection of the admixture model changed
from cmin ¼ 0.95 to c15

min ¼ 0.39.

TABLE 2

Two different ways of binning the folded site frequency spectrum of the 986 human mtDNA sequences

Binning scheme 1
Types of mutations 1 2–5 6–10 11–50 51–100 101–250 251–493
No. of sites 36 45 20 30 8 5 1

Binning scheme 2
Types of mutations 1 2 3–5 6–10 11–25 26–50 51–75 76–100 101–201 201–493
No. of sites 36 20 25 20 21 9 4 4 4 2
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DISCUSSION

On the basis of a partition of polymorphic sites in a
sample of DNA sequences—the site frequency spectrum
or the folded site frequency spectrum—we constructed
a maximum-likelihood framework for estimating the
number of ancestral lineages j at a given point of time t

in the past. The computation of the likelihood of the
parameter j relies on an algorithm that we have devised
for simulating coalescent trees conditional on having
j ancestral lineages at time t. When analyzing mtDNA
data, we estimated the number of ancestral lineages
assuming the mutation rate u was known. Nevertheless,
our framework can be extended to jointly estimate the

Figure 10.—The log-likelihood of the number of ancestral
lineages of 986 human HV1 sequences 30,000 years and
100,000 years ago. The likelihood was computed using a mu-
tation rate of 2.5 3 10�6/site/generation. Scheme 1 and
scheme 2 correspond to the two binning schemes (see Table
2). The log-likelihood functions have been shifted so that
their maximum values are 0. (A) Constant population size,
(B) one stage of population expansion, (C) two stages of pop-
ulation expansion.

Figure 9.—The log-likelihood of the number of ancestral
lineages of 986 human HV1 sequences, 30,000 years ago and
100,000 years ago. The likelihood was computed using a
mutation rate of 5 3 10�5/site/generation. Scheme 1 and
scheme 2 correspond to the two binning schemes (see Table
2). The log-likelihood functions have been shifted so that
their maximum values are 0. (A) Constant population size,
(B) one stage of population expansion, (C) two stages of pop-
ulation expansion.
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mutation rate and the number of ancestral lineages by
searching for maximum-likelihood estimates over a grid
of values for u and j.

The accuracy of the maximum-likelihood estimate
increases with the mutation rate u and the time t at
which the number of ancestral lineages has to be esti-
mated. However, by analyzing simulated replicates with
50 sequences, we observed that the RMSE of the esti-
mator is always .1 when the number of ancestral line-
ages is at least five. This lack of precision may be due
partly to the randomness of the mutation process and
partly to the randomness of the genealogical process
(see Joyce 1999 for a mathematical description of the
effects of these two sources of randomness in another
context). Because the parameter j that has to be esti-
mated is by definition a one-locus parameter—the num-
bers of ancestral lineages at time t of two different loci
might be different—it is not possible to reduce the var-
iance of the estimator by averaging the estimates across
loci. The TMRCA, for example, is also a one-locus pa-
rameter and the TMRCAs for autosomal and uni-
parental markers may differ by a factor of 10 or more
(Takahata et al. 2001; Tishkoff and Verrelli 2003).
Note, however, that multilocus data could potentially be
used to infer the genomewide distribution of the num-
ber of ancestors at time t.

Using our maximum-likelihood framework, we esti-
mated the number of ancestral lineages of a worldwide
sample containing 986 human sequences of the mito-
chondrial gene HV1. The number of ancestral lineages
of modern humans that are contemporary to the se-
quenced Neanderthal individuals is of particular impor-
tance when testing for admixture between Neanderthals
and modern humans (Nordborg 1998). When we uti-
lized a rather high mtDNA mutation rate that had been
inferred using pedigree analysis (Parsons et al. 1997),

the number of ancestors 30,000 years ago was estimated
at 1. Because it is very unlikely that the TMRCA of hu-
man mtDNA lineages is younger than 30,000 years, it is
unlikely that the number j of ancestral lineages 30,000
years ago was 1. This suggests that the mutation rate that
always produces j ¼ 1 may be too high to be accurate.
When using a smaller mtDNA mutation rate based on
the date of divergence between humans and chimps
(Tamura and Nei 1993), we obtained that the estimate
of the number of ancestral lineages 30,000 years ago is
.50. This has the consequence that scenarios of recent
admixture between modern humans and Neanderthals
(30,000 years ago) can be rejected, except if the pro-
portion of the modern human population that con-
sisted of Neanderthals at the time of the admixture was
small (c , 0.06). Note that because we assumed the in-
finitely many sites model, we might have underestimated
the number of ancestral lineages (see simulations). By
relaxing the infinitely many sites assumption to allow
recurrent mutations, the maximum possible level of ad-
mixture would be consequently reduced. A maximum
admixture of�5% is five times smaller than the previous
estimate of Serre et al. (2004), which was also based on
the current absence of Neanderthal lineages in the
modern human genealogy, but which did not make use
of the data to estimate the number of ancestral lineages
of modern humans. However, using a spatial range ex-
pansion for modeling the process by which Neander-
thals were replaced by humans and not using the model
of instantaneous admixture that we considered, Currat

and Excoffier (2004) found that the absence of mtDNA
lineages in the modern human sample was compatible
only with much smaller admixture rates of the order of
0.1%.

When aiming to detect ancient admixture, consider-
able power can be gained by using multilocus data

TABLE 3

Number of ancestors contemporary to the Neanderthal sequence and the minimum value cmin of the admixture
coefficient c such that the admixture model can be rejected with a type I error rate of 0.05

Constant
population size:

One stage of
population growth:

Two stages of
population growth:

tm (yr) tm (yr) tm (yr)

Mutation rate Quantity 30,000 100,000 30,000 100,000 30,000 100,000

2.5 3 10�6/site/generation ĵ 111 (4.86) 41 (1.75) 52 (782) 20 (2.86) 50 1
95% confidence interval 94–144 35–50 32–77 1–40 32–74 1–5

cmin 0.03 0.07 0.06 0.14 0.06 0.95
c15
min 0.03 0.06 0.05 0.11 0.05 0.39

5 3 10�5/site/generation ĵ 1 (4.86) 1 (1.75) 1 (782) 1 (2.86) 1 1
95% confidence interval 1–1 1–1 1–2 1–3 1–2 1–2

cmin 0.95 0.95 0.95 0.95 0.95 0.95
c15
min 0.39 0.39 0.39 0.39 0.39 0.39

The parameter c15
min corresponds to the minimum value of the admixture coefficient c such that the admixture model can be

rejected with a type I error rate of 0.05 when five sequenced early modern humans (Serre et al. 2004) were added to the estimated
number of ancestral lineages. Numbers in parentheses represent values from the study of Nordborg (1998).
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rather than single-locus data (Nordborg 2001). Recent
technological advances have made possible the se-
quencing of multilocus data from Neanderthal fossils
(Green et al. 2006; Noonan et al. 2006). Thus, the num-
ber of ancestors of modern humans at the time of the
potential admixture with Neanderthals could potentially
be estimated across the genome to identify the loci that
may be the most informative about the issue of ancient
admixture. Multilocus data from contemporary human
DNA sequences have already been analyzed, with a
different approach, for testing ancient admixture in
humans (Plagnol and Wall 2006). Plagnol and
Wall suggested that ancient admixture may explain an
elevated level of linkage disequilibrium observed in the
genomes of modern humans.

It is initially surprising that the estimate of the num-
ber of ancestral lineages was larger in the constant
population size model than in the models of popula-
tion expansion. This trend is the opposite of what
Nordborg (1998) found using a coalescent model for
computing the number of ancestral lineages. The result
of Nordborg is expected when the onset of the expan-
sion is more ancient than time t, so that most coales-
cence events occur more anciently than time t. To
explain why we observed an opposite trend, consider
one conditional coalescent tree with j lineages at time t
in a constant-sized population and one conditional
coalescent tree with j lineages at time t in an expanding
population. If the time since the beginning of the
expansion is greater than t, the coalescent tree is likely

to have a larger total length in the expanding popula-
tion than in the stationary population, because in the
expanding population, lineages do not have a high rate
of coalescence between time t and the beginning of
the expansion (see Figure 11). Thus, to explain the same
level of genetic variation as in a constant-sized popula-
tion, the estimate of the number of lineages at time
t needs to be smaller in the expanding population.

The mutation model has an influence on the esti-
mated number of ancestral lineages. Our method of
estimation assumes that sequences evolve according to
the infinitely many sites model and that each site evolves
at the same rate. However, these assumptions may be
violated for two principal reasons: first, the rate of muta-
tion may vary across sites, as has been shown for human
mtDNA (Meyer et al. 1999); second, recurrent muta-
tions may occur, invalidating the infinitely many sites
model. Overcoming the first issue is straightforward by
assuming a gamma distribution for the mutation rate ui

at site i,

fðuiÞ ¼
ða=bÞa
GðaÞ ua�1

i e�ða=bÞui ; ui . 0;

where a measures the level of rate heterogeneity and b

denotes the mean rate of mutation per site (measured
in units of events per N generations). Because a negative
binomial distribution is generated from a Poisson dis-
tribution where the rate of the Poisson distribution is
random and gamma distributed, the number of segre-
gating sites has a negative binomial distribution when the
mutation parameter across sites is gamma distributed:

PðS ¼ sÞ ¼ Gða 1 sÞ
s!GðaÞ

u‘

u‘1 a

� �s a

u‘1 a

� �
a
; s . 0 ð8Þ

(Tamura and Nei 1993). Equation 8 is a simple exten-
sion of the classical result that states that the number of
mutations per site has a negative binomial distribution
when the mutation parameter across sites is gamma dis-
tributed (Tamura and Nei 1993; Zhang and Gu 1998,
Equation 8). Taking rate heterogeneity into account
amounts to using a negative binomial distribution rather
than a Poisson distribution for the number of segregating
sites. As a result, the probability of the site frequency
spectrum given a coalescent tree Cn is no longer given by
Equation 1 but rather, by the following equation:

Pðz j CnÞ ¼
Gða 1 sÞ

GðaÞ
u‘

u‘1 a

� �s a

u‘1 a

� �
a

3
ð‘1=‘Þz1 . . . ð‘n�1=‘Þzn�1

z1! . . . zn�1!
: ð9Þ

In contrast, dealing with the second issue, namely the
fact that recurrent mutation can happen, is more dif-
ficult. Our approach relies on the computation of the
probability of the site frequency spectrum. In the in-
finitely many sites model, the site frequency spectrum is

Figure 11.—A genealogical tree of n ¼ 5 individuals con-
ditioned on having three lineages at time t, in a population
of constant size and in an expanding population for which
the beginning of the expansion is more ancient than t. The
initial population size in the expanding population is the
same as the present-day population size in the constant-
population-size model. Because the coalescent tree in the ex-
panding population is likely to have a longer total length, the
number of mutations that occur along the genealogy from
the expanding population is likely to be larger. Thus, the
same number of ancestral lineages at time t will produce a
larger genetic diversity in the expanding population. When
analyzing the same amount of genetic diversity, this explains
why the maximum-likelihood estimates of the number of an-
cestral lineages are smaller when assuming an expanding pop-
ulation rather than a constant-size population.
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a convenient summary of the data. Indeed, the proba-
bility of the site frequency spectrum given a coalescent
tree and the total number of mutations is given by the
multinomial distribution. This property does not hold
for more complex models of DNA substitution such as
the Jukes–Cantor model ( Jukes and Cantor 1969), and
for such models we would need to resort to joint sim-
ulations of the mutation process and the coalescent
process when computing the probability of the site fre-
quency spectrum. However, the infinitely many sites as-
sumption can still be used as an approximation, as we
found through simulations that the maximum-likelihood
estimator still behaves well even when the simulated data
follow a finite-sites model.

We also note that Algorithm 2 for the simulation of
coalescent trees given that the number of ancestors at
time t is equal to j may be useful for purposes other than
the estimation of the number of ancestral lineages. Us-
ing Algorithm 2, prior information about the number of
ancestral lineages can be added when estimating de-
mographic parameters from genetic data. Rejection
methods simulate genetic data using coalescent repli-
cates and accept the parameters that produce genetic
data close to the observed genetic data. When taking
prior information about the number of ancestral lineages
into account, coalescent replicates could be generated
according to Algorithm 2 instead of using a standard
coalescent. This estimation procedure may be appro-
priate, for example, when analyzing mtDNA of Native
Americans. Genetic studies have suggested that modern
Native Americans are represented by five distinct hap-
logroups (e.g., Schurr 2004). If we assume that Native
American lineages carrying distinct haplogroups coa-
lesced longer ago than the time of the migration through
the Bering strait—a view supported by the presence of
these haplogroups outside of the Americas (e.g., Kolman

et al. 1996)—estimation of demographic parameters such
as the size of the founding group might be performed
conditional on an assumption of five ancestral mtDNA
lineages at the time of the migration.
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APPENDIX A

We show in the following that the distribution of the intercoalescence time Ti given that An(t) ¼ j and
Tn ¼ tn; . . . ;Ti11 ¼ ti11 is a mixture of truncated exponential distributions

f ðtiÞTi jTn¼tn ; ... ;Ti11¼ti11;AnðtÞ¼j ¼
Xi�1

k¼j

pkgli�lk ;ui11ðtiÞ; i ¼ n; . . . ; j 1 1; ðA1Þ

where gg,t denotes the p.d.f. of the exponential distribution of parameter g truncated at time t and the coefficients of
mixture pk are given in the proof (Equation A3). When i¼ n, Equation A1 corresponds to the conditional distribution
of Tn given that An(t) ¼ j. Before proving (A1), we first recall some basic properties of truncated exponential
distributions.

The truncated exponential p.d.f. gg,t is given by

gg;tðtÞ ¼ g
e�gt

1� e�gt; 0 # t # t

and is 0 everywhere else. Its cumulative probability distribution is given by

Gg;tðtÞ ¼

0 if t , 0
1� e�gt

1� e�gt if 0 # t # t

1 if t . t:

8>><
>>:

The simulation of truncated exponential random variables is easily performed by the inversion method. The inversion
method consists of simulating a random variable with cumulative probability distribution G by simulating a uniform
random variable U over the interval (0, 1) and returning G�1(U ) or (1 � G)�1(U ) (Devroye 1986, pp. 27–28). For
truncated exponential random variables, it consists of computing �ln(U 1 (1 � U )e�gt)/g, where U is uniform over
the interval (0, 1).

Proof of (A1). The derivation of (A1) relies on the distribution of An(t), which can be found in Tavaré (2004, p. 19).
We have

PðAnðtÞ ¼ jÞ ¼def
qn;jðtÞ

¼
Xn

k¼j

e�lk t bðn; k; jÞ:
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The values b(n, k, j) are defined as

bðn; k; jÞ ¼
ð2k � 1Þð�1Þk�j jðk�1Þn½k�

j !ðk � jÞ!nðkÞ
;

where

nðkÞ ¼ nðn 1 1Þ . . . ðn 1 k � 1Þ
n½k� ¼ nðn � 1Þ . . . ðn � k 1 1Þ
nð0Þ ¼ n½0� ¼ 1:

The cumulative probability distribution of Ti given An(t) ¼ j and Tn ¼ tn; . . . ;Ti11 ¼ ti11 is

Pðtn ; ... ;ti11ÞðTi # ti jAnðtÞ ¼ jÞ ¼ Pðtn ; ... ;ti11ÞðTi # ti ; AnðtÞ ¼ jÞ
Pðtn ; ... ;ti11ÞðAnðtÞ ¼ jÞ

; i ¼ j 1 1; . . . ;n: ðA2Þ

In Equation A2, the conditional probability Pð� jTn ¼ tn; . . . ;Ti11 ¼ ti11Þ is denoted by Pðtn ; ... ;ti11Þ. When i . j, the fact
that An(�) is a Markov process leads to

Pðtn ; ... ;ti11ÞðAnðtÞ ¼ jÞ ¼ PðAiðui11Þ ¼ jÞ ¼ qi;jðui11Þ:

By conditioning on Ti, we compute the numerator of (A2):

Pðtn ; ... ;ti11ÞðTi # ti ; AnðtÞ ¼ jÞ ¼
ðti

x¼0
PðAi�1ðui11 � xÞ ¼ jÞli e

�li x dx

¼
ðti

x¼0

Xi�1

k¼j

e�lkðui11�xÞbði � 1; k; jÞli e
�li x dx:

Some computations lead to

Pðtn ; ... ;ti11ÞðTi # ti ; AnðtÞ ¼ jÞ ¼
Xi�1

k¼j

libði � 1; k; jÞðe�lkui11 � e�liui11Þ
li � lk

1� e�ðli�lkÞti

1� e�ðli�lkÞui11
;

which completes the proof and gives the coefficients of the mixture

pk ¼
libði � 1; k; jÞðe�lkui11 � e�liui11Þ

ðli � lkÞqi;jðui11Þ
: ðA3Þ

n

APPENDIX B

This section is devoted to the construction of a rejection sampling algorithm for simulating random variates ranging
from 0 to ui11, with p.d.f. given by

fapproxðxÞ ¼ Ke�xðli�li�1Þ 1� x

ui11

� �i�1�j

; 0 # x # ui11;

where K denotes the normalizing constant. We are interested in the p.d.f. fapprox because it is a good approximation,
when t is small, of the conditional p.d.f. of the intercoalescence time Ti given that An(t) ¼ j and Tn ¼ tn; . . . ;
Ti11 ¼ ti11. Because li � li�1 . 0, we have

fapproxðxÞ# K 1� x

ui11

� �i�1�j

:

We denote by gapprox the following p.d.f.:

gapproxðxÞ ¼
i � j

ui11
1� x

ui11

� �i�1�j

; 0 # x # ui11:
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Then the standard rejection method (Devroye 1986, pp. 40–42) for simulating a random variable with p.d.f. given by
fapprox can simply be written as follows:

1. Generate a random variate X with density gapprox.
2. Generate a uniform-½0, 1� random variate U.
3. If ðU # e�tiðli�li�1ÞÞ return X; otherwise go back to step 1.

Generating a random variate X with density gapprox is performed using the inversion method (Devroye 1986, pp. 27–
28). In that context, it consists of computing ui11ð1�

ffiffiffiffiffi
Ui�j
p
Þ, where U is uniform over the interval (0, 1).

APPENDIX C

We used two models of population growth: a model with one stage of expansion and a model with two stages of
expansion. Both models have geometric growth when time is discrete and exponential growth when time is
continuous and scaled in units of N ¼def

N ð0Þ generations. The model with one stage of expansion assumes that the
population has constant size prior to generation V and geometric growth from then to the present time. Thus, for
some d 2 (0, 1), the population size r generations before the present is given by

N ðr Þ ¼ ºN dß; r $ V
ºN dr=V ß; r ¼ 0; . . . ;V

�

(Tavaré 2004, pp. 23–24). We suppose that V ¼ ºNnß for some n . 0, so that the expansion started n time units ago.
Then

N dNxeð Þ
N ð0Þ /

N /‘
sðxÞ ¼ dminðx=n;1Þ:

The model with two stages of expansion is a simple extension of the model with one stage of expansion. For some d1

and d2 2 (0, 1), we have

N ðr Þ ¼

ºN d1ß; r $ V1

ºN d2
d1

d2

� �ððr�V2Þ=ðV1�V2ÞÞ
ß; V2 # r # V1

ºN d
r=V2
2 ß; r ¼ 0; . . . ;V2:

8>><
>>:

We suppose that V1 ¼ ºN n1ß and V2 ¼ ºN n2ß for some n1, n2 . 0. Then

N ðdNxeÞ
N ð0Þ /

N /‘
sðxÞ ¼

d1; x $ n1

d2
d1

d2

� �ððx�n2Þ=ðn1�n2ÞÞ
; n2 # x # n1

d
x=n2
2 ; x ¼ 0; . . . ; n2:

8>><
>>:

When analyzing the human mtDNA data, we set N¼ 5 3 108, d¼ 6.8 3 10�6, and n¼ 5 3 10�6 for the expansion model
with one growth rate. When using the model of expansion with two growth rates, we set N¼ 3 3 109, d1¼ 1.13 3 10�6, d2

¼ 8.33 3 10�4, n1¼ 8.33 3 10�7, and n2¼ 1.66 3 10�7. The first model of expansion assumes that the initial population
containing 3400 individuals was constant before the date of the expansion 50,000 years ago and then grew
exponentially to 5 3 108 individuals. The second model assumes that the initial population of 3400 individuals was
constant before the date of the first expansion 50,000 years ago, grew exponentially to 2.5 3 106 individuals 10,000
years ago, and then grew at a faster rate to reach 3 3 109 female individuals today.
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